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Abstract. We analyze the internal permutations of Keccak, one of the NIST SHA-3 competition
finalists, in regard to differential properties. By carefully studying the elements composing those per-
mutations, we are able to derive most of the best known differential paths for up to 5 rounds. We use
these differential paths in a rebound attack setting and adapt this powerful freedom degrees utiliza-
tion in order to derive distinguishers for up to 8 rounds of the internal permutations of the submitted
version of Keccak. The complexity of the 8 round distinguisher is 2491.47. Our results have been im-
plemented and verified experimentally on a small version of Keccak. This is currently the best known
differential attack against the internal permutations of Keccak.
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1 Introduction

Cryptographic hash functions are used in many applications such as digital signatures, authentication
schemes or message integrity and they are among the most important tools in cryptography. Informally, a
hash function H is a function that takes an arbitrarily long message as input and outputs a fixed-length
hash value of size n bits. Even if hash functions are traditionally used to simulate the behavior of a random
oracle [3], classical security requirements are collision resistance and (second)-preimage resistance. Namely,
it should be impossible for an adversary to find a collision (two distinct messages that lead to the same
hash value) in less than 2n/2 hash computations, or a (second)-preimage (a message hashing to a given
challenge) in less than 2n hash computations. Of course, in the ideal case an attacker should also not be
able to distinguish the hash function from a random oracle.

Recently, most of the standardized hash functions [23, 20] have suffered from serious collision attacks [27,
26]. As a response the NIST launched in 2008 the SHA-3 competition [21] that will lead to the future hash
function standard. 5 candidates made it to the final round, and Keccak [9] is among them. Compared
to its opponents, this hash function presents the particularity to be a sponge function [5]. The submitted
versions of Keccak to the SHA-3 competition use as main component an internal permutation P of 1600
bits. In the original submission [6] the internal permutation used 18 rounds and the tweaked versions [7]
went up to 24 rounds.

Like any construction that builds a hash function from a subcomponent, the cryptographic quality of
this internal permutation is very important for a sponge construction. Therefore, this permutation P should
not present any structural flaw, or should not be distinguishable from a randomly chosen permutation.
Previous cryptanalysis have not endangered the Keccak security so far. Zero-sum distinguishers [2] can
reach an important number of rounds, but generally with a very high complexity. For example, the latest
results [11] provide zero-sum partitions distinguishers for the full 24-round 1600-bit internal permutation
with a complexity of 21590. When looking at smaller number of rounds the complexity would decrease, but
it is unclear how one can describe the partition of a 1600-bit internal state without using the Keccak

round inside the definition of the partition. Moreover, such zero-sum properties seem very hard to exploit
when the attacker aims at the whole hash function. On the other side, more classical preimage attack on
3 round using SAT-solvers have been demonstrated [19]. Finally, Bernstein recently published [4] a 2511.5



computations (second)-preimage attack on 8 rounds that allows a workload reduction of only half a bit over
the generic complexity with an important memory cost of 2508.

Our contributions. In this article, we analyze the differential cryptanalysis resistance of the Keccak

internal permutation. More precisely, we first introduce a new and generic method that looks for good differ-
ential paths for all the Keccak internal permutations, and we obtain the currently best known differential
paths. We then describe a simple method to utilize the available freedom degrees which allows us to derive
distinguishers for reduced variants of the Keccak internal permutations with low complexity. Finally, we
apply the idea of rebound attack [18] to Keccak. This application is far from being trivial and requires a
careful analysis of many technical details in order to model the behavior of the attack. This technique is
in particular much more complicated to apply to Keccak than to AES or to other 4-bit Sbox hash func-
tions [22, 14]. The model introduced has been verified experimentally on a small version of Keccak and
we eventually obtained differential distinguishers for up to 8 rounds of the submitted version of Keccak

to the SHA-3 competition. In order to demonstrate why differential analysis is in general more relevant
than zero-sum ones in regards to the full hash function, we applied our techniques to the recent Keccak

challenges [25] and managed to obtain the currently best known collision attack for up to two rounds.

Outline. In Section 2, we first briefly describe the Keccak family of hash functions. We describe our
differential path search algorithm in Section 3 and we derive simple differential distinguishers from it in
Section 4. We present our theoretical model and we apply the rebound attack on Keccak in Section 5.
We show how to reduce the complexity of the attack in Section 6. Finally, we present our results and draw
conclusions in Section 7.

2 The Keccak Hash Function Family

Keccak [9, 10] is a family of variable length output hash functions based on the sponge construction [5]. In
Keccak family, the underlying function is a permutation chosen from a set of seven Keccak-f permuta-
tions, denoted as Keccak-f [b] where b ∈ {1600, 800, 400, 200, 100, 50, 25} is the permutation width as well
as the internal state size of the hash function. The Keccak family is parametrized by an r-bit bitrate and
c-bit capacity with b = r + c.

A fixed length n-bit hash value for a Keccak hash function is obtained by truncating the output of the
hash function to the first n bits and this function is denoted by Keccakn. For these variants, if at least
2n (second) preimage resistance security is desired then the parameter c is chosen such that c ≥ 2n. The
proposed version of Keccak for the SHA-3 standardization uses Keccak-f [1600] as internal permutation.
The default variant of Keccak family is denoted by Keccak-[] and it has parameters r = 1024, c = 576
for any output length n.

2.1 The domain extension algorithm

Sponge is an iterated construction to build a function F : {0, 1}∗ → {0, 1}∗ by using a fixed length trans-
formation or permutation f whose width is fixed to b bits. This construction operates on a state of b. The
initial value of the state is zero and the input message is padded such that it is a multiple of r-bit message
blocks (and the last message block is different than zero).

Message processing using sponge construction has two stages: absorbing phase and squeezing phase. In
the absorbing phase, r-bit message blocks are xor-ed with the first r bits of the b-bit state, interleaved
with the applications of f until all blocks are processed. In the squeezing phase, depending on the required
number of output bits n, the first r bits of the state are returned as output blocks, interleaved with the
applications of f until n bits are returned.

2.2 The Keccak-f permutations

The internal state of the Keccak family can be viewed as a bit array of 5× 5 lanes, each of length w = 2ℓ

where ℓ ∈ {0, 1, 2, 3, 4, 5, 6} and b = 25w. The state can also be described as a three dimensional array of bits



defined by a[5][5][w]. A bit position (x, y, z) in the state is given by a[x][y][z] where x and y coordinates are
taken over modulo 5 and the z coordinate is taken over modulo w. A lane of the internal state at column x
and row y is represented by a[x][y][·], while a slice of the internal state at width z is represented by a[·][·][z].

Keccak-f [b] is an iterated permutation consisting of a sequence of nr rounds indexed from 0 to nr − 1
and the number of rounds are given by nr = 12 + 2ℓ. A round R consists of a transformation of five step
mappings and is defined by:

R = ι ◦ χ ◦ π ◦ ρ ◦ θ

These step mappings are discussed below where the operation + indicates bitwise addition.

θ mapping. This linear mapping intends to provide diffusion for the state and is defined for every x, y
and z by:

θ : a[x][y][z]← a[x][y][z] +
4
⊕

y′=0

a[x− 1][y′][z] +
4
⊕

y′=0

a[x+ 1][y′][z − 1]

That is, the bitwise sum of the two columns a[x− 1][·][z] and a[x+1][·][z− 1] is added to each bit a[x][y][z]
of the state.

ρ mapping. This linear mapping intends to provide diffusion between the slices of the state through
intra-lane bit translations. For every x, y and z:

ρ : a[x][y][z]← a[x][y][z + T (x, y)]

where T (x, y) is a translation constant. That is, all bit positions in each lane are translated by a constant
amount that depends on the column x and row y considered.

π mapping. This linear mapping intends to provide diffusion in the state through transposition of the
lanes. More precisely, it is defined for every x, y and z as:

π : a[x′][y′][z]← a[x][y][z], with

(

x′

y′

)

=

(

0 1
2 3

)

·

(

x
y

)

Since this results in transposition of bits into a same slice, this mapping is an intra-slice transposition.

χ mapping. This is the only non-linear mapping of Keccak-f and is defined for every x, y and z by:

χ : a[x][y][z]← a[x][y][z] + ((¬a[x+ 1][y][z]) ∧ a[x+ 2][y][z])

This mapping is similar to an Sbox applied independently to each 5-bit row of the state and can be computed
in parallel to all rows. We represent by s = 5w the number of Sboxes/rows in Keccak internal state. Here
¬ denotes bit-wise complement, and ∧ the bit-wise AND.

ι mapping. For every round R of the Keccak-f permutation, this mapping adds constants derived from
an LFSR (see [9] for details) to the lane a[0][0][·]. These constants are different in every round i:

ι : a[0][0][·]← a[0][0][·] + RC[i]

This mapping aims at destroying the symmetry introduced by the identical nature of the remaining mappings
in every round of the Keccak-f permutation.

We refer to the Keccak specifications document [9] for all the translation and round constants.



3 Finding Differential Paths for Keccak-f Internal Permutations

Before describing how we use the freedom degrees in a rebound attack setting, we first study how to
find “good” differential paths for all Keccak variants. In this section, we describe our differential finding
algorithms. We start by recalling several special properties of the mappings θ and χ in the round function,
followed by our algorithm which provides most of the best known differential paths for the Keccak internal
permutations. In particular, we provide the currently best known 3, 4 and 5-round differential paths for
Keccak-f [1600], the internal permutation from the submitted version of Keccak.

3.1 Special properties of θ and χ

The θ mapping updates each state bit a[x][y][z] by adding the bitwise sum of the two columns a[x− 1][.][z]
and a[x + 1][.][z − 1]. When every column sums to 0, θ acts as identity. This is noted by the Keccak

designers [9, Section 2.4.3], and the set of the states with all columns sums to 0 is called column parity
kernel, or CP-kernel for short. Since θ is linear, this property applies not only to the state values, but also
to differentials. While θ expands a single bit difference into at most 11 bits (2 columns and the bit itself),
it has no influence, i.e., acts as identity, on differences in the CP-kernel. This property will be intensively
used in finding low Hamming weight bitwise differentials. Another interesting property is that θ−1 diffuses
much faster than θ, i.e., a single bit difference can be propagated to about half state bits through θ−1 [9,
Section 2.3.2]. However, the output of θ−1 is extremely regular when the Hamming weight of the input is
low.

The χ layer updates each bit a[x, y, z] by adding ((¬a[x+1, y, z])∧a[x+2, y, z]). It is a row-wise operation
and thus can also be viewed as a 5-bit Sbox. Similar to the analysis of other Sboxes, we build the differential
distribution table (DDT), as shown in Table 3 in Appendix B. We remark that when a single difference is
present, χ acts as identity with the best probability 2−2, while input differences with more active bits tends
to lead to more possible output differences, but with lower probability. It is also interesting to note that
given an input difference to χ, all possible output differences occur with same probability, however this is
not the case for χ−1 (the DDT for χ−1 can be derived from Table 3).

3.2 First tools

Our goal is to derive “good” bitwise differential paths by maintaining the bit difference Hamming weight as
low as possible. The ι permutation adds predefined constants to the first lane, and hence has no essential
influences when such differentials are considered. For the rest of the paper, we will ignore this layer. We
note that θ, ρ and π are all linear mappings, while χ acts as a non-linear Sbox. Furthermore, ρ and π do not
change the number of active bits in a differential path, but only bit positions. Hence, θ and χ are critical
when looking for a “good” differential path. Since χ is followed by θ in the next round (ignoring ι), we
consider these two mappings together by treating a slice of the state as a unit, and try to find the potential
best mapping of the slice through χ with the following two rules.

