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Abstract. All known round optimal (i.e., two-move) blind signature schemes either need a common
reference string, rely on random oracles, or assume the hardness of some interactive assumption. At
Eurocrypt 2010, Fischlin and Schröder showed that a broad class of three-move blind signature scheme
cannot be instantiated in the standard model based on any non-interactive assumption. This puts forward
the question if round optimal blind signature schemes exist in the standard model. Here, we give a positive
answer presenting the first round optimal blind signature scheme that is secure in the standard model
without any setup assumptions. Our solution does not need interactive assumptions.

1 Introduction

Blind signature schemes [Cha83, Cha84] provide the functionality of a carbon copy envelope: The user
(receiver), puts his message into this envelope and hands it over to the signer (sender). The signer in return
signs the envelope and gives it back to the user who uses the signed enelope to recover the original message
together with a signature on it. The notion of security in this context entails (1) that the signer remains
oblivious about the message (blindness), but at the same time, (2) the receiver cannot forge signatures for
fresh messages (unforgeability).

Blind signatures are an important primitive, whose classical applications include e-cash, e-voting, and
anonymous credentials [Bra00, CG08, BP10]. Moreover, oblivious transfer can be built from unique blind
signatures [CNS07, FS09]. The several known instantiations of blind signature schemes are based on security
assumptions either in the random oracle model [PS00, Abe01, BNPS03, Bol03, AO09, Rüc10], or in the
standard model [CKW04, Oka06, HK07, KZ08, AFG+10]. Constructions based on general assumptions are
also known [JLO97, Fis06, HKKL07, FS09]. Recently, Katz, Schröder, and Yerukhimovich show that blind
signature scheme cannot be build in a black-box way from one-way trapdoor permutations [KSY11].

Although many blind signature schemes are known, all round optimal solutions (the user sends a single
message to the signer and gets a single response) rely either on the random oracle heuristic [Cha84, Bol03],
or they require a common reference string [Fis06, AFG+10, GS10, MSF10], and some instantiations even
prove their security under an interactive assumption [BNPS03, Bol03, GS10]. Recently, at Eurocrypt 2010,
Fischlin and Schröder give a (partial) answer to the question why the construction of round optimal blind
signatures without any setup assumption is very difficult [FS10]. In fact, the author show that three-move
blind signature schemes with signature-derivation checks cannot be build from any non-interactive assumption
in the standard model. A signature derivation-checks is a publicly verifiable test if the user is able to derive a
valid signature or not. Interestingly, most of the round optimal blind signature schemes known today have
∗Supported by a DAAD postdoctoral fellowshi.
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this property [Cha84, Bol03, Fis06]. In particular, this means that there is no much hope to instantiate one
of the known schemes under weaker assumptions.

Concurrently Secure Blind Signature Schemes Another reason why round optimal blind signature
schemes are desirable is that a solution would be concurrently secure. Concurrently secure blind signature
schemes, however, are difficult to obtain. Juels, Luby, and Ostrovsky [JLO97] explained why a straight forward
approach does not work. The authors then present a solution that is, according to Hazay et al. [HKKL07],
only secure in the sequential setting. The reason is that the solution seems to require a concurrently secure
protocol for two-party computation. Such a protocol, however, is a mayor open problem in the standard
model [HKKL07].

Obtaining a concurrently secure protocol under simulation-based definition via black-box proof is impossible
as shown by Lindell [Lin03]. Previous protocols overcome this impossibility result by assuming a common
reference string and by relying on game-based definitions. The only exception is the protocol of Hazay
et al. [HKKL07] that does not need a CRS. The authors build a blind signature scheme that uses the
concurrent zero-knowledge protocol of Prabhakaran, Rosen, and Sahai [PRS02] that has a logarithmically
round complexity as a building block.

1.1 Our Contribution

Our main contribution is the first round optimal blind signature scheme in the standard. In contrast to
prior schemes, our solution does not need any setup assumption such as a common reference string. Our
construction is based on standard cryptographic assumptions and its security is not based on interactive
assumption. Our solution can be considered interesting for at least the following reasons:

• Our construction is the first construction in the standard model that consists of only two moves.

• The scheme shows how to bypass the impossibility result of Fischlin and Schröder from Eurocrypt
2010 [FS10]. This is achieved by 1) building a scheme without signature-derivation checks and 2) using
non black-box techniques.

• Our solution shades light onto build concurrently secure 2-party protocols. In particular, it shows that
the known impossibility results for concurrently 2-party computation [Lin03, Lin04] can be bypassed by
considering specific functionalities.

Our blind signature scheme is based on general assumption and can be instantiated under the assumption that
exponential hard one-way functions, certified trapdoor permutations, exists and that the DDH assumption
holds.

Notations. Before presenting our results we briefly recall some basic definitions. In what follows we denote
by λ ∈ N the security parameter. We say that a function is negligible if it vanishes faster than the inverse of
any polynomial. A function is non-negligible if it is not negligible. If S is a set, then x $← S indicates that x
is chosen uniformly at random over S (which in particular assumes that S can be sampled efficiently). We
write A(x;X) to indicate that A is an algorithm that takes as input a value x and uses randomness X. In
general, we use capital letters for the randomness. W.l.o.g. we assume that X has bit length λ.

2 Blind Signatures and Their Security

To define blind signatures formally we introduce the following notation for interactive executions between
algorithms X and Y. By (a, b) ← 〈X (x),Y(y)〉 we denote the joint execution of X and Y, where x is the
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private input of X and y defines the private input of Y. The private output of X equals a and the private
output o Y is b.

Definition 2.1 A blind signature scheme BS consists of PPT algorithms Gen,Vrfy along with interactive PPT
algorithms S,U such that for any λ ∈ N:

• Gen(1λ) generates a key pair (sk, vk).

• The joint execution of S(sk) and U(vk,m), where m ∈ {0, 1}λ, generates an output σ for the user and
no output for the signer. We write this as (⊥, σ)← 〈S(sk),U(vk,m)〉.

• Algorithm Vrfy(vk,m, σ) outputs a bit b.

We assume completeness i.e., for any m ∈ {0, 1}λ, and for (sk, vk)← Gen(1λ), and σ output by U in the joint
execution of S(sk) and U(vk,m), it holds that Vrfy(vk,m, σ) = 1 with overwhelming probability in λ ∈ N.

Note that it is always possible to sign messages of arbitrary length by applying a collision-resistant hash
function to the message prior to signing.

Blind signatures must satisfy two properties: unforgeability and blindness [JLO97, PS00]. For unforgeability
we require that a user who runs k executions of the signature-issuing protocol should be unable to output
k + 1 valid signatures on k + 1 distinct messages.

Definition 2.2 Blind signature scheme BS = (Gen, S, U , Vrfy) is unforgeable if for any polynomial `, the
success probability of any PPT algorithm U∗ in the following game is negligible (in λ):

• Gen(1λ) outputs (ssk, svk), and U∗ is given svk.

• U∗(svk) interacts concurrently with ` instances S1
ssk, . . . ,S`ssk.

