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Abstract

It is impossible to securely carry out general multi-party computation in arbitrary network
contexts like the Internet, unless protocols have access to some trusted setup. In this work we
classify the power of such trusted (2-party) setup functionalities. We show that nearly every
setup is either useless (ideal access to the setup is equivalent to having no setup at all) or else
complete (composably secure protocols for all tasks exist in the presence of the setup). We
further argue that those setups which are neither complete nor useless are highly unnatural.

The main technical contribution in this work is an almost-total characterization of com-
pleteness for 2-party setups. Our characterization treats setup functionalities as black-boxes,
and therefore is the first work to classify completeness of arbitrary setup functionalities (i.e.,
randomized, reactive, and having behavior that depends on the global security parameter).
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1 Introduction

When a protocol is deployed in a vast network like the Internet, it may be executed in the presence
of concurrent instances of other arbitrary protocols with possibly correlated inputs. A protocol
that remains secure in such a demanding context is called universally composable. This security
property is clearly highly desirable, so it is of utmost importance to understand how it can be
achieved.

Unfortunately, the news is bleak for those hoping to achieve universal composability. The
requirement is simply too demanding to be achieved for every task. Canetti’s UC framework [CO5]
provides the means to formally reason about universal composability in a tractable way, and it is
widely regarded as the most realistic model of security for protocols on the Internet. A sequence of
impossibility results [CFOIl [CKLO6] culminated in a complete characterization for which tasks are
securely realizable in the UC framework [PRO§|. Indeed, universal composability is impossible for
almost all tasks of any cryptographic interest, under any intractability assumption.

For this reason, there have been many attempts to slightly relax the UC framework to per-
mit secure protocols for more tasks, while still keeping its useful composition properties. Many
of these variants are extremely powerful, permitting composably-secure protocols for all tasks; for
example: adding certain trusted setup functionalities [CFOT] [CLOS02] BCNPO4], [cPsO7, [GO07), K07,
1PS08, MPRI0], allowing superpolynomial simulation [PO3], PS04, BSO5, MMY06, [CLPT0], assuming
bounded network latency [KLP05], considering uniform adversaries [LPV(9], and including certain
global setups [CDPW07], to name a few (for a more comprehensive treatment, see the survey by
Canetti [COT7]). Other variants of the UC framework turn out to be no more powerful than the
original framework; for example, adding certain setup functionalities [PROS&|, KLI1] or global se-
tups [CDPWOT], and requiring only self-composition rather than universal composition [LO4]. A
natural question is, therefore: under what circumstances can universal composability be achieved?

1.1 Our Results

In this work we study the power of 2-party trusted setups. In other words, given access to a
particular trusted setup functionality (e.g., a common random string functionality), what tasks
have UC-secure protocols? In particular, two extremes are of interest. First, we call a trusted
setup F useless if having ideal access to F is equivalent to having no trusted setup at all. More
precisely, F is useless if it already has a UC-secure protocol in the plain (no trusted setups) model.
A complete characterization for such functionalities was given by Prabhakaran & Rosulek [PROS].

At the other extreme, we call a trusted setup F complete if every well-formed task has a
UC-secure protocol given ideal access to F. As mentioned above, many setups are known to
be complete (e.g., a common random string functionality), but the methods for demonstrating
their completeness have been quite ad hoc. Our major contribution is to give a new almost-total
characterization for when a 2-party trusted setup is complete. Our condition is relatively easy to
check for a candidate setup, and it applies uniformly to completely arbitrary functionalities (i.e.,
possibly randomized, reactive, with behavior depending on the security parameter).

When our new classification is compared with the existing characterization of uselessness, we
see that nearly every 2-party setup is either useless or complete. We can explicitly identify
those trusted setups with intermediate power, and we argue that such setups are highly unnatural.

Outline. We revisit the complete characterization of uselessness from Prabhakaran & Rosulek
[PROS]. In that work, a property of functionalities called splittability was introduced, and it was
proved that F is useless if and only if F is splittable. To get an idea of the splittability definition,



imagine a party accessing two independent instances of a functionality F — one in the role of Alice
and the other as Bob. Then, informally, F is splittable if there is a “synchronization strategy” for
this party to make these independent instances together appear like a single instance.

Our characterization is based not on splittability, but on a natural variant that we call strong
unsplittability (defined formally in . Briefly, F is strongly unsplittable if there is a
single way for reliably distinguishing a true single instance of F from any “synchronization strategy”
carried out between two instances of F. Importantly, both of these splittability definitions apply
to arbitrary functionalities in the UC framework; in particular, no special form is required of the
functionality. Then our main technical contribution is the following:

Main Theorem (informal). If F is strongly unsplittable, then F is complete.

A precise statement of the theorem is given in[Section 3} it involves a slight technical modification to
the strong unsplittability defined above. Our completeness theorem is proved under the assumption
that there exists a semi-honest secure oblivious transfer protocol (the SHOT assumption). This
intractability assumption is necessary for a completeness characterization such as ours .

To prove that a functionality F is complete, it suffices to show that there is a UC-secure protocol
for bit commitment, given ideal access to F. This follows from the well-known result of Canetti
et al. [CLOSO2|] that commitment is complete, under the SHOT assumption. We leverage strong
unsplittability to construct a commitment protocol in two steps. Recall that the simulator for
a UC-secure commitment protocol has two main tasks: to extract the committed value from a
corrupt sender, and to give an equivocal commitment to a corrupt receiver. As the first step in our
proof, we use the strong unsplittability property to construct a commitment protocol that satisfies
the UC-equivocation property but is otherwise only standalone secure (Sections . Then in
we “compile” this intermediate protocol into a fully UC-secure commitment protocol.