1. Given an input difference of the slice, i.e., 5 row differences, find all possible output differences by
looking into the DDT table. Then among all combinations of solutions of the 5 rows, choose the output
combinations with minimum number of columns with odd parity.

2. In case of a draw, we select the state with the minimum number of active bits.

Rule 1 aims at reducing the amount of active bits after applying θ by choosing each slice of the output
of the χ closest to the CP-kernel (i.e., with even parity for most columns), and rule 2 further reduces the
amount of active bits within the columns. Although this strategy may not lead to the minimum number of
active bits after θ in the entire state (the full Keccak-f [1600] state is too large to precompute the best
mappings for the whole state), it finds the best slice-wise mappings with help of a table of size 225 (tricks
like removing the ordering of the rows reduce the table size to about 218). We call this table χ-slice-table.



3.3 Algorithm for differential path search

Denote λ = π ◦ ρ ◦ θ (all linear mappings), and the state at round i before (resp. after) applying the linear
layer λ as ai (resp. bi). We start our search from a1, i.e., the input state to the second round, and compute
backwards for one round, and few rounds forwards, as shown below.

a0
λ−1

←−− b0
χ−1

←−− a1
λ
−→ b1

χ
−→ a2

λ
−→ b2

χ
−→ a3

λ
−→ b3 · · ·

The forward part is longer than the backward part because the diffusion of θ−1 is much better than for
θ, thus, it will be easier for us to control the bit differences Hamming weight for several forward rounds
(instead of backward rounds).

We choose a1 from the CP-Kernel. However, it is impossible to enumerate all (
(

5
0

)

+
(

5
2

)

+
(

5
4

)

)320 = 21280

combinations. We further restrict to a subset of the CP-Kernel with at most 8 active bits and each column
having exactly 0 or 2 active bits. Note also that any bitwise differential path is invariant through position
rotation along the z axis, so we have to run through a set of size about 236. A brute-force search on this
set using our two rules stated previously finds 3-round differential paths with probability 2−32, 4-round
differential paths with probability 2−142 and 5-round paths with probability 2−709 for Keccak-f [1600],
with examples shown in Table 6, 7 and 8 in Appendix D, respectively. We provide also in Table 1 all the
best differential path probabilities found for all Keccak internal permutation sizes.

Table 1. Best differential path results for each version of Keccak internal permutations, for 1 up to 5 rounds. The
detailed differential paths for Keccak-f[1600] are shown in Appendix D. Paths in bold are new results we found
with the method presented in this paper.

b
best differential path probability (successive differential complexity of the rounds)

1 rd 2 rds 3 rds 4 rds 5 rds

100 2−2 (2) 2−8 (4 - 4) 2−19 (4 - 8 - 7) 2−30 (4 - 8 - 10 - 8) 2−54 (4 - 8 - 10 - 8 - 24)

200 2−2 (2) 2−8 (4 - 4) 2−20 (4 - 8 - 8) 2−46 (11 - 9 - 8 - 8) 2−108 (8 - 16 - 20 - 16 - 48)

400 2−2 (2) 2−8 (4 - 4) 2−24 (8 - 8 - 8) 2−84 (16 - 14 - 12 - 42) 2−216 (16 - 32 - 40 - 32 - 96)

800 2−2 (2) 2−8 (4 - 4) 2−32 (4 - 4 - 24) 2−109 (12 - 12 - 12 - 73) 2−432 (32 - 64 - 80 - 64 - 198)

1600 2−2 (2) 2−8 (4 - 4) 2−32 (4 - 4 - 24) 2−142 (12 - 12 - 12 - 106) 2−709 (16 - 16 - 16 - 114 - 547)

Comment. In the reference document [9], among other methods, the Keccak designers looked for special
differential paths to motivate their choice of the step mappings. In their model, the input states to the χ of
the first two rounds are forced to fall entirely inside the CP-kernel. The best 3-round path they could find
for Keccak-f [1600] has probability 2−35. Note also that no 4-round and 5-round path is obtained. Their
results were up to now the best published differential paths for Keccak. As shown in Table 1, our model
outperforms in most cases the Keccak designers model by removing this strong restriction on χ and using
a more appropriate slice-wise mapping. As a result, we found the best known 3, 4 and 5-round differential
paths for the bigger versions of Keccak.

4 Simple Distinguishers for the Reduced Keccak Internal Permutations

Once the differential paths obtained, we can concentrate our efforts on how to use at best the freedom
degrees available in order to reduce the complexity required to find a valid pair for the differential trails or
to increase the amount of rounds attacked. We present in this section a very simple method that allows to
obtain low complexity distinguishers on a few rounds of the Keccak internal permutations.

4.1 A very simple freedom degrees fixing method

We first describe an extremely simple way of using the available freedom degrees, which are exactly the b-bit
value of the internal state (since we already fixed the differential path). For all the best differential paths



found from Table 1, we can extend them by one round to the left or to the right, by simply picking some
valid Sboxes differential transitions. Obviously, this is going to add a lot of new constraints because the
number of active Sboxes will explode in this newly added round and it will force the differential probability
to be very low overall. However, we can use our available freedom degrees specifically for this round so that
its cost is null. One simply handles each of the active Sboxes differential transitions for this round one by
one, independently, by fixing a valid value for the active Sboxes. In terms of freedom degrees consumption
for this extra round, in the worst case we have all s Sboxes active and a differential transition probability
of 2−4 for each of them. Thus, we are ensured to have at least 25s−4s = 2s freedom degrees remaining after
handling this extra round.

Let us assume for example that we start from the 4-round differential path for Keccak-f [1600], with
differential probability 2−142. One can obtain a 5 round path by adding one round to the left but the number
of conditions for this new round will be huge. Therefore, we simply identify all the active Sboxes for this
fifth round and we fix the value for them so that the expected differential transitions are verified. Overall,
the attacker finds a valid pair of internal state values for the 5-round differential path only with complexity
2142 (we are ensured to have at least 2320 freedom degrees to handle the 2−142 probability). Note that some
more involved freedom degree methods (such as message modification [26]) might even allow to also control
some of the conditions of the original differential path, thus further reducing the complexity.

4.2 The generic case

At the present time, we are able to find valid pairs of internal state values for some differential paths on a few
rounds with a rather low complexity. Said in other words, we are able to compute internal state value pairs
with a predetermined input/output difference. A direct application from this is to derive distinguishers.
For a randomly chosen permutation of b bits, finding a pair of inputs with a predetermined difference that
maps to a predetermined output difference costs 2b computations. Indeed, since the input and the output
differences are fixed, the attacker can not apply any birthday-paradox technique. Those distinguishers are
called “limited-birthday distinguishers” and can be generalized in the following way (we refer to [12] for
more details): for a randomly chosen b-bit permutation, the problem of mapping an input difference from
a subset of size I to an output difference from a subset of size J requires max{

√

2b/J, 2b/(I · J)} calls to
permutation (while assuming without loss of generality since we are dealing with a permutation that I ≤ J).

Using the freedom degrees technique from the previous section and reading Table 1, we are for example
able to obtain a distinguisher for 5 rounds of the Keccak-f [1600] internal permutation with complexity
2142 (while the generic case is 21600).

4.3 Extending the differential path

Since for many of our distinguishers, the gap between our attack and the generic case complexity is very
big, we can try to reach a few more rounds without increasing the complexity. Indeed, by analyzing how the
differences will propagate forward from the output and backward from the input of our differential path,
we will be able to determine the size of the possible input differences set and the possible output differences
set.

For the forward case (i.e. when adding a round to the right), we start from the fully determined difference
on the output of the differential path. We first apply the linear layers θ, ρ and π on this output difference
and we obtain the difference mask at the input of χ. Now, for each active Sbox, knowing exactly its input
difference, we can check with the DDT from χ (Table 3 in the Appendix B) that only a subset of the 25

possibles output differences can be reached. Therefore, the size Γ out of the set of reachable output differences
after applying this extra round is bounded and this bound can be computed exactly using the DDT from
χ.

For the backward case (i.e. when adding a round to the left), we start from the fully determined difference
on the input of the differential path. Then, reading at the DDT from χ−1, one can check that one active
Sbox can produce at most a certain small subset of the 25 possible input differences. Therefore, the size
Γ in of the set of reachable input differences after inverting this χ layer is bounded and this bound can be
computed exactly using the DDT from χ−1. Note that continuing to invert the extra round by computing
θ−1, ρ−1 and π−1 will not modify the size of this set.



To conclude, using a r-round path from Table 1 with differential probability p, we extend it by one
more round in order to find valid internal state pairs for this new (r + 1)-round differential path with p−1

computations (see Section 4.1). Then, using the limited-birthday distinguishers, one can derive a (r + 3)-
round distinguisher for the Keccak internal permutation with complexity p−1, if

p−1 < max{
√

2b/J, 2b/(I · J)}

where I = Γ out and J = Γ in if Γ out ≤ Γ in; I = Γ in and J = Γ out otherwise.
Continuing our example with the 4-round differential path for Keccak-f [1600] from Table 1, we have

Γ in = 21064 and Γ out = 2576 for a 7-round distinguisher of the internal permutation. Thus the generic
complexity to find such constraint pairs is 2268 computations which is much higher than 2142. All the
distinguishers we obtain with this method are summarized in Table 2.

Note that the reader might be concerned by the fact that the sizes Γ in and Γ out of the reachable differences
sets can be very big and might be not easy to describe in a compact way in our distinguisher. However,
we emphasize that all the reachable differences on the output (resp. input) are actually built from the
independent combinations of all the possible output differences (resp. input differences) of all active Sboxes
in the last round (resp. first round). Therefore, the description of this set is easily done by identifying the
reachable output differences (resp. input differences) for all the Sboxes independently.

5 The Rebound Attack on Keccak

The rebound attack is a freedom degrees utilization technique that was first proposed by Mendel et al.
in [18] as an analysis of round-reduced Grøstl and Whirlpool. It was then improved in [17, 16, 12, 24] to
analyze AES and AES-like permutations and also ARX ciphers [15].

With the help of rebound techniques, we show in this section how to extend the number of attacked
rounds significantly, but for a higher complexity. We will see that the application of the rebound attack
for Keccak seems quite difficult. Indeed, the situation for Keccak is not as pleasant as the AES-like
permutations case where the utilization of truncated differential paths (i.e. path for which one only checks
if one cell is active or inactive, without caring about the actual difference value) makes the application of
rebound attacks very easy to handle.

5.1 The original rebound attack

Let P denote a permutation, which can be divided into 3 sub-permutations, i.e., P = EF ◦ EI ◦ EB . The
rebound attack works in two phases.

• Inbound phase or controlled rounds: this phase usually starts with several chosen input/output
differences of EI that are propagated through linear layers forward and backward. Then, one can carry
out meet-in-the-middle (MITM) match for differences through a single Sbox layer in EI and generate
all possible value pairs validating the matches.
• Output phase or uncontrolled rounds: With all solutions provided in the inbound phase, check if
any pair validates as well the differential paths for both the backward part pB and the forward part pF .

In most cases, the inbound phase can be done fast due to the MITM nature and generates solution pairs
with very low average complexity. Hence, attackers usually choose the position of EI in the differential
path so that it covers a low probability portion of the trail in order to increase the success probability of
the outbound phase. For example when dealing with the 128-bit AES internal permutation, this MITM is
performed on sixteen parallel 8-bit Sboxes. If the match is done with k Sboxes being active and since a
random 8-bit input/output difference can be matched with probability 1/2 through a single AES Sbox, one
needs to try at least 2k input/output difference pairs of EI in order to hope having one matching candidate
for the inbound phase. However, once a match is found one can generate about 2k solution values from it,
thus leading to an average cost of about one operation per solution for the controlled rounds. The final goal
of the attacker is then to generate enough inbound phase solution values such that one of them also verifies
the forward and backward outbound trails, i.e at least p−1

B · p
−1
F pairs need to be tested if pB and pF are

the respective backward and forward differential probability (DP) of the outbound trail.