• U∗ outputs (m1, σ1, . . . ,m`+1, σ`+1).

U∗ succeeds if the {mi} are distinct and Vrfy(svk,mi, σi) = 1 for all i.

The blindness condition says that it should be infeasible for any a malicious signer S∗ to decide which of two
messages m0 and m1 has been signed first in two executions with an honest user U . This condition must hold,
even if S∗ is allowed to choose the public key maliciously [ANN06]. If one of these executions has returned ⊥
then the signer is not informed about the other signature either.

Definition 2.3 Blind signature scheme BS = (Gen,S,U ,Vrfy) satisfies blindness if the advantage for any
PPT algorithm S∗ in the following game is negligible (as a function of λ):

1. S∗ outputs an arbitrary public key svk along with two messages m0,m1.

2. A random bit b is chosen, and S∗ interacts concurrently with Ub := U(svk,mb) and Ub̄ := U(svk,mb̄).
When Ub,Ub̄ have completed their executions, σb, σb̄ are defined as follows:

• If either Ub or Ub̄ abort, then (σb, σb̄) := (⊥,⊥).
• Otherwise, let σ0 (resp. σ1) be the output of U0 (resp. U1).

S∗ is given (σ0, σ1).

3. Finally, S∗ outputs a bit b′.

S∗ succeeds (denoted succ) if b′ = b. The advantage of S∗ is |Prob[ succ]− 1
2 |.

A blind signature scheme is secure if it is unforgeable and blind.
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Signer S(ssk) User U(svk,m)

C←−−−−−−− c← Enc(m)

c′ ← Eval(C)
c′−−−−−−−→ σ ← Dec(c′)

Figure 1: Underlying idea of the signature issue protocol.

3 Towards a Secure Construction

The high-level idea of our construction is as follows (Figure 1 shows a simplified version of the signature issue
protocol). The user first encrypts the message using a fully homomorphic encryption scheme and sends the
ciphertext to the signer. The signer, in return, evaluates the signing circuit on the ciphertext and sends the
result back. To recover the signature, the user simply decrypts the ciphertext. The basic idea of the protocol
follows the (well known) approach of building secure two-party computation from a fully homomorphic
encryption scheme. The resulting protocol, however, is only secure in the semi-honest setting. In the context
of blind signatures we are interested in stronger security guarantees and now we describe which additional
steps are required to obtain a fully secure blind signature scheme.

Key Generation. The first observation is that the user must generate the keys for the fully homomorphic
encryption scheme, or the scheme cannot be blind. But if the user generates the key, then the scheme
might be forgeable. The reason is that the forger might generate fake keys that may leak some parts of
the circuit and thus of the signer’s private key. To handle this issue we let the user append a proof
that the keys are generated honestly. This proof, however, must not reveal any information about
the decryption key nor about the encrypted message. The obvious way to handle this problem would
be a non-interactive zero-knowledge proof (NIZK). Yet, since NIZKs (except in the ROM) require
a common reference string, they are not applicable in our setting. Instead we rely on two-round
witness-indistinguishable proofs, called ZAPs. These proofs have the interesting property that the first
message can be fixed once and for all and used for several proofs. This property helps us preserve the
round complexity by storing the first move of the ZAP in the public key. ZAPs, however, are “only”
witness indistinguishable and not zero-knowledge. Therefore, we include as a second witness a pre-image
of a one-way function (the image is stored in the public key). The ZAP then proves that the user either
generated the key honestly and encrypted the message honestly, or that it knows the a pre-image of a
one-way function.

Signing. The signer then validates the proof and is supposed to run the evaluation algorithm honestly using
the right private key, or blindness might be violated. In particular, consider an adversary that first
uses ssk0 and afterwards ssk1 as a signing key and that otherwise follows the protocol honestly. The
attacker would receive both signatures and could easily break blindness. In order to guarantee that the
signer computes all steps honestly, we let the signer append a second ZAP. This ZAP then proves that
it “signed” the contained message honestly using the right private key. Again, since the ZAP is only
witness-indistinguishable, we use as a second witness a second pre-image of a one-way function. The
first message of the ZAP and the image of the one-way function for this proof is part of the user’s first
protocol message. Again, the round complexity is preserved.

Achieving Unforgeability. To show that the protocol is unforgeable, several more modifications are necessary.
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The overall idea is to reduce the unforgeability to the unforgeability of the underlying signature scheme.
To do so, we construct an adversary B against the unforgeability of the signature scheme that simulates
the protocol execution for the forger of the blind signature scheme. The difficulty in this proof is that B
has to submit a “real” message to its external signing oracle and hence needs to find out which message
is contained in the ciphertext sent by the user. Since ZAPs are only witness-indistinguishable (and no
proof of knowledge) the extraction of the message from the ZAP is not possible. We solve this issue by
applying a complexity leveraging argument. Loosely speaking, this technique says that some primitive
A cannot be broken in polynomial time but can be broken in time T (λ) for some super-polynomial
function T , while a second primitive B cannot be broken in time T (λ). Concretely, we assume that the
signature scheme is unforgeable w.r.t. time T2 and our attacker B runs in time T1 < T2. In the protocol,
we let the user commit to the message (in addition to the encryption) using a commitment scheme
that it extractable in time T1. Our attacker B then extract the message from the commitment and
sends it to the signing oracle and encrypts the obtained signature. In this step, we need an additional
property of the fully homomorphic encryption scheme that is called circuit privacy. Roughly speaking,
this property says that it is not possible to distinguish between a ciphertext that has been computed by
applying the evaluation algorithm to the ciphertext, or by applying the circuit to the message and then
encrypting the result.

Achieving Blindness. The above-mentioned modifications are not yet sufficient to achieve blindness. Recall
that blindness means that the malicious signer cannot distinguish the order of two signature issue
protocols. In order to formally prove blindness, we have to show that the transcript (i.e., the messages
exchanged between the signer and the user) is computationally independent of the message to be signed.
We achieve this in two main steps. First, we let the signer commit to its private key. Second, we
apply another complexity leveraging argument to extract the private key and the pre-image out of
the commitments. Recall that the ZAP from the user to the signer proves that he has encrypted the
messages honestly, or that he know the pre-image of a one-way function. Since we now know the second
witness, we let the user send an encryption of an all zero string to the malicious signer. Since the fully
homomorphic encryption is IND-CPA it follows that this modification does not change the success
probability of the adversary. In the last step of the proof, we let the user sign its message locally with
the previously extracted private key. Since the transcript is now independent of the message, it follows
that the scheme is blind.

4 Needed Primitives

Before presenting our generic construction, we review the required primitives.

One-Way Functions. The standard notion of one-wayness of functions is defined as follows. Let A be an
adversary and define OW-advantage for a function f : {0, 1}λ 7→ {0, 1}λ as

Advowf,A(λ) = Pr
[
f(z) = y : x← {0, 1}λ ; y ← f(x) ; z ← A(y)

]
.

Definition 4.1 A function f is T -one-way if Advowf,A is negligible for any PPT algorithm A running in time
T · poly(λ).