In we show that a different slight variant of strong unsplittability is also necessary
for completeness. Thus we provide an almost-total characterizatiorﬂ of which setups are complete.
We see that the only setup functionalities whose power is unclassified are those which are neither
splittable nor (basically) strongly unsplittable. As the names suggest, the gap between these two
properties is narrow. In [Section 3| and [Appendix A] we argue that functionalities in this gap are
highly unnatural. Thus, we informally summarize the power of trusted setups by saying that every
“natural” functionality is either useless or complete.

Our notion of completeness. Many prior completeness results place restrictions on how pro-
tocols are allowed to access a setup functionality. A common restriction is to allow protocols to
access only one instance of the setup — typically only at the beginning of a protocol. In these cases,
we say that the protocols have only offline access to the setup. Additionally, some completeness
results construct a multi-session commitment functionality from such offline access to the setup,
modeling a more globally available setup assumption.

In contrast, the completeness results in this work are of the following form. We say that a
functionality F is a complete setup if there is a UC-secure protocol for the ideal (single-session)
commitment functionality in the F-hybrid model. This corresponds to the complexity-theoretic
notion of completeness, under the reduction implicit in the conventional UC security definition.
As is standard for protocols in the F-hybrid model, we place no restrictions on how or when
protocols may access F or how many instances of F they may invoke. However, we point out
that completeness for offline access can be achieved by simply using our construction to generate a
common random string in an offline phase, then applying a result such as [CLOS02].

!We make every effort to avoid cumbersome phrases like “[almost-]Jcomplete characterization of completeness.”



1.2 Related Work

In a similarly motivated work, Maji, Prabhakaran, and Rosulek [MPRI0] showed that — among
deterministic functionalities whose internal state and input/output alphabets were finite — every
functionality is either useless or complete. Their approach relied heavily on deriving combinatorial
criteria for such functionalities, expressed as a finite automata, whereas the statement of our clas-
sification treats functionalities as black-boxes and therefore applies to essentially any functionality
that can be expressed in the UC framework. Another closely related work is that of Lin, Pass, and
Venkitasubramaniam [LPV09], who develop a framework that unifies many previously-known com-
pleteness results. Their completeness condition requires one to develop a “puzzle interaction” with
an explicit trapdoor and satisfying a statistical simulation property. In contrast, our completeness
result requires an interaction needing only a distinguisher. Furthermore, since our work focuses
exclusively on setup functionalities (and not more general relaxations of the UC framework), our
criterion is much less open-ended and arguably easier to apply to a candidate setup.

Dichotomies in the cryptographic power of functionalities have been demonstrated previously
in other security settings or restricted to small classes of functionalities [CK91], BMM99, [HNRROG),
MPRI0), [KI1]; however ours is the first work to consider the full range of arbitrary functionalities
allowed by the UC framework. In particular, completeness of reactive functionalities was previously
considered only in [MPRI0], and only for a very restricted class of reactive functionalities.

2 Preliminaries

A function f: N — [0,1] is negligible if for all ¢ > 0, we have f(n) < 1/n¢ for all but finitely many
n. A function f is noticeable if there exists some ¢ > 0 such that f(n) > 1/n¢ for all but finitely
many n. We emphasize that there exist functions that are neither negligible nor noticeable (e.g.,
f(n) =nmod 2). A probability p(n) is overwhelming if 1 — p(n) is negligible.

2.1 Universal Composability

We assume some familiarity with the framework of universally composable (UC) security; for a
full treatment, see [C05]. We use the notation EXEC[Z, F,m, A, k] to denote the probability that
the environment outputs 1, in an interaction involving environment Z, a single instance of an
ideal functionality J, parties running protocol 7, adversary A, with global security parameter k.
All entities in the system must be PPT interactive Turing machinesE] We consider security only
against static adversaries, who corrupt parties only at the beginning of a protocol execution. Tgummy
denotes the dummy protocol which simply relays messages as-is between the environment and the
functionality.

A protocol 7 is a UC-secure protocol for functionality F in the G-hybrid model if for all adver-
saries A, there exists a simulator S such that for all environments Z, we have that ‘EXEC[Z , G , 7y A, k] —

EXEC|Z, F, Tdummy, S, k:” is negligible in k. Here, G denotes the multi-session version of G , so that
the protocol 7 is allowed to access multiple instances of G in the G-hybrid model. The former
interaction (involving 7 and G) is called the real process, and the latter (involving 7gymmy and
F) is called the ideal process.

We consider a communication network for the parties in which the adversary has control over
the timing of message delivery. In particular, there is no guarantee of fairness in output delivery.

2It is challenging to formulate a definition of polynomial runtime for single components of a complex interaction.
See [HUMQOY] for a full discussion of the issues involved.



2.2 Class of Functionalities

Our results apply to essentially the same class of functionalities considered in the feasibility result
of Canetti et al. [CLOS02]. First, the functionality must be well-formed, meaning that it ignores its
knowledge of which parties are corrupt.

Second, the functionality must be represented as a (uniform) circuit family {Cy | k € N},
where Cj, describes a single activation of the functionality when the security parameter is kE] For
simplicity, we assume that C}, receives k bits of the functionality’s internal state (including random
tape), a k-bit input from the activating party, and the identity of the activating party as input,
and then outputs a new internal state and k bits of output to each party (including the adversary).
Note that all parties receive outputs; in particular, all parties are informed of every activation. We
focus on 2-party functionalities and refer to these parties as Alice and Bob throughout.

Finally, we require that the functionality do nothing when activated by the adversaryE]

2.3 The SHOT Assumption and Required Cryptographic Primitives

The SHOT assumption is that there exists a protocol for (%) -oblivious transfer that is secure against
semi-honest PPT adversaries (equivalently, standalone-secure, by standard compilation techniques).
From the SHOT assumption it also follows that there exist standalone-secure protocols for every
functionality in the class defined above [GMWS&T. [CLOS02]. We require a simulation-based definition
of standalone security, equivalent to the restriction of UC security to environments that do not
interact with the adversary during the execution of the protocol.