The SuperSbox technique [16, 12] extends the EI from one Sbox layer to two Sbox layers for an AES-like
permutation, by considering two consecutive AES-like rounds as one with column-wise SuperSboxes. This
technique is possible due to the fact that one can swap few linear operations with the Sbox in AES, so that
the two layers of Sboxes in two rounds become close enough to form one SuperSbox layer. However, in the
case of Keccak, it seems very hard to form any partition into independent SuperSboxes. For the same
reason, using truncated differential paths seems very difficult for Keccak, as it has recently been shown
in [8].

During the application of rebound attacks, one has to start with several input/output differences of
EI to complete the inbound phase. For AES-like permutations one can start with truncated differences and
thus it is much more handy because this view simplifies a lot the analysis. Indeed, a truncated differential
for AES-like permutations can be seen as a collection of several bit differentials, all with the same success
probability and the same properties in regards to rebound attacks. Thus, whatever the difference masks
considered for the input/output of the controlled rounds, the probabilities pB and pF will remain the same,
so will the probability to get a match in EI or the number of solutions that can be generated from a match.
This will not be the case for Keccak as we can not use truncated differential paths and the analysis will
be much more involved.

5.2 Applying the rebound attack for Keccak internal permutations

Assume that we know a set of nB differential trails (called backward trails) on nrB Keccak rounds and
whose DP is higher or equal to pB . For the moment, we want all these backward paths to share the same
input difference mask ∆in

B and we denote by ∆out
B [i] the output difference mask of the i-th trail of the set.

Similarly, we consider that we also know a set of nF differential trails (called forward trails) on nrF Keccak

rounds and whose DP is higher or equal to pF . We want all those forward paths to share the same output
difference mask ∆out

F and we denote by ∆in
F [i] the input difference mask of the i-th trail of the set.

λ χ . . . λ χ λ χ λ χ . . . λ χ

∆in

B [1] ∆out

B [1] ∆out∗

B [1] ∆in

F [1] ∆out

F [1]
...

...
...

...
...

∆in

B [Γ
in

B ] ∆out

B [Γ out

B ] ∆out∗

B [Γ out

B ] ∆in

F [Γ
in

F ] ∆out

F [Γ out

F ]

nrB-round backward part Inbound nrF -round forward part

Fig. 1. Rebound attack on Keccak

Our goal here is to build a differential path on nrB + nrF + 1 Keccak rounds (thus one Sbox layer of
inbound), by connecting a forward and a backward trail with the rebound technique, and eventually to find
the corresponding solution values for the controlled round. We represent by pmatch the probability that a
match is possible from a given element of the backward set and a given element of the forward set, and we
denote by Nmatch the number of solution values that can be generated once a match has been obtained.

For this connection to be possible, we need the inbound phase to be a valid differential path, that is we
need to find a valid differential path from a ∆out∗

B to a ∆in
F . By using random ∆out∗

B and ∆in
F this will happen

in general with very small probability, because we need the very same set of Sboxes to be active/inactive
in both forward and backward difference masks so we can have a chance to get a match. Even if the set
of active Sboxes matches, we still require the differential transitions through all the active Sboxes to be
possible.

We can generalize a bit this approach by allowing a fixed set of differences ∆in
B (resp. ∆out

F ) instead of
just one. We call Γ in

B (resp. Γ out
B ) the size of the set of possible ∆in

B (resp. ∆out
B ) values for the backward

paths. Similarly, we call Γ in
F (resp. Γ out

F ) the size of the set of possible ∆in
F (resp. ∆out

F ) values for the forward
paths. In fact, the number of possible differences in the backward or forward parts will form a butterfly



shape (see Figure 2). We call Γmid
B (resp. Γmid

F ) the minimum number of differences in the backward (resp.
forward) part.

Γ in

B
Γmid

B
Γ out

B Γ in

F
Γmid

F
Γ out

F

Inbound

Fig. 2. Number of differences for the rebound attack on Keccak.

The total complexity C to find one valid internal state pair for the (nrB + nrF + 1)-round path is

C = nF + nB +
1

pmatch

·

⌈

1

pF · pB ·Nmatch

⌉

+
1

pB · pF
, (1)

with

Γ out

B · Γ in

F =
1

pmatch

·

⌈

1

pF · pB ·Nmatch

⌉

. (2)

The first two terms are the costs to generate the backward and forward paths. The term ⌈ 1
pF ·pB ·Nmatch

⌉

denotes the number of time we will need to perform the inbound and each inbound costs 1/pmatch. The last
term is the cost for actually performing the outbound phase. The condition (2) is needed since we need
enough differences to perform the inbound phase.

Roadmap. For a better understanding of the behavior of the Sboxes in the rebound attack, we will introduce
some useful lemmas in Section 5.3. We explain how to prepare the forward and backward differential paths
in Section 5.4 and describe the inbound and outbound phases in Section 5.5 and 5.6 respectively. We explain
how to relate Sections 5.4, 5.5 and 5.6 in Section 5.7, we show also how we can reduce the complexity of
the attack and we give a numerical application of our model. Finally we construct distinguishers from the
differential paths in Section 5.8.

5.3 An ordered Buckets and Balls Problem

We model the active/inactive Sboxes match as a limited capacity ordered buckets and balls problem:
the s = 5w ordered buckets (s = 320 for Keccak-f [1600]) limited to capacity 5 will represent the s 5-bit
Sboxes and the xB (resp. xF ) balls will stand for the Hamming weight of the difference in ∆out∗

B (resp. in
∆in

F ). Given a set B of s buckets in which we randomly throw xB balls and a set F of s buckets in which we
randomly throw xF balls, we call the result a pattern-match when the set of empty buckets in B and F
after the experiment are the same.4 Before computing the probability of having a pattern-match, we need
the following lemma.

Lemma 1. The number of possible combinations bbucket(n, s) to place n balls into s buckets of capacity 5
such that no bucket is empty is

bbucket(n, s) :=















s
∑

i=⌈n/5⌉

(−1)s−i

(

s

i

)(

5i

n

)

if s ≤ n ≤ 5s

0 else.

(3)

4 Note that the position of the balls in the buckets is significant. This is why we refer to an ordered buckets and
balls problem.



Proof. First note that the number of combinations verifies the following recurrence relation:

bbucket(n, s) =

(

5

1

)

bbucket(n− 1, s− 1) +

(

5

2

)

bbucket(n− 2, s− 1) + · · ·+

(

5

5

)

bbucket(n− 5, s− 1) ,

with bbucket(x, s) = 0 when x ≤ 0 and bbucket(x, 1) =
(

5
x

)

when 0 < x ≤ 5 and 0 else.
Let’s consider the following generating function:

Gs(x) :=
∑

k≥0

bbucket(k, s)x
k .

We have

G1(x) =

(

5

1

)

x+

(

5

2

)

x2 + · · ·+

(

5

5

)

x5 = (x+ 1)
5 − 1 .

Hence,
∑

k≥1 bbucket(k, s)x
k =

∑

k≥1

[(

5

1

)

bbucket(k − 1, s− 1) +

(

5

2

)

bbucket(k − 2, s− 1) + · · ·+

(

5

5

)

bbucket(k − 5, s− 1)

]

xk

=
∑

k≥1

(

5

1

)

bbucket(k − 1, s− 1)xk +
∑

k≥2

(

5

2

)

bbucket(k − 2, s− 1)xk + · · ·+
∑

k≥5

(

5

5

)

bbucket(k − 5, s− 1)xk

=
∑

k≥0

(

5

1

)

bbucket(k, s− 1)xk · x+
∑

k≥0

(

5

2

)

bbucket(k, s− 1)xk · x2 + · · ·+
∑

k≥0

(

5

5

)

bbucket(k, s− 1)xk · x5

= Gs−1(x) ·

((

5

1

)

x+

(

5

2

)

x2 + · · ·+

(

5

5

)

x5

)

= Gs−1(x) ·
(

(x+ 1)5 − 1
)

= Gs(x) .

The last equality follows from bbucket(0, s) = 0. Let A := (x+ 1)5 − 1. We have

Gs(x) = Gs−1(x)A = G1(x)A
s−1 = As =

s
∑

i=0

(−1)s−i

(

s

i

)

(

(x+ 1)5
)i

=

s
∑

i=0

5i
∑

j=0

(−1)s−i

(

s

i

)(

5i

j

)

xj . (4)

The number of combinations bbucket(n, s) we are looking for is the coefficient of xn in the expression Gs(x) =
∑

k≥0 bbucket(k, s)x
k. By summing in (4) the terms contributing to xn we obtain the wanted result. ⊓⊔

Using (3), we can derive the probability pbucket that every bucket contains at least one ball when n balls are
thrown into s buckets with capacity 5:

pbucket(n, s) :=
bbucket(n, s)
(

5s
n

) . (5)

The expected number of active buckets when n balls are thrown into s buckets is given by
∑s

i=0 bbucket(n, s− i) ·
(

s
i

)

· (s− i)
(

5s
n

) . (6)

We can now relate this lemma to the more general pattern-match problem.

Lemma 2. Given a set of s buckets B of capacity 5 in which we throw xB balls and a set of s buckets F in
which we throw xF balls, the probability that B and F have the same pattern of empty buckets is given by

ppattern(s, xB , xF ) =
1

(

5s
xB

)(

5s
xF

)

s
∑

i=0

bbucket(xB , s− i)bbucket(xF , s− i)

(

s

i

)

,

where bbucket(x, s) is defined as in (3). The average number npattern of non-empty buckets if both experiments
results follow the same pattern is given by

npattern(s, xB , xF ) =

∑s
i=0 bbucket(xB , s− i)bbucket(xF , s− i)

(

s
i

)

(s− i)
∑s

i=0 bbucket(xB , s− i)bbucket(xF , s− i)
(

s
i

) .



This model tells us that when the number of balls (i.e., active bits) is not too small on both sides,
most of the matches happen when (almost) all the Sboxes are active. Figure 8 in Appendix A depicts this
behavior.

A More General Problem. We can also look into a more general problem, i.e., we characterize more
precisely how the bits are distributed into the Sboxes.

Lemma 3. The probability pdist of distributing randomly n active bits into s 5-bit Sboxes such that exactly
Ai Sboxes contain i bits, for i ∈ [1, 5] is

pdist(A1, A2, A3, A4, A5) :=
s!
(

5
1

)A1
(

5
2

)A2
(

5
3

)A3
(

5
4

)A4
(

5
5

)A5

(s−A1 −A2 −A3 −A4 −A5)!A1!A2!A3!A4!A5!
(

5s
n

) , (7)

with n = A1 + 2A2 + 3A3 + 4A4 + 5A5.

Important Remark. Since most matches happen when all the Sboxes are active, in order to simplify
the analysis, we will consider from now on that we will only use forward and backward paths such that all
Sboxes are active for the χ layer of the inbound phase.

5.4 The differential paths sets

In this section, we explain how we generate the forward and backward paths because this will have an
impact on the derivation of pmatch and Nmatch (this will be handled in the next two sections).

λ χ λ χ λ χ

Active bits

Active Sboxes

log DP of χ

Number of differences

s = 320

Γ in
F = Γmid

F · 219 · 2−1.7

∗ ← 6

6

[−24,−12]

Γmid
F = 26

6 → 6

6

−12

Γmid
F

6 → 6

6

−12

Γ out
F = Γmid

F

1st round 2nd round 3rd round

In
b
o
u
n
d

Fig. 3. The forward trails. Values are taken from the 3 round differential path from Table 7. The distance between
the two lines reflects the number of differences.