We need in our proofs that the function is invertible after a certain time.
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Definition 4.2 A function f : {0, 1}λ 7→ {0, 1}λ is invertible in time T , if there exists an algorithm A that
gets as input an image y ← f(x), with x ∈ {0, 1}λ, runs in time T · poly(λ), and outputs x′ such that x′ = x
with overwhelming probability.

Moreover, we assume that f has efficiently decidable images. That is, for all values y ∈ {0, 1}λ there exists
a PPT algorithm A that outputs 1 iff y is an image of f with overwhelming probability. We write this as
y ∈ image(f).

Pseudorandom Functions. Loosely speaking, a function f is pseudorandom if no PPT adversary can
distinguish it from a random function. More precisely, a function FR : {0, 1}λ 7→ {0, 1}λ is T -pseudorandom if
for all adversaries A running in time T · poly(λ) there exists a negligible function negl(λ) such that∣∣∣Prob[AFR(·)(1λ) = 1

]
− Prob

[
Af(·)(1λ) = 1

]∣∣∣ = negl(λ),

where R ← {0, 1}λ is chosen uniformly at random and f is chosen uniformly at random from the set of
functions mapping λ-bit strings to λ-bit strings.

Non-interactive Commitment Scheme. A commitment scheme consists of a pair of efficient algorithms
C = (Com,Open) where: Com takes as input m ∈ {0, 1}λ and outputs (decom, com)← Com(m), where decom
and com are both of length {0, 1}λ; the algorithm Open(decom, com) outputs a message m or ⊥ if c is not a
valid commitment to any message.

It is assumed that the commitment scheme is complete, i.e., for any messagem ∈ {0, 1}λ and (decom, com)←
Com(ck,m), we have Open(ck, decom,Com(ck,m)) = m with overwhelming probability in λ ∈ N.

Commitment schemes must satisfy two properties: hiding and binding. Hinding means that no adversary
can distinguish which of two messages are locked in the commitment. Let A be a non-uniform adversary
against C and define its hiding-advantage as

Advhid
C,A(λ) = 2 · Pr

[
b = b′

∣∣∣∣ (m0,m1, st)← A(1λ); b← {0, 1};
(decom, com)← Com(mb); b

′ ← A(com, st)

]
− 1 .

Definition 4.3 C is T -hiding if the advantage function Advhid
C,A is a negligible function for all non-uniform

adversaries A running in time T · poly(λ).

Binding says that the adversary cannot open the commitment in two different ways. Here, we define the
strongest variant known as perfectly binding.

Definition 4.4 C is perfectly binding if there exist no values (com,m0,m1, decom0, decom1) with m0 6= m1

such that Open(com, decom0) = m0 and Open(com, decom1) = m1.

In addition to these requirements we assume that the commitment scheme is extractable in superpolynomial
time T , i.e., there exists an algorithm that gets as input a commitment and outputs the contained message.
More formally:

Definition 4.5 A commitment scheme C is extractable in time T ,if there exists an algorithm A running in
time T · poly(λ) such that for any com, decom with Open(com, decom) = m 6= ⊥, we have A(com) = m with
overwhelming probability.
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Signature Scheme. A signature scheme Sig = (SigGen,Sign,SigVrfy) is a tuple of algorithms: SigGen(1λ)
outputs a key-pair (ssk, svk); the algorithm Sign(ssk,m) takes as input a signing key ssk, a message m ∈ {0, 1}λ
and outputs signature σ; the verification algorithm SigVrfy(svk,m, σ) outputs 1 iff σ is a signature on m
under svk. We assume completeness i.e., for any message m ∈ {0, 1}λ, and key pair (ssk, svk)← SigGen(1λ)
and σ ← Sign(ssk,m) we have SigVrfy(svk,m, σ) = 1 with overwhelming probability in λ ∈ N. The
security of signature schemes is proven against existential forgery under adaptive chosen message attacks
(EU-CMA) [GMR88]. Let A be an adversary against Sig and define its eu-cma-advantage as

AdvcmaSig,A(λ) = Pr
[
SigVrfy(svk,m∗, σ∗) = 1 : (ssk, svk)← SigGen(1λ); (m∗, σ∗)← ASign(ssk,·)(svk)

]
.

The adversary A is not allowed to query Sign(ssk, ·) about m∗.

Definition 4.6 Sig is T -eu-cma-secure if the advantage function AdvcmaSig,A is a negligible function in λ for
all adversaries A running in time T · poly(λ).

ZAP. A ZAP is a 2-round witness-indistinguishable proof [DN07] (with negligible soundness error) with the
useful property that the first round (a message from verifier V to prover P) can be made universal for all
executions and therefore be part of the public key of V . More formally: Let Lp(λ) := L ∩ {0, 1}≤p(λ) for some
polynomial p. A ZAP is 2-round public coin witness-indistinguishable protocol for some NP-language L with
associated relation RL. It consists of two efficient interactive algorithms P,V such that:

• The verifier V(1λ) outputs an initial message msg;

• The prover P(1λ,msg, w) gets as input msg, a statement s ∈ Lp(λ), and a witness w such that (s, w) ∈ RL;
it outputs a proof π;

• The verifier V(msg, s, π) outputs a decision bit b.

A ZAP is complete if for any (s, w) ∈ RL, we have V(msg, s,P(msg, s, w)) = 1 with overwhelming probability.
ZAPs must satisfy adaptive soundness and witness indistinguishability.

Definition 4.7 A ZAP satisfies adaptive soundness if for any (unbounded) algorithm P∗ the following is
negligible:

Pr
[
msg← V(1λ); (s, π)← P∗(msg) : V(msg, s, π) = 1

∧
s 6∈ L

]
Definition 4.8 A ZAP is non-uniform computationally witness indistinguishable if the advantage of any
non-uniform PPT adversary A in the following game is negligible:

1. A(1λ) outputs a string msg, a sequence s1, . . . , s` ∈ Lp(λ), and two sequences w0
1, . . . , w

0
` and w1

1, . . . , w
1
` .

It is required that (si, w0
i ), (si, w

1
i ) ∈ RL for all i.

2. A random bit b is chosen.

3. Compute πi ← P(1λ,msg, si, w
b
i ) for all i, and give these to A.

4. A outputs a bit b′. The advantage of A is |Prob[ b = b′]− 1
2 |.

Dwork and Naor showed that ZAPs can be build upon any certified trapdoor permutation [DN07].
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Size-Dependent Homomorphic PKE. [BHHI10] Roughly speaking, a size-dependent homomorphic
public-key encryption scheme is a fully homomorphic encryption scheme with the relaxation that the ciphertext
may grow. More precisely, a size-dependent homomorphic public-key encryption scheme PKE = (EncGen,
Enc,Dec,Eval) consists of a key generation algorithm (ek, dk) ← EncGen(1λ); an encryption algorithm
c ← Enc(ek,m) that, upon input a public key ek and a message m, outputs a ciphertext c; a decryption
algorithm m← Dec(dk, c) that, upon input the private key and a ciphertext c, returns the message m. The
algorithm Eval takes as input a public key ek, a circuit C, and a ciphertext c and outputs another ciphertext
c′.