The SHOT assumption implies the existence of one-way functions [IL89], which in turn imply the
existence of standalone-secure statistically-binding commitment schemes [N91] and zero-knowledge
proofs of knowledge [GMR&5, BGIO3] that we use in our constructions. One-way functions also
imply the existence of non-malleable secret sharing schemes (NMSS) [[PSO8]. An NMSS
consists of two algorithms, Share and Reconstruct. We require that if («, 5) < Share(z), then the
marginal distributions of o and /5 are each independent of x, but that Reconstruct(a, 8) = z. The
non-malleability property of the scheme is that, for all z and PPT adversaries A:

Pr |(a, B) < Share(z); 8’ + A(a,x); B # 3 : Reconstruct(a, ') # L| is negligible.

Furthermore, an NMSS has the property that given «, 8, x, and 2/, where («, 3) < Share(z), one
can efficiently sample a random S’ such that Reconstruct(a, 8') = 2.

3 Splittability and Our Characterization

Our result is based on the alternative characterization of UC-realizability called splittability, first
introduced by Prabhakaran & Rosulek [PROS|]. They showed that splittability completely char-
acterizes uselessness (i.e., the existence of a UC-secure protocol in the plain model). Our main
result is to show that a natural variant of the splittability condition also provides an almost-total
characterization of completeness.

3This requirement is not without loss of generality (see , but is also implicit in [CLOS02].

“In [CLOS0Z], this convention is also used. However, in the context of a feasibility result such as theirs, it is
permissible (even desirable) to construct a protocol for a stronger version of F that ignores activations from the
adversary. By contrast, in a completeness result, we must be able to use the given F as-is. Since we cannot reason
about the behavior of an honest interaction if an external adversary could influence the setup, we make the requirement
explicit.



3.1 Splittability and the Statement of our Main Theorem

Intuitively, a two-party functionality F is splittable if there is a strategy to coordinate two inde-
pendent instances of F, so that together they behave as a single instance of 7. More formally, let

T be an interactive Turing machine, and define F/ .. to be the 2-party functionality which behaves

split
as follows (Figure 1b)):

‘FZ;;Iit internally simulates two independent instances of F, denoted F;, and Fg. .7-"57;“,( associates

its input-output link for Alice with the Alice-input/output link of F7, and similarly the Bob-
input/output link with that of Fg. ]-';g“t also internally simulates an instance of T, which is
connected to the Bob- and adversary-input/output links of F; and the Alice- and adversary-
input /output links of Fgr. T receives immediate delivery along its communication lines with Fp,
and Fr. The ]:Z,;Iit functionality does not end its activation until all three subprocesses cease
activating. Finally, the instances T, Fr, and Fgr are each given the global security parameter
which is provided to .7-";";“,(. We say that T is admissible if fg;lit is a valid PPT functionality. For
an environment Z, we define

Asplit(‘tzv f> Ta k) = ‘EXEC[Za J_-.a Tdummy -'407 k] - EXEC[Za fg,;liu Tdummy AO» k] ‘7

where Ay denotes the dummy adversary that corrupts no one.

(a) F functionality (b) f;gﬁt functionality (c) L-splittability variant

Figure 1: Interactions considered in the splittability definitions. Small “a” and “b” differentiate a
functionality’s communication links for Alice and Bob, respectively.

Definition 1 ([PROS]). Call an environment suitable if it does not interact with the adversary
except to immediately deliver all outputs from the functionalityﬁ

Then a functionality F is splittable if there exists an admissible T such that for all suitable
environments Z, Nepiie(Z,F, T, k) is negligible in k.

Splittability provides a complete characterization of uselessness:

Theorem 2 ([PROS]). Call a functionality useless if it has a (non-trivial) UC-secure protocol in
the plain model. Then F is useless if and only if F is splittable.

Our classification of complete functionalities is based on the following variant of splittability:

Definition 3. A functionality F is strongly unsplittable if there exists a suitable, um’forvrﬁ
environment Z such that for all admissible T, Agpiit(Z,F, T, k) is noticeable in k.

5The restriction on delivering outputs is analogous to the restriction to so-called “non-trivial protocols” in [CKLOG],
which is meant to rule out the protocol which does nothing. Similarly, this definition of splittability rules out the
trivial splitting strategy 7 which does nothing.

5Eventually in our result, this environment is used as a subroutine in a protocol. In the UC framework, protocols
are typically restricted to be uniform machines, but if this restriction is relaxed then we can allow Z in this definition
to also be non-uniform.



Ideally, our main result would be that every strongly unsplittable functionality is complete.
However, imagine a protocol designed to access an ideal instance of F in a way that mimics the
splittability interaction, so that F’s strong unsplittability can be applied in the security proof. In
a protocol, each activation of F is decoupled from everything else; whereas in the splittability inter-
action, the three sub-components of ]-";gnt all execute as one atomic action from the environment’s
point of view. This technical complication requires us to consider the following slightly stronger

definition (see also the discussion in [Section 4.1)):

If in ]-"STp“t we let T receive the internal state of F, (resp. Fr) after every activation and before
the first activation , then we obtain the notions of L-splittability and L-strong-
unsplittability (resp. R-splittability, R-strong-unsplittability). While this difference seems like a
significant advantage for 7, we emphasize that T is only allowed read-only access to the internal
state of Fr, (resp. Fr). In fact, most natural functionalities that are strongly unsplittable also
appear to be also either L- or R-strongly-unsplittability. For example, the 3 notions are equivalent
for the standard formulation of secure function evaluation (SFE) functionalities (see[Appendix A.1]).
As another example, the ideal commitment functionality Feom is R-splittable (assuming we identify
Alice as the sender), since the sender already knows the entire internal state of Feom at all times.
We can now formally state our main result in terms of these splittability notions:

Main Theorem (formal). F is complete if the SHOT assumption is true and any one of the
following conditions is true:

1. F s L-strongly-unsplittable or R-strongly-unsplittable, or

2. F is strongly unsplittable and L-splittable and R-splittable, and at least one of the T machines
from the L- and R-splittability conditions is uniform

To show that F is complete, we show that there is a UC-secure commitment protocol in the F-
hybrid model. Then the completeness of F follows from the well-known completeness of the ideal
commitment functionality Feom [CLOS02]. We construct such a commitment protocol in two stepsﬁ
First, we use F to construct an intermediate protocol we call a UC-equivocal commitment (we do
so in for case 1, and in for case 2 of the main theorem). Then in we
prove that these UC-equivocal commitment protocols can be used to construct a fully UC-secure
commitment protocol.

3.2 Interpreting Splittability & Strong Unsplittability

In we show that the previous completeness results involving setups falling within the
class of functionalities we consider can all be understood using our new characterization, by showing
that the setup in question is L- or R-strongly-unsplittable.

There is a gap in our understanding of functionalities, consisting of functionalities which are
neither splittable nor strongly unsplittable; and indeed, there exist (admittedly contrived) func-
tionalities in that gap which are neither useless nor completeﬂ We give concrete examples of such
functionalities in but briefly describe the two primary reasons a functionality can
fall into this gap:

"We can allow both 7 machines to be non-uniform if we permit UC protocols to be non-uniform.

8For convenience we describe our constructions as single-bit commitment protocols, but all are easily extended to
multi-bit constructions by letting the underlying standalone-secure commitment protocol be multi-bit.

9There is also an apparent gap corresponding to strongly unsplittable functionalities which are neither L-splittable
nor L-strongly-unsplittable, etc. However, we are unsure whether such functionalities exist.



e A functionality’s behavior may fluctuate in an unnatural way with respect to the security
parameter. This may force every environment’s distinguishing probability in the splittability
definition to be neither negligible (as required for splittability) nor noticeable (as required for
strong unsplittability)ET] An analogous gap also appears in an otherwise complete dichotomy
of Harnik et al. [HNRROG]. Such fluctuating behavior could be explicitly linked to the security
parameter (say, in a functionality that implements coin-tossing for even values of the security
parameter and does nothing for odd values), but it can also manifest in a functionality whose

code ignores the security parameter (an example is given in [Appendix A.2)). Thus it would
not suffice to restrict our result to functionalities whose code ignores the security parameter.

e Interpret the splittability definitions as a 2-party game between 7 and Z. Then splittability
corresponds to a winning strategy for 7 (i.e., a fixed 7 which fools all Z), and strong un-
splittability corresponds to a winning strategy for Z (i.e., a fixed Z which detects all 7). Yet
some functionalities may not admit winning strategies for either player. An example is given
in of such a functionality, which essentially gives an advantage to whichever
player can supply a longer input. However, that example is outside the class of functionalities
considered in this work (we require a functionality to have an a priori upper bound on the
size of inputs it accepts from the parties). We do not know whether similar examples exist
within the scope of our results.

We argue that any “natural” functionality will be either splittable or strongly unsplittable (similarly,
either L-splittable or L-strongly-unsplittable, and so on). If this is indeed a correct interpretation,
then when combined with the characterization of uselessness from [PROS|, we have that every
“natural” functionality is either useless or complete, under the SHOT assumption.

4 UC-Equivocal Commitment from L/R-Strong-Unsplittability

In this section we show that any R- (or, by symmetry, L-) strongly-unsplittable functionality F
can be used to construct a certain kind of commitment protocol. The resulting protocol only
has a UC simulation in the case where the receiver is corrupt (i.e., an equivocating simulator).
Its other properties are of the standalone-security flavor. We call such a protocol a UC-equivocal
commitment. Later in we show that such a protocol can be transformed into a fully
UC-secure protocol for Feom. From this it follows that F is complete.

4.1 Overview

In a UC-equivocal commitment, an honest sender must be able to convince the receiver to accept
its decommitment in the reveal phase. Similarly, the simulator must also be allowed to convince
the receiver to accept a (possibly equivocated) decommitment. All this must be possible while still
preventing a cheating sender (in the real-process interaction) from forcing the receiver to accept an
equivocated decommitment.

We use strong unsplittability to give an honest sender and the simulator an advantage over
a cheating sender. The commit phase of our UC-equivocal protocol is essentially just a commit-
ment under a statistically binding, standalone-secure commitment protocol. The key part of our
protocol’s reveal phase is the following subprotocol:

10WWe note that this gap may be essentially mitigated by considering relaxed notions of infinitely-often splittability
and infinitely-often strong unsplittability, which yield corresponding notions of infinitely-often useless and infinitely-
often complete.



Virtual-F subprotocol. This subprotocol is essentially a standalone-secure protocol for F. The
subprotocol is nominally in virtual-F mode, where it carries out activations of a virtual instance
of F, taking inputs and giving outputs to/from the two parties.

However, the subprotocol has an additional mode which we call its trapdoor mode. Let C
denote the transcript of the standalone commitment in the commit phase, and o denote the (non-
interactive) decommitment value. Suppose the sender is trying to decommit to the value b. Both
parties provide C and b as input to the subprotocol, and the sender further provides an input o. If
o is a valid opening of C to b, then the subprotocol allows the sender to bypass the virtual instance
of F. Namely, the sender can directly obtain the receiver’s inputs to the virtual F, and the sender
can force outputs of its choice for the receiver on behalf of the virtual F.