The forward paths. For the forward paths set, we start by choosing a differential trail computed from
the previous section and we derive a set from it by exhausting all the possible Sbox differential transitions
for the inverse of the χ layer in its first round (all the paths will be the same except the differences on
their input and on the input of the χ layer in the first round). For example, we can use the 3 first rounds
of the 4-round differential path from Table 7 in the Appendix which have a total success probability 2−36

and present 6 active Sboxes during the χ layer of the first round. Note that we didn’t choose the best
3-round differential path (with success probability 2−32) since it will not provide enough paths (due to its
input difference Hamming weight being too small). We randomize the χ−1 layer differential transitions for
the 6 active Sboxes of the first round, and we obtain about 219 distinct trails in total. We analyzed that
all the trails of this set have a success probability of at least 2−48 (this is easily obtained with the χ−1

DDT). Moreover, note that they will all have the same output difference mask (at the third round), but



distinct input masks (at the first round). Since we previously forced the requirement that all Sboxes must
be active for the inbound match, we check experimentally that 217.3 of the 219 members of the set fulfill
this condition.5 We call τF the ratio of paths that verify this condition over the total number of paths, i.e.,
τF = 2−1.7. Overall, we built a set of 217.3 forward differential paths on nrF = 3 Keccak-f [1600] rounds, all
with DP higher or equal to pF = 2−48. We can actually generate 64 times more paths by observing that they
are equivalent by translation along the Keccak lane (the z axis). However, these paths will have distinct
output difference masks (the same difference mask rotated along the z axis), and we have Γ out

F = Γmid
F = 26.

The total amount of input differences Γ in
F is, hence, Γ in

F := Γmid
F · 217.3 = 223.3 and we have to generate in

total nF = τF · Γ
in
F = 225 forward differential paths.

λ χ λ χ λ χ

Active Sboxes

Hamming weight

log DP of χ

Number of differences

2X

2X ← 2X

−4X

Γ in
B(X) Γ in

B(X)
×ǫ
−−−→ Γmid

B (X)

2X

2X → 2X + k

−4X

Γmid
B (X) ·

(

2X
k

)

2k

∑5
i=1 Ai

n

−2A1 − 3A2

−4(A3 + A4 + A5)

Γmid
B (X) ·

(

2X
k

)

2kGB(n) · τ full
B

1st round 2nd round 3rd round

In
b
o
u
n
d

Fig. 4. The backward trails. The distance between the two arrows reflects the number of differences.

The backward paths. Applying the same technique to the backward case does not generate a sufficient
amount of output differences Γ out

B , crucial for a rebound-like attack. Thus, concerning the backward paths
set, we build another type of 3-round trails. We need first to ensure that we have enough differential paths to
be able to find a match in the inbound phase, i.e., we want Γ out

B ·Γ in
F = 1/pmatch · ⌈

1
pF ·pB ·Nmatch

⌉ following (2).
Moreover, we will require these path to verify two conditions:

1. First, we need to filter paths that have not all Sboxes active in the χ layer of the inbound phase.
Using (5), this happens with a probability about τ fullB := pbucket(800, 320) = 2−15.9 if we assume that
about half of the bits are active. This assumption will be verified in our case (and was verified in practice)
since our control on the diffusion of the active bits will be reduced greatly.

2. Moreover, all the paths we collect should have a DP of at least pB such that the number of solutions
Nmatch generated in the inbound phase is sufficient. Indeed, we must have Nmatch ≥ 1/(pF ·pB) in order to
have a good success probability to find one solution for the entire path. We call τDP

B the probability that
a path verifies this property. Hence, we need pB ≥ pmin

B = 1/(pF ·Nmatch). We will show in Section 5.7
that Nmatch = 2509 and we previously showed that pF = 2−48. Hence, pmin

B = 248−509 = 2−461.

These two filters induce a ratio τB := τ fullB · τDP
B of “good” paths. We have nB · τB = Γ out

B , where nB is the
number of paths we need to generate. Thus, we need to generate nmin

B := 1/(pmatch · ⌈
1

pF ·pB ·Nmatch
⌉ · Γ in

F · τB)

trails to perform the rebound. We will show in Section 5.7 that pmatch = 2−498.11, that ⌈ 1
pF ·pB ·Nmatch

⌉ = 1

and that τB = 2−17.37. We also know that Γ in
F = 223.3. Hence, nmin

B = 2498.11+17.37−23.3 = 2492.18.
We show now how we generated these paths. Fig. 4 can help the reading. We start at the beginning of

the second round by forcing X columns of the internal state to be active and each active column will contain

only 2 active bits (thus a total of 2X active bits). Therefore, we can generate
(

5
2

)X
·
(

s
X

)

distinct starting
differences and each of them will lead to a distinct input difference of the backward path. This implies that

5 The small amount of filtered forward paths (a factor 21.7) is due to the regularity of the output of θ inverse. Thus,
most of the paths have all Sboxes active when the Hamming weight of the input is low.



Γ in
B =

(

5
2

)X
·
(

s
X

)

. Note also that all active columns are in the CP-Kernel and thus applying the θ function
on this internal state will leave all bit-differences at the same place. Then, applying the ρ and π layers will
move the 2X active bits to random locations before the Sbox layer of the second round. If X is not too
large, we can assume that for a good fraction of the paths, all active bits are mapped to distinct Sboxes
and thus we obtain 2X active Sboxes, each with one active bit on its input. We call ǫ this fraction of paths
which is given by

ǫ := pdist(2X, 0, 0, 0, 0) , (8)

where pdist is given by Lemma 3.6 We will need to take ǫ into account when we count the total number of
paths we can generate. This position in the paths, i.e., after the linear layer of the second round, is the
part with the lowest amount of distinct differences. Hence, we call the number of differences at this point
Γmid
B (X) = Γ in

B (X)× ǫ.
Looking at the DDT from χ (Table 3 in Appendix B), one can check that with one active input bit in

an Sbox, there always exists:

• two distinct transitions with probability 2−2 for the Keccak Sbox such that we observe 2 active bits
on its output (we call it a 1 7→ 2 transition)
• one single transition with probability 2−2 and one single active bit on its output (a 1 7→ 1 transition).
This transition is in fact the identity.

We need to define how many 1 7→ 1 and 1 7→ 2 transitions we have to use, since there is a tradeoff between
the number of paths obtained and the DP of these paths. Whatever choices we make, we always have that
the success probability of this χ transition (in the second round) is 2−4X . Let k be the number of 1 7→ 2
transitions among the 2X possible ones. We will observe 2X + k active bits after χ. Before the χ transition,
we have Γmid

B (X) different paths from the initial choice. For each of these paths, we can now select
(

2X
k

)

distinct sets of 1 7→ 2 transitions each of which can generate 2k different paths. These 2X + k bits are
expanded through θ to at most 11 · (2X+k) = 22X+11k bits. However, this expansion factor (every active
bit produces 11 one) is smaller when the number of bits increases. Let n be the number of obtained active
bits at the input of the Sboxes in the third round. At the beginning of the third round, we have 2X + k
active bits. For Keccak-f [1600], given 2X + k active bits at the input of θ, we get

n ≈ u−
u · (u− 1)

1600
(9)

bits at the output, with u := 11(2X + k) for X small enough. Indeed, the 2X + k bits are first multiplied
by 11 due to the property of θ. We suppose now that these u active bits are thrown randomly and we check
for collisions. Given u bits, we can form u · (u − 1)/2 different pairs of bits. The probability that a pair
collides is 2−1600, hence, we have about u · (u−1)/(2 ·1600) collisions of two bits. In a 2-collision, two active
bits are wasted (they become inactive). Hence, we can remove u · (u− 1)/1600 from the overall number of
active bits. For small X, we can neglect collisions between three, four and five active bits, since the bits
before θ are most likely separated and will not collide. Hence we verify (9). This model has been verified in
simulations for the values we are using.

We need now to evaluate the number of active Sboxes in the χ layer of the third round. However, in order
to precisely evaluate the DP of this layer (that we want to be higher than pmin

B ) and the expansion factor
we get on the amount of distinct differential paths, we also need to look at how the bits are distributed into
the input of the Sboxes. The probability pdist of distributing randomly n active bits into s 5-bit Sboxes such
that exactly Ai Sboxes contain i bits, for i ∈ [1, 5] is given by Lemma 3.

Lemma 4. Suppose that we have n active bits before χ in the third round. Then, if n ≤ s, the expected
number of useful (i.e., which have DP ≥ pmin

B ) paths GB(n) we can generate verifies

GB(n) ≥

⌊n/5⌋
∑

A5=0

⌊(n−5A5)/4⌋
∑

A4=0

⌊(n−5A5−4A4)/3⌋
∑

A3=0

⌊(n−5A5−4A4−3A3)/2⌋
∑

A2=0

F (X,A1, A2, A3, A4, A5) · 2
2A1+3A2+3.58A3+4(A4+A5) , (10)

6 Simulations verified this behavior in practice for the parameters we use in our attack.



where A1 := n− 5A5 − 4A4 − 3A3 − 2A2 and

F (X,A1, A2, A3, A4, A5) :=

{

pdist(A1, A2, A3, A4, A5) if 2−8X−2A1−3A2−4(A3+A4+A5) ≥ pmin
B

0 else.
(11)

Note that we use F (. . . ) to filter the paths that have a too low DP.

Proof. Given the number of active input bits in every Sbox, it is easy to compute the number of paths we
can generate by looking into the DDT.7 We find that for an input Hamming weight of 1 (resp. 2), there are
always 22 (resp. 23) possible output differences. For an Hamming weight of 3, half of the input differences
can produce 23 differences and half 24 differences. Hence, the expected value is 23.58. For input Hamming
weights of 4 and 5, we can always produce 24 differences. Thus, the total expected number of paths we can
generate when we have Ai Sboxes with an input Hamming weight of i is 22A1+3A2+3.58A3+4(A4+A5).

Moreover, we count only the paths that verify pB ≥ pmin
B by discarding all the paths that have a DP

smaller than pmin
B using the filter F (. . . ). The DP of the complete path is given by

2−4X−4X−2A1−3A2−4(A3+A4+A5) . (12)

Indeed, in the first round, since 2X Sboxes are active with one active bit in each active Sbox, we can choose
a transition that has a probability 2−2 per active Sbox (see the DDT of χ−1). Hence, the DP for the first
round is 2−4X . For the second round, since we still have one active bit per Sbox, we have a DP of 2−4X as
well. For the third round, an analysis of the DDT shows that, when we have 1 (resp. 2) active bit in the
input, the DP of the SBox is always 2−2 (resp. 2−3). For a Hamming weight of 3, there are two different
DPs depending on the input. We considered the worst case, which is 2−4. For a Hamming weight of 4 and
5, the DP is always 2−4. Hence, the DP of the complete path verifies (12).

Now, from Lemma 3, we deduce that the paths occur with probability pdist(A1, A2, A3, A4, A5). Hence,
the expected number of paths we will get is the sum of all the probabilities of the path that are not discarded
by the filter. ⊓⊔

In practice, we compute GB(n) by summing over all possible values of A1, . . . , A5, such that n = A1+2A2+
3A3 + 4A4 + 5A5.

We have now reached the inbound round and we discard all the paths that do not have all Sboxes active.
Hence, we keep only a fraction of τ fullB = 2−15.9 paths.

It is now easy to see that

τDP

B :=

⌊n/5⌋
∑

A5=0

⌊(n−5A5)/4⌋
∑

A4=0

⌊(n−5A5−4A4)/3⌋
∑

A3=0

⌊(n−5A5−4A4−3A3)/2⌋
∑

A2=0

F (X,A1, A2, A3, A4, A5) (13)

whith F (. . . ) defined in (11) since this is exactly the fraction of path we keep.