The scheme PKE = (EncGen,Enc,Dec,Eval) is perfectly correct for a given circuit C if, for any plain-
text m, and key-pair (ek, dk) ← EncGen(1λ), and ciphertext c with c ← Enc(ek,m) it is the case that
Dec(dk,Eval(ek, C, c)) = C(m) with probability 1.

Now, we define weak function-privacy [BHHI10]. This property says that the adversary cannot distinguish
which circuit has been used for the evaluation as long as the output of two circuits are the same (even if the
adversary knows the private decryption key). More formally, we say that PKE is non-uniformly computationally
weak function-private for all m ∈ {0, 1}λ, all circuits C1, C2 with |C1| = |C2| and C1(m) = C2(m), all (ek, dk)
in the range of EncGen(1λ), and all c in the range of Enc(ek,m), we have that Eval(ek, C1, c) and Eval(ek, C2, c)
are non-uniformly computationally indistinguishable.1

We define CPA security as usual. Let A be an adversary against PKE and define its IND-CPA-advantage
as

AdvcpaPKE,A(λ) = 2 · Pr
[
b = b′

∣∣∣∣ (dk, ek)← EncGen(1λ); b← {0, 1}; (m0,m1, st)← A(ek);
c∗ ← Enc(ek,mb); b

′ ← A(c∗, st)

]
− 1 .

We require that |m0| = |m1| and st is some arbitrary state information.

Definition 4.9 (IND-CPA) PKE is IND-CPA secure if the advantage function AcpaPKE,A is a negligible func-
tion in λ for all non-uniform computational adversaries A.

Overview About the Primitives. Fix two superpolynomial functions T1 and T2 such that T2 > T1. In
our construction, we assume two one-way functions f s and fu, a pseudorandom function F , two commitment
schemes CM , CR, a signature scheme Sig, two ZAPs Zs, Zu, and a size-dependent encryption scheme Enc. We
will assume that these schemes satisfy the following conditions:

Condition 1. For the correctness we assume that Sig is complete; Enc is correct; CM and CR are complete;
Zs and Zu are complete.

Condition 2. For the proof of unforgeability we assume that

- fs is T2-one-way;
- fu is invertible in time T2 and has efficiently decidable images;
- F is a T2-pseudorandom function;
- Enc is non-uniformly computationally weak function-private;
- Sig is T2 unforgeable;
- CM is non-uniformly hiding, perfectly binding, and extractable in time T1;
- CR is T2-hiding, perfectly binding;
- ZAP Zs is adaptively sound;

1Our definition deviates from that in [BHHI10]: First, our definition is computational while theirs is statistical. Second, we
consider even maliciously constructed ciphertexts c as long as they are in the range of Enc(ek,m) while they consider honestly
generated ciphertexts c = Enc(ek,m). (I.e., we consider the case where the randomness is chosen maliciously.)
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- ZAP Zu is non-uniformly computationally witness-indistinguishable.

Condition 3. For the proof of blindness we assume that

- fs has efficiently decidable images;
- fu is T1-oneway;
- Enc is perfectly correct and non-uniformly IND-CPA secure;
- CM is extractable in time T1 and non-uniformly hiding;
- CR is perfectly binding;
- ZAP Zs is non-uniformly computationally witness-indistinguishable;
- ZAP Zu is adaptively sound.

Instantiability. In what follows, we discuss which standard assumptions Condition 1,2, and 3 can be
instantiated. Firstly, to instantiate fs, fu we need to assume that exponential hard one-way functions exist.
The perfectly binding commitment schemes CM , CR can be build from any one-way permutation. Signature
scheme exist under the assumption that one-way function exist. The size-dependent homomorphic public-key
encryption scheme can be instantiate under the DDH assumption [BHHI10]. We stress that this is a strictly
weaker assumption than the existence of a fully homomorphic encryption scheme. ZAPs can be build from
any certified trapdoor permutation [DN07].

5 Construction and Security Proofs

In this section, we define our construction and show that it is unforgeable and blind.

5.1 Construction

We define our blind signature scheme through the following algorithms:

Key Generation. Gen(1λ) peforms the following steps:

- R,S, T ← {0, 1}λ

- (ssk, svk)← SigGen(1λ;S)

- xs ← {0, 1}λ, ys ← fs(xs)

- msgs ← Vs(1λ)
- comR ← ComR((R, ssk);T )

- set sk← (svk, ssk, R, S, T ) and vk← (svk, ys,msgs, comR)

Signing. The protocol for U to obtain a signature on message m is as follows:

• If ys /∈ image(fs), U aborts.

• U picks four random values K,E,M,Xu each of bit length λ. It generates a key-pair of the
encryption scheme (ek, dk) ← EncGen(1λ;K), encrypts the message c ← Enc(ek,m;E), and
commits to the message comm ← ComM (m;M). It then computes comxu ← ComM (0λ;Xu) and
a proof πs (with respect to msgs) for the ZAP Zs that (ys, ek, c, comm, comxu) ∈ Ls, where Ls
contains tuples for which there exists either a witness ωs1 = (K,E,M,m, dk) such that

(dk, ek) = EncGen(1λ;K)
∧
c = Enc(ek,m;E)

∧
comm = ComM (m;M)

9



or there exists a witness ωs2 = (xs, Xu) such that

comxu = ComM (xs;Xu)
∧
fs(xs) = ys.

Notice that in Ls, inside comxu we have the value xs. This is due to the fact that comxu is the
commitment produced by U which is supposed to show that U knows the value xs produced by S.

• U generates the challenge for the ZAP Zu. It picks xu ← {0, 1}λ uniformly at random, sets
yu ← fu(xu), and computes the first message of the ZAP Zu as msgu ← Vu(1λ). It then sends
(ek, c, πs, comm, comxu ,msgu, yu) to S.
• S receives (ek, c, πs, comm, comxu ,msgu, yu) from the user; it first verifies that πs is a valid proof
(with respect to msgs) (ys, ek, c, comm, comxu) ∈ Ls and that yu is a valid image of fu. If either
of the checks fail, S aborts. Let C := Cssk,R(m) be the circuit computing Sign(ssk,m;FR(m)).
Otherwise, if both condition hold, then S picks two random values V,Xs each of bit length λ and it
signs the message contained in c by running c′ ← Eval(ek, C, c;V ) and computes the commitment
comxs ← ComM (0λ;Xs). It then computes a proof πu (with respect to msgu) for the statement
(svk, comR, c, c′, ek, comxs , yu) ∈ Lu, where Lu contains tuples for which there exists either a witness
ωu1 = (R,S, T, V, ssk) such that:

c′ = Eval(ek, CR, c;V ) with Cssk,R := Sign(ssk,m;FR(m))
∧

comR = ComR((R, ssk);T )
∧

(ssk, svk) = SigGen(1λ;S)

or there exists a witness ωu2 = (xu, Xs) such that

comxs = ComM (xu;Xs)
∧
fu(xu) = yu.