We use the virtual-F subprotocol in the following way. Suppose F is strongly unsplittable,
with Z% the fixed distinguishing environment guaranteed from the definition. The parties access
an ideal instance of F, which we denote Fiqea to avoid confusion. The parties also run the virtual-F
subprotocol. The receiver simulates an instance of Z%. Conceptually, these components correspond
to the splittability interaction, where Figeal corresponds to Fr,, the virtual F corresponds to Fg,
and the receiver intuitively corresponds to a machine 7. We observe the following properties

(summarized in [Figure 2)):

honest receiver simulator <. . receiver
sender \ 2
(b) (a) ~a ~a
subprot subprot
CF F
v (aN\(b)
trapdoor virtual-F
mode mode

(a) An honest sender can bypass the vir- (b) The simulator can bypass the

tual F using the subprotocol’s trap- ideal F by nature of the simula-
door mode. tion.

cheating receiver

sender

//w) G~
T subprot @

(a) (b)

virtual-F
mode

(c) A cheating sender cannot bypass
either instance of F.

f

Figure 2: Intuition behind the reveal phase of gy com

; and its security properties.
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e A sender who can open the standalone commitment C to the claimed value b can activate
the trapdoor mode to “bypass” the virtual F. Then by relaying inputs/outputs through the
trapdoor mode of the subprotocol between Figeas and the receiver (Z%), it can achieve the
effect of Z7 interacting with a single instance of F.

e A simulator by rule is allowed to bypass the ideal instance Figea. By routing inputs/outputs
around Figeal between the receiver (Z%) and the virtual F instance, it can also achieve the
effect of Z% interacting with a single instance of F. Because the virtual-F subprotocol is
operating in its normal virtual-F mode, the standalone commitment C' does not need to be
openable to the claimed value b.

e A cheating sender cannot bypass the Figea instance, as it must operate within the real-process
interaction. If the standalone commitment C' cannot be opened to the claimed value b, then
the sender cannot activate the trapdoor mode of the subprotocol. Intuitively, the sender is

forced to play the role of a synchronizing strategy 7 in the definition of ]-';;Ht.

The definition of Z% is that it can distinguish between the two cases of interacting with a single
instance of F, or interacting with .7-'57;“,( for any 7. The distinguishing bias of Z7% is guaranteed to be
noticeable, so by repeating this basic interaction a polynomial number of times Z% can distinguish
with overwhelming probability. The receiver will therefore accept the decommitment if Z% believes
it is interacting with instances of F rather than instances of ]-"Z;Ht.

Technical considerations. We outline some important technical considerations that affect the
design of our UC-equivocal commitment protocol. First, our virtual-F subprotocol only has stan-
dalone security, so to apply any of its properties may require using a rewinding simulation. If
the virtual-F subprotocol is ongoing while the parties interact with Figeal, or while the receiver
is executing its Z% instance, then these instances may also be rewound. Since rewinding Z% and
Fideal would jeopardize our ability to apply the splittability condition, we let our subprotocol only
perform a single activation of the virtual F per execution. We allow F to be reactive, so we need a
way to maintain the internal state of the virtual F between activations. For this purpose we have
the virtual-F subprotocol share F’s internal state between the two parties using a non-malleable
secret sharing (NMSS) scheme, which was proposed for exactly this purpose [IPSOS].

The last important technicality is one we alluded to earlier. The activations of the virtual-F
subprotocol and of Figea are decoupled, meaning that the receiver can observe the relative timings
of these activations. This differs from the splittability interaction, in which successive activations
of 1, and Fg within ]:Z,;“t are atomic from the environment’s perspective. This difference makes
“bypassing” one of the instances of F (Figeal Or the virtual F) more subtle. For instance, when the
receiver gives an input to the virtual-F subprotocol, the sender must obtain this input, then make
a “round trip” to Figeal to obtain the output that it forces to the receiver through the virtual-F
subprotocol. For this reason, and to avoid having the subprotocol running while Figea is accessed,
we split such an activation (initiated by the receiver activating the virtual F) of the virtual F into
two phases (see [Figure 3c,d).

Similarly, consider the case where the simulator is attempting to “bypass” Figeal- In the real-
process interaction, every activation of Figes is instantaneous, so the simulator must make such
activations appear instantaneous as well. In particular, the simulator has no opportunity to make
a “round-trip” to the virtual-F subprotocol to determine the appropriate response to simulate on
behalf Figea). The only way for the simulator to immediately give the correct response is if it already
knows the internal state of the virtual F (see . For this reason, we let the subprotocol
give this information to the sender, even in its normal virtual-F mode. Since this internal state
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information is also available to a cheating sender, we require F to be not just strongly unsplittable
but R-strongly-unsplittable.

4.2

The Virtual-F Subprotocol

We specify the behavior of our virtual-F subprotocol in the form of an ideal functionality:

The functionality fvirt_l for simulating activations of F, with trapdoor mode. Let
NMSS = (Share, Reconstruct) be a non-malleable secret sharing scheme that can support mes-
sages of length 2k, and let COM be a standalone-secure, plain-model commitment protocol with
non-interactive opening phase. Then fvirt_l is the non-reactive, 2-party ideal functionality defined
as follows, with global security parameter k:

1.

Fuirt-1 waits for an input of the form (a, x, ¢, b, C,0,S7) from the sender, and an input of the
form (a/,y,b’,C’, S3) from the receiver.

. If S7 and S5 are not both empty and Reconstruct(Si, S2) = L, then output L to both parties

and halt. Similarly, if &’ # b or C" # C or a # d’, then output L to both parties and halt.