To summarize, we have now reached the inbound round and we are able to generate

Γ out

B = ǫ ·

(

5

2

)X

·

(

s

X

)

·

(

2X

k

)

· 2k ·GB(n) · τ
full

B (14)

differences that have a good DP and all Sboxes active and the total number of paths we have to generate
is nB = Γ out

B /τB = Γ out
B /(τ fullB · τDP

B ).

By playing with the filter bound, we noticed the following behavior. The stronger the filter is (i.e., the
higher we set the bound on the DP), the higher the expected value of the Hamming weight at the input of
the Sboxes of the inbound phase will be. This behavior will allow us to reduce the complexity of our attack
in Section 5.7, where we discuss the numerical application. Hence, instead of filtering at pmin

B , we will filter
at a higher value to get better results.

7 We considered the average case here since we already have a lot of paths to start with at the input of the third
round.



Summary. At this point, we started with nF (resp. nB) forward (resp. backward) paths from which we
kept only Γ in

F (resp. Γ out
B ) candidates that have a DP greater than pF (resp. pB) and all Sboxes actives

during the inbound.

5.5 The inbound phase

Now that we have our forward and backward sets of differential paths, we need to estimate the average
probability pmatch that two trails can match during the inbound phase of the rebound attack. We recall
that we already enforced all Sboxes to be active during this match, so pmatch only takes into account the
probability that the differential transitions through all the s Sboxes of the internal state are possible.

A trivial method to estimate pmatch would be to simply consider an average case on the Keccak Sbox.
More precisely, the average probability that a differential transition is possible through the Keccak Sbox,
given two random non-zero 5-bit input/output differences is equal to 2−1.605. Thus, one is tempted to derive
pmatch = 2−1.605·s. However, we observed experimentally that the event of a match greatly depends on the
Hamming weight of the input of the Sboxes and this can be easily observed from the DDT of the
χ layer (for example with an input Hamming weight of one the match probability is 2−2.95, while for an
input Hamming weight of four the match probability is 2−0.95). Note that this effect is only strong regarding
the input of the Sbox (i.e. the backward paths), but there is no strong bias on the differential matching
probability concerning the output Hamming weight.

Therefore, in order to model more accurately the input Hamming weight effect on the matching event,
we first divide the backward paths depending on their Hamming weight and treat each class separately.
More precisely, we look at each possible input Hamming weight division among the s Sboxes. To represent
this division, we only need to look at the number of Sboxes having a specific input Hamming weight (their
relative position do not matter). We denote by ci the number of Sboxes having an input Hamming weight
i and we need the following equations to hold

5
∑

i=1

ci = s (15)

since we forced that all Sboxes are active during a match. Moreover, for a Hamming weight value w, we
have

5
∑

i=1

i · ci = w . (16)

The set of divisions ci verifying (15) and (16) is denoted by Cw. The number of possible 5s-bit vectors
satisfying (c1, . . . , c5) (i.e., c1 Sboxes with 1 active bit, c2 with 2 etc.) is denoted bc(c1, . . . , c5) and

bc(c1, . . . , c5) =

(

s

c1

)

·

(

s− c1
c2

)

· · · · ·

(

s− c1 − c2 − c3 − c4
c5

)

·

(

5

1

)c1

· · · · ·

(

5

5

)c5

=
s!

c1!c2! . . . c5!
· 5c1+c4 · 10c2+c3 . (17)

We can now compute the probability of having a match pmatch depending on the input Hamming weight
divisions:

Theorem 1. The probability pmatch of having a match is

pmatch =
5s
∑

w=s

Pr[Hwtotal = w|full] ·
∑

(c1,...,c5)∈Cw

bc(c1, . . . , c5)

bbucket(w, s)

5
∏

i=1

(

∑

y∈{0,1}5

∑

v∈{0,1}5:
Hw(v)=i

Pout(y) · 1DDT[v][y]
(

5
i

)

)ci

,

(18)
where Pout(y) is the measured probability distribution of having y at the output of an Sbox when we enforce
all Sboxes to be active, Pr[Hwtotal = w|full] is the measured probability distribution of the Hamming weight
of the input of the Sboxes when all Sboxes are active, bc(. . . ) is given by (17), bbucket(w, s) by Lemma 1 and
1DDT[v][y] is set to one if the entry [v][y] is non-zero in the DDT of the χ layer and zero otherwise.8

8 Note that Pr[Hwtotal = w|full] greatly depends on the backward paths we choose and that these paths depends on
pmatch. We explain how to solve this cyclic dependency in Section 5.7.



Proof. Let full be the event denoting that all Sboxes are active at the inbound phase. We have

pmatch := Pr[match|full] =
∑

w

Pr[match|Hwtotal = w, full] · Pr[Hwtotal = w|full] .

We define pmatch(w) := Pr[match|Hwtotal = w, full]. We have

pmatch(w) =
∑

(c1,...,c5)∈Cw

Pr[match|(c1, . . . , c5),Hwtotal = w, full] · Pr[(c1, . . . , c5)|Hwtotal = w, full] . (19)

We easily find that

Pr[(c1, . . . , c5)|Hwtotal = w, full] =
bc(c1, . . . , c5)

bbucket(w, s)
, (20)

since bc(c1, . . . , c5) is the number of possible combinations of vectors verifying c1, . . . , c5 and bbucket(w, s)
the number of possible combinations of vectors for which all Sbox are active. It remains to compute
Pr[match|(c1, . . . , c5),Hwtotal = w, full] = Pr[match|(c1, . . . , c5), full], since (c1, . . . , c5) have all a total Ham-
ming weight of w. We can now consider every Sbox independently. Hence,

Pr[match|(c1, . . . , c5), full] =
5
∏

i=1

(Pr[match|HwSBox = i, full])
ci (21)

and

Pr[match|HwSBox = i, full] =
∑

y∈{0,1}5

∑

v∈{0,1}5:
Hw(v)=i

Pout(y) · 1DDT[v][y]
(

5
i

) .

⊓⊔

We continue now with our example of the Keccak-f [1600] internal permutation. The measured distri-
butions along with some intermediate values are given in Appendix C. Applying Theorem 1, we find that
pmatch = 2−490.15. Said in other words, we require to test 1/pmatch backward/forward paths combinations
in order to have a good chance for a match. Note that in the next section, we will actually put an extra
condition on the match in order to be able to generate enough values in the worst case during the outbound
phase.

5.6 The outbound phase

Now that we managed to obtain a match with complexity 1/pmatch, we need to estimate how many solutions
can be generated from this match. Again, one is tempted to consider an average case on the Keccak

Sbox: the average number of Sbox values verifying a non-zero random input/output difference such that the
transition is possible is equal to 21.65. The overall number of solutions would then be 21.65·s. However, as
for pmatch, this number highly depends on the Hamming weight of the input of the Sboxes and this can be
easily observed from the DDT of the χ layer (for example with an input Hamming weight of one the average
number of solutions is 23, while for an input Hamming weight of four the average number of solutions is
21).

In order to obtain the expected number of values Nmatch we can get from a match, we proceed like in
the previous section and divide according to the input Hamming weight.

Theorem 2. Let N be a random variable denoting the number of values we can generate. Let also full be
the event denoting that all the Sboxes are active for the inbound phase. Given a Hamming weight of w at
the input of the Sboxes, we can get Nw := E[N |match,Hwtotal = w, full] values from a match, with

Nw =
1

pmatch(w)

∑

(c1,...,c5)∈Cw

5
∏

i=1

Zci ·
bc(c1, . . . , c5)

bbucket(w, s)
, (22)



with

Z :=
1
(

5
i

)2

(

∑

v∈{0,1}5:
Hw(v)=i

DDT[v]

)

∑

y∈{0,1}5

∑

v∈{0,1}5:
Hw(v)=i

Pout(y) · 1DDT[v][y] ,

where DDT[v] is the value of the non-zero entries in line v of the DDT, Pout(y) is the measured probability
distribution of having y at the output of an Sbox when we enforce all Sboxes to be active, pmatch(w) is given
by (19), bc(. . . ) is given by (17), bbucket(w, s) is given by Lemma 1 and 1DDT[v][y] is set to one if the entry
[v][y] is non-zero in the DDT of the χ layer and zero otherwise.

Proof. We have

Nw =
∑

(c1,...,c5)∈Cw

E[N |match, (c1, . . . , c5),Hwtotal = w, full] · Pr[(c1, . . . , c5)|match,Hwtotal = w, full]

=
∑

(c1,...,c5)∈Cw

Nmatch(c1, . . . , c5) ·
Pr[match|(c1, . . . , c5),Hwtotal = w, full] · Pr[(c1, . . . , c5)|Hwtotal = w, full]

Pr[match|Hwtotal = w, full]

=
∑

(c1,...,c5)∈Cw

Nmatch(c1, . . . , c5) ·
Pr[match|(c1, . . . , c5), full] · Pr[(c1, . . . , c5)|Hwtotal = w, full]

pmatch(w)
,

where Nmatch(c1, . . . , c5) := E[N |match, (c1, . . . , c5), full]. Note that the remaining terms can be computed
from (20) and (21). Like before, we can now consider each Sbox independently. Thus

Nmatch(c1, . . . , c5) =

5
∏

i=1

(E[NSBox|match,HwSBox = i, full])
ci ,

where NSBox is a random variable denoting the number of values we can obtain for a single Sbox. Note that
no output distribution needs to be considered, since for a fixed input the non-zero values of the DDT are
always the same. We call this non-zero value DDT[v]. Then,

E[NSBox|match,HwSBox = i, full] =
1
(

5
i

)

∑

v∈{0,1}5:
Hw(v)=i

DDT [v] .

⊓⊔

One would be tempted to take the expected value of all the Nw and compute Nmatch as
∑

w

E[N |match,Hwtotal = w, full] · Pr[Hwtotal = w|match, full] .

This expectancy would be fine if we were expecting a high number of matches. This is however not necessarily
our case. Hence, we need to ensure that the number of values we can generate from the inbound is sufficient.
To do this, first note that Nw decreases exponentially while w increases. Similarly, pmatch(w) increases
exponentially while w increases. This is depicted in Figure 10 in Appendix C. Thus, we are more likely to
obtain a match at a high Hamming weight which will lead to an insufficient Nmatch.

To solve this issue, we proceed as follows. First, we compute Nw for every w. We check then the maximum
Hamming weight wmax we can afford such that Nwmax

≥ 1/(pB · pF ). This way, we are ensured to obtain
enough solutions from the match. However, we need to update our definition of a match: a match occurs
only when the Hamming weight of the input is lower than wmax. Hence, instead of summing over all possible
values of w, we sum only up to wmax and (18) becomes

pmatch =

wmax
∑

w=s

Pr[Hwtotal = w|full] ·
∑

(c1,...,c5)∈Cw

bc(c1, . . . , c5)

bbucket(w, s)

5
∏

i=1

(

∑

y∈{0,1}5

∑

v∈{0,1}5:
Hw(v)=i

Pout(y) · 1DDT[v][y]
(

5
i

)

)ci

.

(23)
The number of values we can then obtain from the inbound is Nmatch ≥ Nwmax

.
We can now apply this model to the Keccak-f [1600] internal permutation. Some useful intermediate

results and relevant Nwmax
(with their associated pmatch) are shown in Appendix C.



5.7 Finalizing the Attack and Improvements

In Section 5.4 , we showed how to choose the backward paths given the probability of having a match
in the inbound phase (pmatch) and the number of solution we can generate from this match (Nmatch). In
Sections 5.5 and 5.6, we showed how to compute pmatch and Nmatch. However, in these computations, we
needed the probability distribution of the Hamming weight of the input of the Sbox, Pr[Hwtotal = w|full].
This probability depends greatly on the paths we select in Section 5.4.