S then sends (c′, πu, comxs) to U .
• U verifies that πu is a valid proof (with respect to msgu) w.r.t. the ZAP Zu for the statement
(svk, comR, C, c, c′, ek, comxs , yu) ∈ Lu. If this proof fails, then U aborts. Otherwise, it computes
the signature σ ← Dec(dk, c′) and outputs σ.

Verification. Vrfy(vk, σ,m) returns SigVrfy(svk, σ,m).

5.2 Security Proofs

We show that the above defined construction is complete, unforgeable, and blind. Within all proofs, we
assume that T1 < T2.

Proof of Unforgeability. The proof idea is the following. We start with a game that corresponds to the
unforgeability game of blind signatures and we then gradually change this game such that at the end we can
build an adversary against the unforgeability of the underlying signature scheme. The main steps of the proof
are the following:

• We apply a complexity leveraging argument. This technique allows us to invert the one-way function
fu and also to extract the message m out of the second commitment comm.

• We use the external signing oracle in the unforgeability game of the underlying signature scheme to
sign the message m.

10



Signer S(sk) User U(vk,m)

parse sk = (vk, sk,R, S, T ) parse vk = (svk, ys,msgs, comR)

pick Xs, V ← {0, 1}λ pick K,E,M,Xu ← {0, 1}λ
(dk, ek)← EncGen(1λ;K)

//encrypt and commit c← Enc(ek,m;E)

to the message comm ← ComM (m;M)

//compute the ZAP comxu ← ComM (0λ;Xu)
ss := (y, ek, c, comm, comxs)
ws := (K,E,M,m)
πs ← Ps(1λ,msgs, ss, ws)

//generate challenge xu ← {0, 1}λ, yu ← fu(xu)
for the second ZAP msgu ← Vu(1λ)

(ek, c, πs, comm, comxu ,msgu, yu)
←−−−−−−−−−−−−−−−−−−−−−−−

ss := (ys, ek, c, comm, comxu) //verify the ZAP
if Vs(msgs, ss, πs) = 1
and yu ∈ image(fu), then
c′ ← Eval(ek, Cssk,R, c;V ) //sign the message

comxs ← ComM (0λ;Xs)
su := (svk, comR, C, c, c′, ek, comxu , yu)
wu := (R,S, T, V, ssk)
πu ← Pu(msgu, su, wu)

else c′, comxs , πu ← ⊥
(c′, comxs , πu)

−−−−−−−−−−−−−−−−−−→
su
′
:= (svk, comR, C, c, c′, ek, comxu , yu)

if Vu(msgu, su
′
, πu) = 1

σ ← Dec(dk, c′)
output σ

Figure 2: Issue protocol of the two move blind signature scheme.
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• Instead of applying the evaluation algorithm Eval, we directly encrypt the obtained signature using
the size-dependent homomorphic encryption scheme. These modifications do not change the success
probability of the adversary (against the unforgeability of the blind signature scheme) because:

– the size-dependent homomorphic encryption scheme is weakly function-private and thus, the
attacker cannot tell the difference;

– the ZAP remains valid as it now uses the previously computed preimage xu of fu as a witness.

Theorem 5.1 Suppose that fs, fu, and F are function, CM , CR two commitment schemes, Sig a signature
scheme, Zs, Zu two ZAPs, and Enc size-dependent encryption scheme such that all primitives satisfy Condition
1. Then the blind signature scheme as defined in Section 5.1 is unforgeable.

Proof. Assume towards contradiction that the above construction is not unforgeable. Then, there exists a
PPT algorithm U∗ that outputs (`+ 1) message/signature pairs (mi, σi) after ` executions of the signature
issue protocols. This adversary wins if all messages are distinct and all signatures verify. Now, consider the
following sequence of games, where the first game Game 0 is the unforgeability game in which we run the
game with the forger U∗. Within all games, the first line number is the number of the game (i.e., line 107 in
Game 1 corresponds to 007 in Game 0).

Game 0

000 xs, R, S, T, Vi, X
s
i ← {0, 1}λ

001 (ssk, svk)← SigGen(1λ;S),msgs ← Vs(1λ), ys ← f(xs), comR ← ComR(R, ssk;T )
002 vk← (svk, ys,msgs, comR)
003 st0 ← U∗(vk)
004 for i = 1, . . . , `
005 (eki, ci, πsi , com

m
i , com

xu
i ,msgui , y

u
i , sti)← U∗(sti−1)

006 ssi := (ys, eki, ci, comm
i , com

xu
i )

007 if yui ∈ image(fu) and Vs(msgsi , s
s
i , π

s
i ) = 1 then

008 c′i ← Eval(eki, Cssk,R, ci;Vi)

009 comxs
i ← ComM (0λ;Xs

i )
010 sui := (svk, comR, Cssk,R, ci, c

′
i, eki, com

xs
i , y

u
i )

011 wui := (R,S, T, Vi, ssk)
012 πui ← Pu(msgu, sui , w

u
i )

013 else
014 c′i, com

xs
i , π

u
i ← ⊥

015 sti ← U∗(c′i, comxs
i , π

u
i , sti)

016 end for
017 (m1, σ1, . . . ,m`+1, σ`+1)← U∗(st`)
018 Return 1 iff SigVrfy(svk,mi, σi) = 1 for all i = 1, . . . , ` and mi 6= mj for all i 6= j

Game 0 ⇒ Game 1. We now modify the above game by letting the signer (after step 005) invert the one-way

function fu and extract the message mi from the commitment comm
i . By ComM

−1

i (comm
i ) we denote the

function that extract the committed value according to Definition 4.5. Analogously, fui
−1
(ys) is the algorithm

that inverts the one-way function fu according to Definition 4.2. Both algorithm are running in time T1. To
show that the adversary’s success probability in both games is the same (except for a negligible fraction) we
have exploit the non-uniform hiding property of the commitment. The difficulty is that step 106a cannot be
computed efficiently. Nevertheless, we solve this issue applying the following (standard) technique. The idea
is to consider an attacker against the commitment scheme that is computationally unbounded, as long as it
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Game 1

106 ssi := (ys, eki, ci, comm
i , com

xu
i )

106a xui ← fui
−1

(yui ) ,mi ← ComM
−1

i (comm
i )xui ← fui

−1
(yui ) ,mi ← ComM

−1

i (comm
i )xui ← fui

−1
(yui ) ,mi ← ComM

−1

i (comm
i )

109 comxs
i ← ComM (xuix

u
ix
u
i ;X

s
i )

has not received the commitment. Once the attacker has obtained the commitment, it runs in polynomial
time. More precisely is the following lemma:

Lemma 5.2 Let C be a non-uniformly hiding commitment scheme and A = (A1,A2) be an adversary such
that A1 is computationally unbounded and A2 runs in polynomial time. Then, the probability that A wins the
following game is negligible:

2 · Pr
[
b = b′

∣∣∣∣ (m0,m1, st)← A1(1
λ) ; b← {0, 1} ;

(decom, com)← Com(mb) ; b
′ ← A2(com)

]
− 1 .