. If C is a transcript of the commitment phase of COM, and o is a valid opening of C' to the

value b, then we say that the functionality is in trapdoor mode.

(a) If Sy and Sy are both empty, then let (S],S5) < Share(0%*). Give output (S}, S5) to the
sender and S} to the receiver.

(b) Otherwise, let (S, S%) < Share(0?*). If a = B-IN, then give output (y,S],5%) to the
sender and output S} to the receiver. If a € {B-OUT, A-IN} then give output (S7,S5) to
the sender and output (g, S5) to the receiver.

. If o is not a valid opening of transcript C' to the value b, then we say that the functionality

is in virtual-F mode.

(a) If S; and Sy are both empty, then sample an initial state S for F (including its random
tape). Let (S, %) < Share(S||0%), and give output (S}, S) to the sender and S} to the
receiver.

(b) Otherwise, let S||y = Reconstruct(Sy, S2).

(¢) If a = B-IN, simulate an activation of F with internal state S, and input y from Bob (7 is
ignored). Suppose this activation ends with F delivering output p to Alice (at this point,
we ignore the output to Bob and the new internal state). Then let (S, S5) + Share(S||y)
and give output (p, S, S) to the sender and output S5 to the receiver.

(d) If a = B-oUT, then simulate an activation of F with internal state S and input y
from Bob (y is ignored). If a = A-IN, then simulate an activation of F with internal
state S and input x from Alice. Suppose this activation of F ends with F in internal
state S’ and generating output ¢ for Bob (we ignore the output for Alice). Then let
(S1,55) + Share(S’||0%) and give output (S}, S’) to the sender and output (g, S) to the
receiver.

Standalone-secure protocol. Under the SHOT assumption, there exists a standalone-secure
protocol Il 71 for Fyir-1-
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4.3 UC-Equivocal Commitment

Let COM be a statistically-binding, standalone-secure commitment protocol with non-interactive
opening phase. Let Il 7.1 be as above, with respect to the same COM protocol. Let Z7% be the
environment guaranteed by the R-strong-unsplittability of F, which outputs 1 with probability at
least 1 + &(k) when interacting with an instance of F, and with probability at most  — §(k) when
interacting with any appropriate instance of stg“t. The function ¢ is guaranteed to be a noticeable
function. The protocol Hé:quml proceeds as follows, with security parameter k:

Commit phase: When the sender receives the command (COMMIT, b):

1. The sender commits to b under the COM scheme. Let C be the resulting transcript, and let
o be the non-interactive opening of C' to b.

2. The sender uses a (standalone-secure) zero-knowledge proof of knowledge to prove knowledge
of (o,b) such that o is a valid opening of C' to b.

Reveal phase: Both parties are connected to an ideal instance of the multi-session version of
F, which for clarity we denote Figea. The sender is connected to Figeas in the role of Bob, and
the receiver is connected in the role of Alice. When the sender receives the command REVEAL, the
parties continue as follows:

1. The sender gives b to the receiver.
2. The parties do the following, N (k) = O(k/d(k)?) times, each with a new session of Figeal:

(a) The receiver internally simulates a fresh instance of Z} on security parameter k. Both
parties initialize a virtual F, by the sender providing input (B-IN, L, 1, b,C, 0,€) and
receiver providing input (B-IN, L, b, C,¢€) to an instance of Iy 71. The receiver gets
output (S7,5%) and sender gets output S5. Both parties update local variables S; := S}
or Sy := S}, appropriately.

(b) Whenever Z% generates a command x to send to Alice, the parties do the following

(IdealActivation, see [Figure 3a)):

i. The receiver sends = to Figeal- Say the activation of Figea ends with output ¢ for
the sender and output p for the receiver.
ii. The sender provides input (A-IN, L, q,b,C,0,S7) and the receiver provides input
(A-IN, 1,0, C, S3) to a fresh instance of Iyt 7.1. If the instance aborts or outputs
1, or if Figea is activated during the execution of Il 7.1, then both parties abort.
iii. The Iy 71 instance eventually terminates with output (S7,S%) for the sender and
(q,55) for the receiver. The receiver delivers ¢ to Z3 (on its output tape from Bob)
and p to Z% (on its output tape from Alice). Both parties update Sy := 5] or
Sy := S}, appropriately.
(c) Whenever Z7 generates a command y to send to Bob, the receiver notifies the sender
to initiate an instance of Il .1 as follows (VirtActivation, see :

i. The sender provides input (B-IN, L, L, b, C, 0,51) and the receiver provides input
(B-IN, y, b, C, S2) to a fresh instance of Il 1. If the instance aborts or outputs L,
or if Figeal is activated during the execution of Il 7.1, then both parties abort.
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ii. The Il .1 instance eventually terminates with output (y, S7,S5) for the sender
and output S% to the receiver. Both parties update Sy := S7 or Sy := S}, appropri-
ately.

iii. The sender gives y as input to Figeal. Say the activation of Figes ends with output
q for the sender and output p for the receiver.

iv. Same as steps (2.b.ii-iii) above: Using I+ 7.1, the sender forces output ¢ for the
receiver, and the receiver delivers outputs p and ¢q to Z7%.

d) When Z% terminates, the receiver privately records its output, and notifies the sender
F
to begin the next iteration of this loop.

3. If a majority of the simulated Z%-instances output 1, then the receiver terminates with local
output (REVEAL, b). Otherwise the receiver aborts.

4.4 Security Properties

By inspection, it can be seen that an honest receiver accepts the decommitment of an honest sender
with overwhelming probability. This is because the view of Z% (each iteration of the main loop of
HEquml) is that of interacting with a single instance of F, Just as in the splittability deﬁmtlonm
In this case, Z% outputs 1 with probability at least 1 5 +d(k). By the Chernoff bound, it is with
overwhelming probability that the majority of these Z 7 instances output 1, and the receiver outputs
(REVEAL, b).