To solve this circular dependency, we performed several iterations of the following algorithm until we
found some parameters that verify all equations. First, we estimated roughly Pr[Hwtotal = w|full] by taking
some random backward paths with limited complexity. Using the worst case cost of these paths, we were
able to select wmax from Table 5 such that the number of values generated from the inbound is sufficient.
Then, we computed pmatch and Nmatch. With this first guess, we searched for an X and a k such that the we
can find a match with a good probability and such that we can generate enough values from the inbound.
Then, we computed Pr[Hwtotal = w|full] using these new paths generated by X, k and pB and started our
algorithm again with this new distribution. After some iterations, we found a set of filtered backwards paths
that provided a sufficient pmatch and Nmatch.

As discussed in Section 5.4, we noticed the following interesting behavior. By increasing pB , the expecta-
tion of Pr[Hwtotal = w|full] is higher. This leads then to a smaller Nmatch and a greater pmatch. Furthermore,
less values need to be generated from the inbound phase since the worst case cost of the backward paths
is lower. By taking advantage of this behavior, we were able to reduce significantly the complexity of our
attack.

When (X, k) = (8, 9), we have that the number of backward input differences is Γ in
B (X) = 277.7 and

ǫ = 0.736. Thus, we have Γmid
B = Γ in

B · ǫ = 277.26. If we filter all paths that have a DP smaller than 2−461,
i.e., we set pB = 2−461, we get for (X, k) = (8, 9) at least ǫ · Γ in

B (X) ·
(

2X
k

)

· 2k · GB(n) · τ
full
B = 2475.07

distinct differences using (14) for the inbound (for these parameters, the difference Hamming weight at the
input of the χ layer in the third round is n = 227.9). With these parameters, since we remove the paths
with a DP lower than pB , we keep τDP

B = 36% of the paths, following (13). Hence, we filter the backward
paths with a ratio τB = τ fullB · τDP

B = 2−15.9 · 0.36 = 2−17.37. We have also pB = 2−461 and pF = 2−48.
Therefore, we need Nmatch ≥ 2509. If we consult Table 5, we find that we have to set wmax = 956. This leads
to pmatch = 2−498.11. This implies that the minimum total number of backward paths we need to generate
is nmin

B = 2492.18. All these paths apply on nrB = 3 Keccak-f [1600] rounds, all with DP higher or equal
to pmin

B = 248−509 = 2−461.
To summarize, we have that the number of backward output differences is Γ out

B = nmin
B ·τB = 2492.18−17.37 =

2474.81 and that the number of forward input differences is Γ in
F = 223.3. Hence, there is a total of 2498.11

couples of (∆out
B , ∆in

F ) for the inbound phase, which is enough since it is equal to 1/pmatch. Once a match
is found, the worst case complexity of the connected path is 1/(pB · pF ) ≤ 2461+48 = 2509 which is equal
to Nmatch. Hence, we can generate enough values from the inbound phase to find with a good probability
values verifying the differential path.

The overall complexity for the rebound attack given by (1) is C = 2509.
This model was verified on the Keccak-f [100] internal permutation, and by applying this attack on

it, we found a 4-round result together with solution pairs, which are shown in Appendix E. This gives a
6-round distinguisher with complexity 228.76 which is higher than the simple distinguishers for 6 rounds.
However, our goal for Keccak-f [100] was to verify our model in practice, so that we can be confident for
applying it to the Keccak-f [1600] version. Moreover, finding a solution as in Appendix E is hard since all
s Sboxes are active in the middle of the path.

5.8 The distinguisher

We will use exactly the same type of limited-birthday distinguishers as in Section 4. Our rebound attack
finds pairs of internal state values such that the input and output difference masks are fully predetermined
and we already showed that this should require 2b operations in the generic case. Therefore, we obtain a
(nrB +nrF +1)-round distinguisher for the b-bit Keccak internal permutation considered if the total cost
of the rebound attack to find one solution is lower than 2b.

In the case of Keccak-f [1600], we have nrB = nrF = 3 but note that the backward paths utilized do
not have the same input difference ∆in

B and the forward paths do not have the same output difference ∆out
F .



Indeed, the backward paths have been generated with Γ in
B (X) distinct starting difference patterns in the

second round and thus we have Γ in
B (X) possible input difference masks ∆in

B . Regarding the forward paths,
we utilized Γ out

F distinct starting points and thus we have Γ out
F possible output difference masks ∆out

F . Then,
our rebound attack finds 7-round pairs of internal state values such that the input and output difference
masks lie in a subspace of size Γ in

B (8) = 277.7 and Γ out
F = 26 respectively, with total complexity 2509 (whereas

the generic case complexity is 21516.3, as explained in Section 4.2).
However, we can attack one more round by adding an extra round to the right of the 7-round path

exactly as we did for the distinguishers in Section 4.2. Namely, we have Γ out
F possible output difference

masks, all with 6 active bits. Figure 5 depicts the new forward paths. We computed that each one of these
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Fig. 5. The forward trails with an extended round. The distance between the two lines reflects the number of
differences.

output differences for the 7-round path can be mapped to only 2106 output differences for the extended
8-round path. One can calculate this by analysing b3 in Table 7. We have 50 active Sboxes with one active
bit that can produce 22 transitions and 2 active Sboxes with two active bits that can produce 23 transitions
(the number of transitions can be checked in Table 3). Therefore, our rebound attack finds 8-round pairs of
internal state values such that the input and output difference masks lie in a subspace of size Γ in

B (8) = 277.7

and Γ out
F = 26 · 2106 = 2112 respectively, with total complexity 2509 (whereas the generic case complexity is

21410.3).

6 Further Improvements

In the distinguisher presented in the previous section, the bottleneck of the attack came from the outbound
phase. However, the gap between its complexity and the generic complexity was enormous. In this section,
we reduce the complexity of the attack by narrowing this gap. We reduce the complexity of the distinguisher
by relaxing one round in both the forward and the backward direction.

6.1 Relaxing the Forward Paths

The idea is to take the same forward paths than in Section 5.4 but we allow any possible transition in
the last round to avoid the cost of this round (see Figure 6). Hence we get this round for free except that
we will reduce the generic complexity of the generic distinguisher since we will have more possible output
differences. In short, we have to pay only for two rounds with a worst case DP of 2−36.

We analyze now the impact of this modification on Γ out
F , the set of reachable output differences. At the

entrance of the third round, every Sbox has one single active bit. Hence, according to the DDT, there are
only 4 different possibilities at the output of the Sboxes. Since we have 6 active Sboxes in the third round,
the number of possible differences at the output of the third round is multiplied by 46 = 212. Thus, the
number of differences at the output of the third round is Γmid

F · 212 = 26 · 212 = 218.
We need now to look at the fourth round to obtain Γ out

F and compute the generic complexity of the
distinguisher. In the third round, every active Sbox can produce at most 3 active bits at its output, since
each active Sbox has only one single active bit at its input. Hence, the maximum Hamming weight at the
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Fig. 6. The forward trails when we relax the 3rd round. The distance between the two lines reflects the number of
differences.

output is 3 · 6 = 18. Each of these active bits can be expanded to at most 11 bits through θ and hence, we
have at most 11 · 18 = 198 active bits at the input of the Sboxes of the fourth round. In the worst case,
each of these bits will be in a different Sbox and will produce four possible differences. Hence, we have
Γ out
F ≤ Γmid

F · 212 · 4198 = 218 · 2396 = 2414.
To conclude, we reduced the complexity of the attack by a factor 212 and increased the number of

possible outputs for the distinguisher by a factor 2302.

6.2 Relaxing the Backward Paths

We can do the same kind of operation for the backward paths by relaxing the first round of each path (see
Figure 7). Instead of picking only 1 7→ 1 transitions, i.e., transition that maps one bit to a single bit in the
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Fig. 7. The backward trails when we relax the first round. The distance between the two arrows reflects the number
of differences.

χ−1 layer, we allow any possible transition and, hence, do not have to pay for it. This reduces the complexity
of the backward paths by a factor 24X . Each Sbox with one single active bit at its output can have 9 possible
input differences and the maximum possible of input differences that can occur for a given input difference
is 12 (see χ−1 DDT). Since we have 2X active Sboxes, the number of possible input differences is increased
by a factor of at most 92X . Therefore, Γ in

B ≤ Γmid
B · 92X/ǫ and we reduced the complexity by a factor 24X .

6.3 Finding New Parameters

Now that we have reduced the cost of the forward paths by 212 and the cost of the backward paths by 24X ,
we do not need to generate that many values in the outbound phase. Furthermore, the bottleneck of the
attack is now in the inbound phase, i.e., it comes from pmatch.



Our goal is now to increase pmatch so that the complexity of the attack is reduced. There are two ways
of increasing pmatch.

• Recall that a way of increasing pmatch is to allow again a match to happen at a higher Hamming weight at
the input of the Sboxes of the inbound round. These matches are much more probable and will increase
pmatch. However, as discussed in Section 5.6, Nmatch drops in this case. This is not an issue anymore,
since we need much less values to verify the differential paths.
• Another solution is to modify the Hamming weight at the input of the Sboxes of the inbound round.
This can be done by modifying X or k.9 We will see that we can reduce k since less paths will be filtered
because of their DP.

We found that for (X, k) = (8, 8), we can get at least ǫ·
(

5
2

)X
·
(

s
X

)

·
(

2X
k

)

·2k ·GB(n)·τ
full
B = 2493.88 ·2−15.9 =

2477.98 distinct differences with worst case DP pB = 2−450 and this, without almost any filtering on the DP,
i.e., τDP

B ≈ 1− 10−10. Note that for these parameters, ǫ = 0.736 as before and n = 220.61.
The worst case total cost of the outbound phase is 1/(pB · pF ) = 2450+36 = 2486. Remark that we need

a Nmatch much lower than before (2486 instead of 2509). By looking into Table 5 in Appendix C we remark
that any wmax in the table will produce enough values in the outbound phase and we select wmax = 1000.
The Hamming weight distribution at the input of the Sboxes of the inbound phase (Pr[Hwtotal = w|full])
when k = 8 behaves like N (847.47, 651.51). With this new distribution, we can compute the new pmatch for
wmax = 1000 and we obtain pmatch = 2−491.47 and Nmatch = 2486.81. Since Γ in

F is still equal to 223.3, the total
number of backward paths we have to generate is nmin

B = 1/(pmatch ·Γ
in
F ·τB) = 1/(pmatch ·Γ

in
F ·τ

full
B ) = 2484.07.

We have then that the total number of backward output differences is Γ out
B = nmin

B · τB = 2468.17. Hence,
there is a total of 2491.47 couples of (∆out

B , ∆in
F ) for the inbound phase, which is enough since it is equal to

1/pmatch. Once a match is found, the worst case complexity of the connected path is 1/(pB · pF ) = 2486

which is lower than Nmatch. Thus, we can generate enough values from the inbound phase to find with a
good probability values verifying the differential path.

The new overall complexity for the rebound attack given by (1) is C = 2491.47. Note that the bottleneck
now comes from pmatch.

We have Γ in
B ≤ Γmid

B (8) · 92·8/ǫ = 277.7+50.7 = 2128.4 and Γ out
F ≤ 2414. The new generic complexity of the

distinguisher is, hence, greater than 21057.6.