Proof. Suppose to the contrary that A = (A1,A2) is an adversary that wins the above game with non-negligible
probability. Then there exists a worst-case random tape for A (for any security parameter) such that A with
that random tape wins the game with non-negligible probability. We now apply an averaging argument. Let
m0,m1 be the messages that A1 returns given this random tape and denote by st the returned state. Now,
let A2 be the second adversary that has this state hardcoded into its circuit. Note that A2 is a non-uniform
adversary that runs in polynomial-time. Now, A2 can clearly predict the bit b and thus wins the game with
non-negligible probability. This, however, contradicts the assumption that C is non-uniformly hiding. �

Lemma 5.2 allows us to perform a computation that is not feasible in polynomial time before seeing the
commitment. During this step, we extract the message out of the commitment mi ← ComM

−1

i (comm
i ) and we

invert the one-way function xui ← fui
−1

(yui ). preimage with overwhelming probability. Then, we commit to
xui (instead of 0λ). Note that this is only possible because step 119 happens after step 116. This, however,
is not quite true because this step happens in a loop. Thus, at some point step 119 happens before step
116. To handle this issue, we refine our argument as follows: let Game 1̃i be the game where we made the
substitution during the first i runs but not in iterations i+ 1, . . . , `. Now, the same argument as above shows
that Game 1̃i and Game 1̃i+1 are indistinguishable for any i (even if i depends on the security parameter).
This, however, also implies that Game 1̃0 and Game 1̃` are indistinguishable. Furthermore Game 1̃0 = Game 0
and Game 1̃` = Game 1, hence Game 0 ≈ Game 1 where ≈ indicates that the probability that both games
output 1 is the same (except for a negligible amount).

Game 1 ⇒ Game 2 ⇒ Game 3. In the next game, Game 2, we first change the witness of the ZAP Zu. That
is, we use as a witness the pre-image xui of the one-way function fu that we have inverted in the previous step.
Afterwards, in Game 3, we sign the message that was extracted in Game 1, we run the evaluation algorithm
on the circuit Cσi that outputs the constant value σi. Cσi can be assumed to have the same size as Cssk,R by
padding.

Game 2

210 sui := (svk, comR, Cssk,R, ci, c
′
i, eki, com

xs
i , y

u
i )

211 wui := (xsi , X
u
i )(xsi , X
u
i )(xsi , X
u
i )

212 πui ← Pu(msgu, sui ,w
u
iw
u
iw
u
i )

Game 3

308 σi ← Sign(ssk,mi;FR(mi))σi ← Sign(ssk,mi;FR(mi))σi ← Sign(ssk,mi;FR(mi))
308a c′i ← Eval(eki,CσiCσiCσi , ci;Vi)

Now, we argue that both modifications do not change the success probability of the adversary U∗ by
more than a negligible amount and therefore, Game 0 ≈ Game 3. This should follow from the following two
observations
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• The one-way function fu has efficiently decidable images and the signer checks if yui is a valid image under
fu in step 007. Thus, according to our construction the witness xu is a valid. Note that according to our
construction the witness wui := (R,S, T, Vi, ssk) used in Game 1 is also valid. Since both witnesses are a
valid witness and because we have assumed that the ZAP Zu is non-uniformly witness-indistinguishable,
it follows that the success probability of U∗ in both games is the same (except for a negligible amount).

• The size-dependent homomorphic encryption scheme is non-uniformly weakly function-private. Thus,
the adversary U∗ does not notice the difference in the computation of c′i.

Unfortunately, we cannot apply both arguments directly. The reason is that these arguments are only
applicable as long as the games run in polynomial time. In the previous step, however, we have inverted the
one-way function and we have extracted the message from the commitment. Both steps, however, are not
computable in polynomial time. We handle this issue by carefully applying a hybrid argument.

The second difficulty results from the fact that the ciphertext may not contain the message that we have
extracted from the commitment. In this case, the success probability of the adversary U∗ would change as it
would notice the difference after receiving the encrypted signature. We handle this problem by derving a
contradiction to the soundness of the ZAP and the one-wayness of the function fs. Firstly, we prove that the
message in the commitment and the encryption are the same. Then, we apply the hybrid argument.

We now apply carefully a hybrid argument over all three games:

Game 1i: Perform the following modifications:

- For all iterations < i apply all changes from Game 1, 2, and 3.

- In iterations i on apply the modification from Game 1.

- For all iterations > i apply no changes (thus, it corresponds to Game 0).

Game 2i Apply the following changes:

- For all iterations < i apply all changes from Game 1, 2, and 3.

- In iterations i on apply the modification from Game 1 and 2.

- For all iterations > i apply no changes (thus, it corresponds to Game 0).

Game 3i Do the following modifications:

- For all iterations < i apply all changes from Game 1, 2, and 3.

- In iterations i on apply the modification from Game 1, 2, and 3.

- For all iterations > i apply no changes (thus, it corresponds to Game 0).

Now we argue that

Game 3(i−1) ≈ Game 1i: Follows as the only difference between both games are the modifications in Game 1
during the first execution.

Game 1i ≈ Game 2i: Follows from our assumption that the ZAP Zu is non-uniformly witness indistinguishable.

Game 2i ≈ Game 3i: The difference between Game 2i and Game 3i is that in the i-th iteration, in Game 3i we
replace c′i ← Eval(eki, Cssk,R, ci;Vi) (line 208) by σi ← Sign(ssk,mi;FR(mi)), c′i ← Eval(eki, Cσi , ci;Vi)
(lines 308, 308a). Assume for the moment that the following fact (∗) holds with overwhelming probability:
If line 208 is reached, then there exists a dki such that (eki, dki) is in the range of EncGen(1λ) and
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ci is in the range of Enc(eki,mi). Notice further that Cssk,R(mi) = σi = Cσi(mi) by construction.
Then non-uniform weak circuit privacy implies that Eval(eki, Cssk,R, ci;Vi) and Eval(eki, Cσi , ci;Vi) are
non-uniformly computationally indistinguishable. Since in Game 2i and Game 3i, after line 208 and 308,
respectively, only polynomial-time computations occur, this implies that Game 2i ≈ Game 3i.2

It is left to show that (∗) holds with overwhelming probability. Observe that line 208 is only reached
when Vs(msgsi , s

s
i , π

s
i ) = 1. Thus from the adaptive soundness of Zs it follows that ssi ∈ Ls with

overwhelming probability when line 208 is reached. Assume that ssi has a witness of the form (xs, Xu)
with non-negligible probability. Then with non-negligible probability, there are x′, X ′ such that
comxu = ComM (x′;X ′) and fs(x′) = ys. This leads to a contradiction: From Game 2i we can construct
a non-uniform adversary that breaks the non-uniform T2-one-wayness of fs as follows: Upon input of a
challenge y, it simulates Game 2i, using y for ys (instead of x← f(xs)). Then the adversary extract x′

from comxu . With non-negligible probability f(x′) = y2 = y. Extracting x′ takes time T1 · poly(λ) since
CM is extractable in time T1. Similarly, the operations introduced in line 106a take time T2 ·poly(λ) since
fu is invertible in time T2 and CM is extractable in time T1. Thus we have constructed an adversary
that runs in time T2 · poly(λ) and breaks the one-wayness of fs. This contradicts the T2-one-wayness
of fs. Thus a witness (xs, Xu) for ssi exists only with negligible probability. Since with overwhelming
probability, when line 208 is reached, ssi ∈ Ls. By definition of Ls, this implies that there is a witness
of the form (K,E,M,m, dk) for ssi . Hence (dk, eki) = EncGen(1λ;K) and c = Enc(eki,m;E) and
comm

i = ComM (m;M) for some K,E,M,m, dk. Since C is perfectly binding and since mi was extracted
from comm

i we have m = mi. Hence (∗) holds with overwhelming probability.