We formalize the security of H]EEquml in the following lemmas.

Lemma 4. H%:q(:oml has a UC simulator in the case that the receiver is corrupt (i.e., an equivocating
simulator).

Proof. Consider an interaction in Hé—quml between a corrupt receiver and a simulator who runs
the instance of Figeal and the sender (on the correct input) honestly. This interaction is identical
to the real-process interaction with the corrupt receiver.

Suppose the ith invocation of the Il;+ 1 subprotocol does not abort or result in output of
1. Then by the standalone security of Il r.1, there is a (possibly rewinding) simulator that can
extract an effective input of the adversary, (a, 7, B, C , 5’2) The honest party’s output from Ilyirt 71
is computationally indistinguishable from the prescribed output of F;+.1 with the honest party’s
input and the adversary’s effective input. Thus Reconstruct(St, gg) # 1 except with negligible
probability, where S is the secret-share from the (i — 1)th invocation of the Il 1 subprotocol.
Then by the security of the NMSS scheme, Sy =Sy except with negligible probability, where Sy
is the secret-share from the previous 1nvocat10n. Similarly from the definition of Fy;+.1 we see
that b = b and ¢ = C and @ = a. We conclude that the adversary’s effective input has the form
(a,+,b,C,Sy) — a fact which we use below.

We now construct the simulator and argue its soundness via a sequence of hybrid interactions.
We have defined subprotocols ldealActivation and VirtActivation as part of the prescribed protocol.
Our simulation differs from the real interaction in that these subprotocols are carried out as follows:

SimVirtActivation: ([Figure 3d|) Same as VirtActivation, except that the simulator uses input (B-1N, L, 1, b,C, L, S})
in the first execution of I 71 (so L is given instead of o). Then the simulator receives

" Both parties are honest, but an external adversary may still interact with Figea. This is the step where we must
use the fact that Figeal ignores all activations from the adversary.
126, is included in the output of the honest party in this interaction, so it is well-defined.
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Figure 3: Interactions used in HJI‘EEquml and its security proof. Grayed-out instances of F
are being “bypassed” (by the trapdoor mode of Il 7.1 or by virtue of the simulation).

output p (among others) from Il .1, which it immediately delivers to the receiver on be-
half of Figea;. The simulator uses input (B-ouT, L, L, b,C, L, S]) in the second execution of
it 71. The simulator no longer receives S} but does receive S (the internal state of the
virtual F) as output. The simulator internally records S in the variable S*.

SimldealActivation: Same as ldealActivation, except that when the receiver provides
input x to Figeal, the simulator computes the output p by simulating an activation of F on
internal state S* (recorded as above) with input x from Alice. The simulator then gives input
(A-IN, z, L, b,C, L, S1) to the execution of Il 1 (so L is given instead of o, and x is given
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instead of ).

We now define our sequence of hybrid simulations. Let F'(k) be a (polynomial) bound on the
number of times the simulator calls its VirtActivation and IdealActivation subroutines combined.

Hybrid 0: As described above, the simulator honestly simulates the sender and the instance of
Fideal- This interaction is identical to the real-process interaction.

Hybrid (1,7): (for 0 < ¢ < F(k)) Same as Hybrid 0, with the following modifications: After F'(k)—i
invocations of either VirtActivation or IdealActivation, let S* denote the internal state of the
simulated Figeal- At this point the simulator generates a random §1 subject to the constraint
Reconstruct(5), S5) = S*||0F, and updates S := Sy. Thereafter, it replaces subroutines
VirtActivation and IdealActivation with their Sim- versions.

Hybrid 0 is equivalent to Hybrid (1,0). The main step in this proof is to show the indistin-
guishability of Hybrids (1,4) and (1,7 — 1). We do so below.

Hybrid 2: Same as Hybrid (1, F'(k)), except that the sender uses the (rewinding) ZK simulator in
step 2 of the commit phase, to prove the given statement. Note that in this interaction, the
value o is never used (in the commit or reveal phases). The hybrids are indistinguishable by
the security of the ZK proof scheme.

Hybrid 3: Same as Hybrid 2, except in the commit phase the sender chooses b independently at
random, rather than using the b given as input. The hybrids are indistinguishable by the
computational hiding property of COM, since the opening of this commitment is not used.

Hybrid 4: Same as Hybrid 3, except that the sender honestly proves the ZK proof in step 2 of the
commit phase. The hybrids are indistinguishable by the security of the ZK proof scheme.
This is our final hybrid, and although some intermediate steps employed rewinding, Hybrid
(4) is a straight-line simulation.

We now prove that Hybrids (1,7 — 1) and (1,¢) are indistinguishable. The only difference is in
how the j = (F'(k) — i+ 1)th call to either VirtActivation or IdealActivation is handled. We consider
two cases, depending in which kind of activation is being performed:

IdealActivation: Suppose the jth such call is to IdealActivation. Let F4(S,x), Fg(S,z) and Fg(S, x)
denote the output of Alice, output of Bob and internal state, respectively, resulting from an
activation of F with internal state S and Alice input . Let S5 denote the value known to
the simulator at this point, and let S* denote the internal state of the simulated Figeal-

In Hybrid (1,7 — 1), the simulator computes p = F4(S*, x) and ¢ = Fp(S*,x) (implicitly,
by simulating Figeal) and then delivers p to the receiver. It then invokes Il 1 in trapdoor
mode with inputs ¢ and S, so that the receiver’s prescribed output includes the value q. Then
it updates S; to be random subject to Reconstruct(Si,S5) = Fs(S*, z)||0¥, and it updates
S* = Fg(S*, x).