7 Results and Conclusion

Table 2. Best differential distinguishers complexities for each version of Keccak internal permutations, for 1 up
to 8 rounds. Note that due to its technical complexity when applied on Keccak, the rebound attack has only been
applied to Keccak-f [100] and Keccak-f [1600]. In brackets, the generic complexity.

b
best differential distinguishers complexity

1 rd 2 rds 3 rds 4 rds 5 rds 6 rds 7 rds 8 rds

100 1 1 1 22 28 219 - -

200 1 1 1 22 28 220 246 -

400 1 1 1 22 28 224 284 -

800 1 1 1 22 28 232 2109 -

1600 1 1 1 22 28 232 2142 2491.47[21057.6]

In this article, we analysed the internal permutations used in the Keccak family of hash functions in
regards to differential cryptanalysis. We first proposed a generic method that looks for the best differential
paths using CP-kernel considerations and better χ mapping. This new method provides some of the best

9 In fact experiments have shown that lowering k leads to a better Hamming weight distribution for X = 8.



known differential paths for the Keccak internal permutations and we derived distinguishers with rather
low complexity exploiting these trails. In particular we were able to obtain a practical distinguisher for 6
rounds of the Keccak-f [1600] permutation. Then, aiming for attacks reaching more rounds, we adapted
the rebound attack to the Keccak case. This adaptation is far from trivial and contains many technical
details. Our model was verified by applying the attack on the reduced version Keccak-f [100]. The main
final result is a 8-round distinguisher for the Keccak-f [1600] internal permutation with a complexity of
2491.47. All our distinguisher results are summarized in Table 2. Note that our attack does not endanger
the security of the full Keccak. We believe that this work will also help to apply the rebound attack on a
much larger set of primitives.

This work might be extended in many ways, in particular by further refining the differential path search
or by improving the inbound phase of the rebound attack such that the overall cost is reduced. Moreover,
another research direction would be to analyse how the differential paths derived in this article can lead to
collision attacks against reduced versions of the Keccak hash functions.
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A Plot for the Pattern-match Problem
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Fig. 8. Average number of non empty buckets when a pattern-match occurs for xB = xF and s = 320



B Differential Distribution Table of χ and χ−1

Table 3. The differential distribution table of the χ when viewed as Sbox. The first bit of a row is viewed as the
least significant bit. Given input difference ∆in and output difference ∆out the number in the table shows the size
of the solution set {v | χ(v)⊕ χ(v ⊕∆in) = ∆out}. Differences are in hex number.

P
P
P
P
P

∆in

∆out 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

00 32 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

01 - 8 - - - - - - - 8 - - - - - - - 8 - - - - - - - 8 - - - - - -

02 - - 8 8 - - - - - - - - - - - - - - 8 8 - - - - - - - - - - - -

03 - - 4 4 - - - - - - 4 4 - - - - - - 4 4 - - - - - - 4 4 - - - -

04 - - - - 8 8 8 8 - - - - - - - - - - - - - - - - - - - - - - - -

05 - - - - 4 - 4 - - - - - 4 - 4 - - - - - - 4 - 4 - - - - - 4 - 4

06 - - - - 4 4 4 4 - - - - - - - - - - - - 4 4 4 4 - - - - - - - -

07 - - - - 2 2 2 2 - - - - 2 2 2 2 - - - - 2 2 2 2 - - - - 2 2 2 2

08 - - - - - - - - 8 - 8 - 8 - 8 - - - - - - - - - - - - - - - - -

09 - 4 - 4 - - - - - - - - - 4 - 4 - 4 - 4 - - - - - - - - - 4 - 4

0A - - - - - - - - 4 - - 4 4 - - 4 - - - - - - - - 4 - - 4 4 - - 4

0B - 4 4 - - - - - - - - - - 4 4 - - 4 4 - - - - - - - - - - 4 4 -

0C - - - - - - - - 4 4 4 4 4 4 4 4 - - - - - - - - - - - - - - - -

0D - - - - 4 - 4 - 4 - 4 - - - - - - - - - - 4 - 4 - 4 - 4 - - - -

0E - - - - - - - - 2 2 2 2 2 2 2 2 - - - - - - - - 2 2 2 2 2 2 2 2

0F - - - - 2 2 2 2 2 2 2 2 - - - - - - - - 2 2 2 2 2 2 2 2 - - - -

10 - - - - - - - - - - - - - - - - 8 - - - 8 - - - 8 - - - 8 - - -

11 - 4 - - - 4 - - - 4 - - - 4 - - - 4 - - - 4 - - - 4 - - - 4 - -

12 - - 4 4 - - 4 4 - - - - - - - - - - - - - - - - - - 4 4 - - 4 4

13 - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2

14 - - - - - - - - - - - - - - - - 4 4 - - - - 4 4 4 4 - - - - 4 4

15 - 4 - - - - - 4 - 4 - - - - - 4 4 - - - - - 4 - 4 - - - - - 4 -

16 - - 4 4 4 4 - - - - - - - - - - - - - - - - - - - - 4 4 4 4 - -

17 - - 2 2 2 2 - - - - 2 2 2 2 - - - - 2 2 2 2 - - - - 2 2 2 2 - -

18 - - - - - - - - - - - - - - - - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -

19 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2

1A - - - - - - - - 4 - - 4 4 - - 4 4 - - 4 4 - - 4 - - - - - - - -

1B - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2 -

1C - - - - - - - - - - - - - - - - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1D - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -

1E - - - - - - - - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 - - - - - - - -

1F - 2 2 - 2 - - 2 2 - - 2 - 2 2 - 2 - - 2 - 2 2 - - 2 2 - 2 - - 2



C Distributions for the Keccak-f [1600] rebound attack

In this section, we give all the probability distributions necessary to compute pmatch and Nmatch. We give
also some intermediary results.

C.1 Pout

Pout is the measured probability distribution at the output of an Sbox when all Sboxes are active. Recall that
due to the properties of the DDT, we can consider every Sbox independently. The probability distribution
is shown in Table 4.

Table 4. Distribution of Pout for our attack on Keccak-f [1600]

y Pout(y) y Pout(y)

0 0.00000000 10 0.01610571

1 0.01859357 11 0.04363845

2 0.01868644 12 0.04744619

3 0.04682032 13 0.02290569

4 0.01784977 14 0.04548532

5 0.04445059 15 0.02096362

6 0.04309371 16 0.01997166

7 0.02287948 17 0.04545379

8 0.01802242 18 0.04506549

9 0.04543792 19 0.02241770

a 0.04612980 1a 0.01806761

b 0.02005349 1b 0.04705496

c 0.04726458 1c 0.02056551

d 0.02075547 1d 0.04800789

e 0.02080299 1e 0.04603740

f 0.04910975 1f 0.01086272

C.2 Pr[Hwtotal = w|full]

The computation of pmatch depends greatly on the Hamming weight distribution at the input of the Sboxes
of the inbound phase. We measured this distribution by taking a fair amount of samples and noticed that
it behaves like a Gaussian distribution N (µ, σ2), with mean µ and variance σ2. This behavior is shown in
Figure 9. For the backward paths we are using in our first attack (Section 5), i.e., when X = 8 and k = 9,
this distribution behaves as N (847.88, 666.34). In the improved attack (Section 6,i.e., when X = 8 and
k = 8, this distribution behaves as N (847.47, 651.51).

C.3 E[NSBox|match,HwSBox = i]

This values is used to compute Nmatch. It is defined as

1
(

5
i

)

∑

v∈{0,1}5:
Hw(v)=i

DDT [v] .

For i = {1, 2, 3, 4, 5} respectively, E[NSBox|match,HwSBox = i] = {8, 4, 3, 2, 2}.
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Fig. 9. Hwtotal (in gray) is distributed following a Gaussian distribution(in black).

C.4 Behavior of Nw and pmatch(w)

Figure 10 shows how Nw (resp. pmatch(w)) decreases (resp. increases) exponentially when w grows.
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Fig. 10. Behavior of Nw and pmatch(w)

C.5 Different Nwmax
and pmatch for relevant wmax

Given the complexity of the backward and forward differential path, we need to ensure that we generate
enough values from the inbound phase. Table 5 shows the resulting worst case Nmatch and pmatch for some
relevant wmax.



Table 5. Values for Nwmax and pmatch for different relevant wmax. For pmatch the first Hamming weight distribution
is used, i.e., the distribution when X = 8 and k = 5.

wmax log(Nwmax) log(pmatch) wmax log(Nwmax) log(pmatch)

935 520.65 -503.58 968 503.23 -495.57

936 520.11 -503.29 969 502.71 -495.38

937 519.58 -503.00 970 502.19 -495.19

938 519.05 -502.72 971 501.67 -495.00

939 518.51 -502.44 972 501.15 -494.82

940 517.98 -502.16 973 500.64 -494.64

941 517.45 -501.88 974 500.12 -494.46

942 516.91 -501.61 975 499.60 -494.29

943 516.38 -501.34 976 499.09 -494.12

944 515.85 -501.07 977 498.57 -493.95

945 515.32 -500.81 978 498.05 -493.78

946 514.79 -500.55 979 497.54 -493.62

947 514.26 -500.29 980 497.02 -493.46

948 513.73 -500.03 981 496.51 -493.30

949 513.20 -499.78 982 496.00 -493.15

950 512.67 -499.53 983 495.48 -493.00

951 512.14 -499.29 984 494.97 -492.85

952 511.61 -499.05 985 494.46 -492.70

953 511.09 -498.81 986 493.94 -492.56

954 510.56 -498.57 987 493.43 -492.42

955 510.03 -498.34 988 492.92 -492.29

956 509.51 -498.11 989 492.41 -492.15

957 508.98 -497.88 990 491.90 -492.02

958 508.46 -497.65 991 491.39 -491.89

959 507.93 -497.43 992 490.88 -491.76

960 507.41 -497.21 993 490.37 -491.64

961 506.88 -497.00 994 489.87 -491.52

962 506.36 -496.78 995 489.36 -491.40

963 505.84 -496.57 996 488.85 -491.29

964 505.32 -496.37 997 488.35 -491.18

965 504.79 -496.16 998 487.84 -491.07

966 504.27 -495.96 999 487.33 -490.96

967 503.75 -495.77 1000 486.81 -490.86



D Differential paths for Keccak-f [1600]

Table 6. Example of 3-round differential path for Keccak-f[1600] with probability 2−32. The first 2 rounds form a
best 2-round differential path with probability 2−8.

a0

F135E26BC449789A 4D789AF135A226BC 5E26BC4D78B5AF13 89AF135E268FC4D7 6BC4D789AF1D35E2

F135E26BC449789A 4D789AF135A226BC 5E26BC4D78B5AF13 89AF135E268FC4D7 6BC4D789AF1D35E2

F135E26BC449789A 4D789AF135A226BC 5E26BC4D78B5AF13 89AF135E268FC4D7 6BC4D789AF1D35E2

F135E26BC4C9789A 4D789AF135AA26BC 5E26BC4D78B5AF13 89AF135E268FC4D7 6BC4D789AF1D35E2

F135E26BC449789A 4D789AF135A226BC 5E26BC4D78B5AF13 89AF135E268FC4D7 6BC4D789AF1D35E2

b0

---------------- ---------------- ---------------- ---------------- ----------------

2−4

---------------- ---------------- ---------------- ---------------1 ----------------

---------------- ---------------- ---------------- ---------------- ----------------

---------------- ---------------- ---------------- ---------------- ----------------

---------------- ---------------- ---------------- ---------------1 ----------------

a1

---------------- ---------------- ---------------- ---------------- ----------------

---------------- ---------------- ---------------- ---------------1 ----------------

---------------- ---------------- ---------------- ---------------- ----------------

---------------- ---------------- ---------------- ---------------- ----------------

---------------- ---------------- ---------------- ---------------1 ----------------

b1

---------------- ---------------- ---------------- ---------------- ----------------

2−4

---------------- ---------------- ---------------- ---------------- ----------------

---------------- ---------------- ---------------- ---------------- ----------------

---------------- ---------------- ---------------- ---------------- -1--------------

---------------- --8------------- ---------------- ---------------- ----------------

a2

---------------- ---------------- ---------------- ---------------- ----------------