Thus Game 2i ≈ Game 3i.

Thus, Game 3(i−1) ≈ Game 3i and therefore Game 30 ≈ Game 3`. Since Game 0 = Game 30 and because
Game 3`= Game 3, it follows that Game 0 ≈ Game 3`.

Game 3⇒ Game 4. This game is identical to the prior one, but instead of committing to R and ssk, we commit
to an all zero string. Since the commitment scheme CR is T2 hiding, this modification changes the success

Game 4

401 comR ← ComR(0λ0λ0λ;T )

probability of U∗ only by a negligible amount and thus, Game 3 ≈ Game 4 and therefore Game 0 ≈ Game 4.

Game 4 ⇒ Game 5. In this game, we do not generate the sining key locally, but we build a forger B against
the signature scheme Sig. The difference to the above described games is that it uses its external signing
oracle in order to obtain the signature σi on the message mi. Here ŜigGen and Ŝign constitute a signing oracle.

Game 5

500 x, T, Vi, X
s
i ← {0, 1}λ (removed R,SR, SR, S)

501 svk← ŜigGen(1λ)svk← ŜigGen(1λ)svk← ŜigGen(1λ),msgs ← Vs(1λ), ys ← f(xs), comR ← ComR(R, ssk;T )
508 σi ← Ŝign(mi)σi ← Ŝign(mi)σi ← Ŝign(mi)

ŜigGen produces a verification key and Ŝign signs messages, but whenever a message is submitted that was
already signed, Ŝign returns the previously produced signature again.

2This is analogously to the proof of Lemma 5.2.
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Since F is a T2-pseudorandom function, and since R and S are used in Game 4 only in the arguments of
SigGen and Sign, it follows that Game 4 ≈ Game 5 and thus Game 0 ≈ Game 5.

Now, assume that the adversary U∗ wins the unforgeability game with non-negligible probability. Then,
since Game 0 ≈ Game 5, U∗ also wins with non-negligible in Game 5.

Then it returns ` + 1 pairs (mi, σi) such that mi 6= mj for all i 6= j and SigVrfy(vk,mi, σi) = 1 for all
i = 1, . . . , `+ 1. We denote by Q = (m1, . . . ,m`) the set of messages that have been asked to the external
signing oracle Ŝign. Since all messages are distinct there exists at least one message mj 6∈ Q. The forger B
outputs (mj , σj). Since SigVrfy(vk,mi, σi) = 1 for all i, we have in particular that the pair (mj , σj) verifies
and thus B succeeds with non-negligible probability. Since B runs in time T2 · poly(λ), this contradicts the
assumption that Sig is T2-unforgeable. This concludes the proof. �

Proof of Blindness. We sketch the main idea of the blindness proof and give a formal proof afterwards.
The starting point of our proof is a game that corresponds to the blindness game. We then change the step
by step such that at the entire transcript is independent of the message. The main steps in the proof are the
following:

• We apply a complexity leveraging argument. This technique allows us to invert the one-way function fs

and also to extract the (R, ssk) from the commitment comR.

• We then send the encryption of an all zero string to the signer and we sign the message locally using ssk.

We show that the success probability of the adversary against the blindness remains the same (except for a
negligible amount) because:

• the ZAP Zs remains valid as it now uses the previously computed preimage xs of fs as a witness.

• the size-dependent homomorphic encryption scheme is CPA secure and thus, the attacker cannot tell
the difference;

Our modifications, however, result in a protocol where the transcript is independent of the message. This
implies that the success probability of the adversary is only negligible bigger than 1/2.

Theorem 5.3 Suppose that fs, fu, and F are functions, CM , CR two commitment schemes, Sig a signature
scheme, Zs, Zu two ZAPs, and Enc size-dependent homomorphic encryption scheme such that all primitives
satisfy Condition 3. Then the blind signature scheme as defined in Section 5.1 is blind.

Proof. We prove this theorem via a sequence of games. It is understood that the adversary S∗ keeps some
state during the blindness experiment. The first game Game 0 corresponds to the blindness game.
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Game 0

000 K0,K1, X
u
0 , X

u
1 ,M0,M1, E0, E1, x

u
0 , x

u
1 ← {0, 1}λ, b← {0, 1}

001 (vk,m0,m1)← S∗(1λ) with vk = (svk, ys,msgs, comR); if ys 6∈ image(fs) then abort

002 (ek0, dk0)← EncGen(1λ;K0) (ek1, dk1)← EncGen(1λ;K1)

003 comxu
0 ← ComM (0λ;Xu

0 ) comxu
1 ← ComM (0λ;Xu

1 )

004 comm
0 ← ComM (m0;M0) comm

1 ← ComM (m1;M1)
005 c0 ← Enc(ek0,m0;E0) c1 ← Enc(ek1,m1;E1)
006 ss0 := (ys, ek0, c0, com

m
0 , com

xu
0 ) ss1 := (ys, ek1, c1, com

m
1 , com

xu
1 )

007 ws0 := (K0, E0,M0,m0, dk0) ws1 := (K1, E1,M1,m1, dk1)
008 πs0 ← Ps(msgs, ss0, w

s
0) πs1 ← Ps(msgs, ss1, w

s
1)

009 yu1 ← fu(xu0) yu1 ← fu(xu1)
010 msgu0 ← Vu(1λ) msgu1 ← Vu(1λ)

011 ((c′b, π
u
b , com

xs

b ), (c′
b̄
, πu
b̄
, comxs

b̄
))← S∗((ekb, cb, πsb , comm

b , com
xu

b ,msgub , y
u
b ),

(ekb̄, cb̄, π
s
b̄
, comm

b̄
, comxu

b̄
,msgu

b̄
, yu
b̄
))

012 su
′

0 := (svk, comR, c0, c
′
0, ek0, com

xs
0 , y

u
0 ) su

′
1 := (svk, comR, c1, c

′
1, ek1, com

xs
1 , y

u
1 )