---------------- ---------------- ---------------- ---------------- ----------------

---------------- ---------------- ---------------- ---------------- ----------------

---------------- ---------------- ---------------- ---------------- -1--------------

---------------- --8------------- ---------------- ---------------- ----------------

b2

---------------- ---------------- -------4-------- ------------4--- ----------------

2−24

----------2----- ---------------- ---------------- ---------------- --1-------------

---------------- 2--------------- -----------4---- ---------------1 ----------------

---------------- ---------------- ---------------- --------------4- ---2------------

--2------------- ---1------------ ---------------- ---------------- -2--------------

a3

---------------- ---------------- -------4-------- ------------4--- ----------------

----------2----- ---------------- ---------------- ---------------- --1-------------

---------------- 2--------------- -----------4---- ---------------1 ----------------

---------------- ---------------- ---------------- --------------4- ---2------------

--2------------- ---1------------ ---------------- ---------------- -2--------------



Table 7. Example of 4-round differential path for Keccak-f[1600] with probability 2−142. The first 3 rounds forming
a 3-round differential path with probability 2−36, is used in the rebound attack as forward path.

a0

D78BE9AF44D1AF44 E26A4BC4B5E3C4B5 9AF-D135F88935F8 BC4D2D79A6B579A6 135AFE262F16262F

D78BE9AF44D1AF44 E26A-BC4B5E3C4B5 9AF-D135F89935F8 BC4D2D79A6B579A6 135AFE262F16262F

D78BE9AF44D1AF44 E26ACBC4B5E3C4B5 9AF-D135F88935F8 BC4D2D78A6B579A6 135AFE262F16262F

D78BE9AF44D1AF44 E26A4BC4B5E3C4B5 9AF-D135F88935F8 BC4D2D79A6B579A6 135AFE262F16262F

D78BE9AF44D1AF44 E26A4BC4B5E3C4B5 9AF-D135F88935F8 BC4D2D79A6B578A6 135EFE262F16262F

b0

---------------- ---------4------ ---------------- ---------------- ---------------1

2−12

---------------- ---------------- ---------------- ---------------- ----------------

---------------- ---------4------ -2-------------- ---------------- ----------------

---------------- ---------------- -2-------------- ---------------- ---------------1

---------------- ---------------- ---------------- ---------------- ----------------

a1

---------------- ---------4------ ---------------- ---------------- ---------------1

---------------- ---------------- ---------------- ---------------- ----------------

---------------- ---------4------ -2-------------- ---------------- ----------------

---------------- ---------------- -2-------------- ---------------- ---------------1

---------------- ---------------- ---------------- ---------------- ----------------

b1

---------------- ---------------- ------1--------- ---------------- ----------------

2−12

---------------- ---------------- ---------------- ---------------- ----------------

---------8------ ---------------- ---------------- -------------1-- ----------------

---------8------ ---------------- ------1--------- -------------1-- ----------------

---------------- ---------------- ---------------- ---------------- ----------------

a2

---------------- ---------------- ------1--------- ---------------- ----------------

---------------- ---------------- ---------------- ---------------- ----------------

---------8------ ---------------- ---------------- -------------1-- ----------------

---------8------ ---------------- ------1--------- -------------1-- ----------------

---------------- ---------------- ---------------- ---------------- ----------------

b2

---------------- ---------------- ---------------- --------2------- ----------------

2−12

---------------- ---------------- --------4------- ---------------- ----------------

---------------- ---------------- -------2-------- ---------------- ----------------

---------------- ---------------- ---------------- ---8------------ ----------------

-------4-------- ---------------- ---------------- --------------1- ----------------

a3

---------------- ---------------- ---------------- --------2------- ----------------

---------------- ---------------- --------4------- ---------------- ----------------

---------------- ---------------- -------2-------- ---------------- ----------------

---------------- ---------------- ---------------- ---8------------ ----------------

-------4-------- ---------------- ---------------- --------------1- ----------------

b3

---------------- -------------8-- ---1----8---12-- --48---------1-- ---2-8-----4---2

2−106

26-------------- --82-----1----8- ---------------- ------------1--- ---2-----8-----4

-------1-------- -4-----------8-- -48------------- -8---82-----1--- --1-------------

41------8---4--- ---------------- -----2---------- ----2-----1----8 1--------24-----

---4----1------8 ---------12----- -----8---4---41- ---------------- -------2--------

a4

---------------- -------------8-- ---1----8---12-- --48---------1-- ---2-8-----4---2

26-------------- --82-----1----8- ---------------- ------------1--- ---2-----8-----4

-------1-------- -4-----------8-- -48------------- -8---82-----1--- --1-------------

41------8---4--- ---------------- -----2---------- ----2-----1----8 1--------24-----

---4----1------8 ---------12----- -----8---4---41- ---------------- -------2--------



Table 8. Example of 5-round differential path for Keccak-f[1600] with probability 2−709.

a0

4----2A6981735E2 C----314BD2F789A 4-----9913DC26BC C----9C6D77FAF13 C----48BE251C4D7

4----2A6981735E2 C----314BD2F789A 4-----9913DC26BC 4----9C6D77FAF13 C----48FE251C4D7

4----2A69A1735E2 C----314BD2B789A 4-----9913DC26BC C----9C6D77FAF13 C----48BE251C4D7

4----2A6989735E2 C----314BD27789A 4-----9913DC26BC C----9C6D77FAF13 C----48BE251C4D7

4----2A6981735E2 C----314BD2F789A 4-----D913DC26BC C----1C6D77FAF13 C----48BE251C4D7

b0

---------------- ---------------- ---------------- ---------------- ----------------

2−16

---------------- --4------------- --------1------- ---------------1 -------8--------

---------------- ---------------- ---------------- ---------------- ----------------

---------------- ---------------- --------1------- ---------------- -------8--------

---------------- --4------------- ---------------- ---------------1 ----------------

a1

---------------- ---------------- ---------------- ---------------- ----------------

---------------- --4------------- --------1------- ---------------1 -------8--------

---------------- ---------------- ---------------- ---------------- ----------------

---------------- ---------------- --------1------- ---------------- -------8--------

---------------- --4------------- ---------------- ---------------1 ----------------

b1

---------------- -------4-------- ---------------- ---------------- ----------------

2−16

---------------- --8------------- ---------------- ---------------- ----------------

---------------- -------4-------- ---------------- -----8---------- ----------------

---------------- ---------------- ---------------- -----8---------- -1--------------

---------------- --8------------- ---------------- ---------------- -1--------------

a2

---------------- -------4-------- ---------------- ---------------- ----------------

---------------- --8------------- ---------------- ---------------- ----------------

---------------- -------4-------- ---------------- -----8---------- ----------------

---------------- ---------------- ---------------- -----8---------- -1--------------

---------------- --8------------- ---------------- ---------------- -1--------------

b2

---------------- -------8-------- ---------------- ---------------1 --------------4-

2−16

---------------- ---------------- ---------------- ---------------- ----------------

-------8-------- ---------------- --------------1- ---------------1 ----------------

---------------- ---------------- ----1----------- ---------------- ----------------

---------------- ---------------- ---------------- ---------------- -2--------------

a3

-------8-------- -------8-------- ---------------- ---------------1 --------------4-

---------------- ---------------- ---------------- ---------------- ----------------

-------8-------- ---------------- --------------1- ---------------1 ----------------

---------------- ---------------- ----1----------- ---------------- ----------------

---------------- ---------------- ---------------- ---------------- -2--------------

b3

-2----18------4- ---2-----2------ ----8-------4--- --------12--8--2 --------------8-

2−114

-------91-4--1-- ---------------- 1-----C------2-- ---4-----4------ -------1--------

----4-1-------4- -----2---------- -------122-8--2- ---------------- --4------1---8--

-------2-------- -----4--2----1-- --8---------8--- -8-4------------ 9--4--1---------

-------2-------- 48-2---8-------- ---------------- ----8--4----2--- ----8---------8-

a4

-2----18------4- ---2------------ ----8----2--C--- --------12--8--2 --------------8-

-------91-4--1-- ---------------- 1-----C1-----2-- ---4----14------ ----------------

----4-11------4- -----2--2------- -------122-8--2- ---------------- --4---1--1---8--

-------2-----1-- -8---4--2----1-- 1-8---------8--- -8-4------------ 9--4--1---------

-------2-------- 48-2---8-------- ----8----------- -------4----2--- ----8---------8-

b4

12448C-8-1---A4- -844--3--418-5-5 4A-9228---3--97- 18-441-A4425-1A- ---1-9A-282-83--

2−547

-3--8D2232--9--C --4268-A--2-C--8 82266--8-8--52-- 1-A8-16--8B--E-A 8A--1-C--18-282-

-6-483--A-A1-88- ---1B-43--5-C11- 8-441-A4424-12-1 -48-14268-A--29C 3-48-4--28--4112

2134-5-41-6--4-- 14--B--1-448C191 -1-E-1C14211---C -3---6--E-822-4- 212--9--C422-872

14--218--38-6-41 1-9--68-6-1B-429 C-54-1-62-4--A13 --16--2-891824-2 2C-9-621414211-1

a5

1--48C-8-5---24- --41--3--4-8-425 42-963----11-8D- -8--4--244-5--A- ---1-18-2C2-814-

-32-8D2832--1--4 --4--8-2----8--8 ---66-48----5--8 1-A81----83-26-E 884-18E--18-382-

-6---32-A-A1188- -4C1B-41--1-C18- 8-44--86424-5285 -28-12262--1-29C 3-48-44-88-----2

213-24-4142-4484 14--B6C1445BC195 -2-E--C12211--4C -234-2-4A4A22-2- ----1D-1C4628862

141426-4-3816E4- 1-C--6A24-43-438 C-45-3-76-4--A11 181E--2-C89A-4-2 38-9--2161C231--



E Example of valid pairs for Keccak-f[100]

Table 9. Example of 4-round differential path for Keccak-f[100] and valid pairs verifying this path. Each 4-bit hex
number represents the lane value with LSB for the first slice.

Position Difference Value 1 Value 2 Complexity

a0

- - - 2 4 2 9 4 E 7 2 9 4 C 3

28
- - - - - 4 5 2 D 9 4 5 2 D 9

- - - - - - F 7 7 8 - F 7 7 8

- - - 2 4 3 6 8 5 4 3 6 8 7 -

- - - - - E B 3 3 F E B 3 3 F

a1

- - - 4 - 4 B C 8 3 4 B C C 3

28
2 - - - - F D 2 D 3 D D 2 D 3

- - - 4 - 2 3 6 5 B 2 3 6 1 B

2 - - - - 1 5 6 - 6 3 5 6 - 6

- - - - - 3 6 F C 1 3 6 F C 1

a2

- - - - - 6 5 6 5 A 6 5 6 5 A

rebound

4 - - 4 - 1 - 1 9 8 5 - 1 D 8

8 8 8 - - C 3 B D F 4 B 3 D F

2 2 - - 2 4 B A C F 6 9 A C D

- 4 4 4 - C 8 D 2 D C C 9 6 D

a3

F 6 5 B - B 5 8 3 5 4 3 D 8 5

211
7 E 1 B 1 D 2 C E E A C D 5 F

D 6 1 B 2 3 A 3 6 A E C 2 D 8

7 E 1 B - - 4 B 9 2 7 A A 2 2

F 6 9 B - 2 E 2 2 F D 8 B 9 F

a4

- 8 - - - - 5 2 4 4 - D 2 4 4

- - - 1 - C 5 A 9 A C 5 A 8 A

- - - - - F 2 2 3 - F 2 2 3 -

- 8 - - - D 9 1 E 7 D 1 1 E 7

- - - 1 - D 8 3 A 1 D 8 3 B 1