013 if Vu(msgu0 , s
u′
0 , π

u
0 ) = 1 then if Vu(msgu0 , s

u′
1 , π

u
1 ) = 1 then

014 σ0 ← Dec(dk0, c
′
0) else σ0 ← ⊥ σ1 ← Dec(dk1, c

′
1) else σ1 ← ⊥

015 if SigVrfy(vk,mi, σi) 6= 1 for i = 0, 1 set σ0 ← ⊥ and σ1 ← ⊥
016 b′ ← S∗(σ0, σ1)
017 Return 1 iff b = b′

Game 0 ⇒ Game 1. Game 1 is identical to Game 0 except for the following modifications. In Step 101a
we invert the one-way function fs and we then commit to the preimage xs (instead of 0λ). Obviously, the

Game 1

101 (vk,m0,m1)← S∗(1λ) with vk = (svk, ys,msgs, comR); if ys 6∈ image(f s) then abort
101a xs

′ ← fs
−1
(ys)xs

′ ← fs
−1
(ys)xs

′ ← f s
−1
(ys)

103 comxs
′

0 ← ComM (xs
′

xs
′

xs
′
;Xu

0 ) comxs
1 ← ComM (xs

′
xs
′

xs
′
;Xu

1 )

inversion of the one-way function fs cannot be done efficiently. This operation, however, is possible applying
Lemma 5.2 and the fact that the commitment scheme CM is non-uniformly hiding. Recall that Lemma 5.2
shows that every non-uniform hiding commitment scheme preserves this property even is the adversary may
perform an unbounded computation before receiving the commitment. Observe that the game aborts if the ys

is not a valid image and assume in the following that ys is a valid image of fs. But if ys is a valid image,
then we obtain a valid preimage xs′ . Since CM is non-uniformly hiding, it follows that Game 0 ≈ Game 1.

Game 1 ⇒ Game 2. Game 2 differs from Game 1 in the step where the user computes the proof πs of the
ZAP Zs. In this game, we use the previously extracted preimage xs of the one-way function fs as a witness.
It follows from our construction that both witnesses wsi are valid in game Game 1. Moreover, as discussed in
the previous game, the value xs is a valid preimage of ys and thus it is an alternative witness for the ZAP Zs.
Since the ZAP Zs is non-uniformly witness-indistinguishable it follows that the success probability of the
adversary S∗ remains the same (except for a negligible amount). Thus, Game 2 ≈ Game 3.

Game 2 ⇒ Game 3. In this game, we modify the way we compute the commitment comm. That is, instead
of committing to the message mi, we commit to 0λ. According to our assumption that the commitment
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Game 2

206 ss0 := (ys, ek0, c0, com
m
0 , com

xu
0 ) ss0 := (ys, ek1, c1, com

m
1 , com

xu
1 )

207 ws0 := (xs
′
, Xu

0 )(xs
′
, Xu

0 )(xs
′
, Xu

0 ) ws1 := (xs
′
, Xu

1 )(xs
′
, Xu

1 )(xs
′
, Xu

1 )
208 πs0 ← Ps(msgs, ss0, w

s
0) πs1 ← Ps(msgs, ss1, w

s
1)

Game 3

304 comm
0 ← ComM (0λ0λ0λ;M0) comm

1 ← ComM (0λ0λ0λ;M1)

scheme is non-uniformly hiding, it follows this modification changes the success probability of S∗ only by a
negligible amount, and thus, Game 2 ≈ Game 3.

Game 3 ⇒ Game 4. This game is identical to the prior one, but in this game we extract the values R
and ssk from the commitment comR. Since R and ssk are never used and ComR−1

has no side-effects,

Game 4

401b (R, ssk)← ComR
−1

(comR)(R, ssk)← ComR
−1

(comR)(R, ssk)← ComR
−1

(comR)

Game 3 = Game 4.

Game 4 ⇒ Game 5. In this game, instead of decrypting c′i to get the signature σi, we instead just sign the
extracted message mi.

Assume for the moment that the following fact (∗) holds with overwhelming probability: If the assignment
σi ← Sign(ssk,mi;FR(mi)) in line 514 is reached, then there exist values Ri, sski such that (svk, sski) is the
range SigGen(1λ) and c′i is the range of Eval(eki, CR,ssk, ci) and comR in the range of ComR((Ri, sski)). Then,

since CR is perfectly binding, ComR
−1

(comR) returns (R, ssk) = (Ri, sski). By the perfect correctness of Enc
and the definition of CR,ssk, this implies that computing Dec(dki, c′i) and Sign(ssk,mi;FR(mi)) yields the
same result. Thus, if (∗) holds with overwhelming probability, Game 4 ≈ Game 5.

It is left to show that (∗) holds with overwhelming probability. Observe that the assignment σi ←
Sign(ssk,mi;FR(mi)) is only reached when Vu(msgu, su

′
, πui ) = 1. Thus, from the adaptive soundness of

Zu it follows that sui ∈ Lu with overwhelming probability. Assume that sui has a witness of the form
(xu, Xs) with non-negligible probability. Then with non-negligible probability, there are x′, X ′ such that
comxs = ComM (x′;X ′) and fu(x′) = yui . This leads to a contradiction: From Game 5 we can construct
a non-uniform adversary that breaks the non-uniform T2-one-wayness of fu as follows: Upon input of a
challenge y, it simulates Game 5, using y for yui (instead of yui ← f(xui )). Then the adversary extracts x′

from comxs such that with non-negligible probability fu(x′) = yui . Extracting x
′ takes time T1 · poly(λ) since

CM is extractable in time T1. Notice, however, that the steps introduced in lines 101a and 401b may take
exponential time. However, these steps occur before the y = yui is first accessed. Thus we have constructed
an adversary that first runs an unbounded amount of time, then inputs the challenge y, and then runs in
time T1 · poly(λ) and finds a preimage of y under fu with non-negligible probability. Since the result of the
unbounded precomputation can be hardcoded into a non-uniform adversary (analogous to Lemma 5.2), such
an adversary breaks the T1-one-wayness of fu. Thus (∗) holds with overwhelming probability.

It follows Game 4 ≈ Game 5.
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Game 5

514 σ0 ← Sign(ssk,m0;FR(m0)m0;FR(m0)m0;FR(m0)) else σ0 ← ⊥ σ1 ← Sign(ssk,m1;FR(m1)m1;FR(m1)m1;FR(m1)) else σ1 ← ⊥

Game 5 ⇒ Game 6. In this game, instead of sending an encryption of mi, we send an encryption of 0λ.
Since after line 605, only polynomial-time computations occur, and since dk0, dk1 are never used, from the

Game 6

605 c0 ← Enc(ek0,0
λ0λ0λ;E0) c1 ← Enc(ek1,0

λ0λ0λ;E1)

non-uniform IND-CPA security of Enc it follows that Game 5 ≈ Game 6.
It follows Game 0 ≈ Game 6.
It is easy to see that in Game 6, the view of S∗ is independent of b. (The signatures σi do not depend on

the values sent by S∗.) Thus in Game 6, the probability that S∗ guesses b′ = b is 1
2 . Hence in Game 6, that

probability is negligibly close to 1
2 . Thus our blind signature scheme satisfies blindness. �
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