In Hybrid (1,4), the simulator computes p = Fa(S*,z) (explicitly) and delivers it to the
receiver. It then invokes Il i 7.1 in virtual-F mode with input x and a value S; chosen
so that Reconstruct(Sy, So) = S*||0*. Thus the prescribed output of the receiver includes
the value ¢ = Fp(S*,x), and the prescribed outputs S] and 5% are a random sharing of
Fs(S*,2)||0F. The sender’s prescribed output includes the value Fg(S*, ), which is stored
in the variable S*.
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It is straight-forward to verify that the joint distribution of the simulator’s 51, S* variables,
the receiver’s output p, and the receiver’s prescribed output from F i1 is identical in the
two hybrids, for any (effective) receiver input including the correct S value. By our previous
argument, the receiver’s effective input contains either the correct Sy value or a value of Sy
that causes Fyjr.1 to output L, with overwhelming probability. Thus the views of the receiver
in the two hybrids are indistinguishable, by the standalone security of Il 7.1.

VirtActivation: For the other case, suppose the jth such call is to VirtActivation. Similar to above,
let S1, S2, .5 be local variables to the simulation, and let F4, Fg, and Fg be the same, except
considering an input from Bob instead of Alice.

In Hybrid (1,7 —1), the simulator obtains the receiver’s input y from the trapdoor invocation
of Myir-r-1. It gives y to Figeal, resulting in an output of p = F4(S*,y) to the receiver and
q = Fp(S*,y) to the sender. It then uses the trapdoor mode of Il 7.1 to give output ¢
to the receiver. Finally, S* is updated to Fg(S*,y), and the simulator updates S; so that
Reconstruct(S1, S2) = Fs(S*,y)| 0.

In Hybrid (1,4), the simulator obtains prescribed output p = F4(S*,y) from Ili7.1, which
it immediately delivers to the receiver on behalf of Figea. In the second invocation of Iy 7.1
the receiver’s prescribed output includes ¢ = Fp(S*,y), while the sender’s prescribed output
includes Fg(S*,y), which is stored in variable S*. The prescribed values of S; and S, are a
random share of Fg(S*, )| 0.

Thus we again have that the joint distribution of the simulator’s S7, S* variables, the receiver’s
output p, and the receiver’s prescribed output from fvirt_l is identical in the two hybrids,
for any (effective) receiver input including the correct Sy value. As above, the hybrids are
indistinguishable ]

Hybrid 4 does not require the simulator to know the sender’s correct bit during the commit
phase, and therefore it is a valid UC simulation (i.e., it can be carried out in the Feom-hybrid model).
The simulator implicit in Hybrid 4 — namely, one which commits to a random bit and then in the
reveal phase replaces VirtActivation and ldealActivation subroutines with their Sim- counterparts —
is our final equivocating UC simulator. We have shown that the real-process interaction with the
adversary and honest sender is indistinguishable from the ideal-process interaction with the given
simulator. O

Lemma 5. HgComl is binding in the standalone sense. For all adversarial senders, there ez-
ists a (possibly rewinding) simulator that extracts a value b during the commit phase such that
Pr[receiver outputs (REVEAL, 1 — b)] is negligible.

Proof. We construct the rewinding simulator and argue its correctness via the following sequence
of hybrids:

Hybrid 0: The real-process interaction, between a corrupt sender, honest receiver, and instances of
Fideal simulated honestly.

Hybrid 1: Same as Hybrid 0, except that the receiver uses the rewinding proof-of-knowledge extrac-
tor in step 2 of the commit phase, to obtain a witness (o, b) to the statement being proved.
The indistinguishability of these two hybrids follows from the security of the zero-knowledge

'3Technically, one must introduce another intermediate hybrid since Hybrids (1,7 — 1) and (1,i) differ in the
executions of two Ilyin-7.1 subprotocols. We omit the straight-forward details.
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proof scheme. With overwhelming probability, b is the unique value to which the COM-
commitment C' can be opened, by the statistical binding property of COM and the soundness
of the knowledge extraction. Hereafter, we condition on this event. Note that no instance
of F within qucoml, nor any instance of Z% simulated by the receiver is active during the
commit phase, so the rewinding does not affect them. This hybrid defines our extracting
simulator (where the extracted value is b obtained from the proof-of-knowledge extractor).
The remainder of the hybrids establish that Pr[receiver outputs (REVEAL, 1 —b)] is negligible.
We therefore assume that the sender is attempting to decommit to 1 — b in the reveal phase.

Hybrid 2: Same as Hybrid 1, except that every instance of the Il 7.1 protocol is replaced by the
receiver simulating an ideal instance of Fy.1 and running the (possibly rewinding) simulator
with the sender. The two hybrids are indistinguishable by the standalone security of Il 1.
We are trying to bound Pr[receiver outputs (REVEAL, 1 — b)], and the receiver can only make
such an output if it reaches step 3 of the reveal phase. In particular, the receiver will abort
early if it is notified of any activation of Fijes during the execution of a Il .1 instance.
Thus, without loss of generality we assume that the sender does not interact with Figea during
any instance of Il }-_1{13] Similarly, the honest receiver’s simulated instance of Z% is not
activated at any time during the execution of a Il 7.1 instance. Thus no instance of either
ZF or Fideal is affected by the rewinding introduced in this hybrid.

Hybrid 3: Same as Hybrid 2, except that the collected instances of fvirt_l in each main loop of

H]E:Coml are replaced with a single instance of F that leaks its internal state to Alice. More

formally, we see that the parties’ prescribed interactions with fvi,t_l constitute a UC-secure
protocol for such a variant of F (in the case where there does not exist any valid opening
of C to the value 1 — b, as we conditioned on). We replace this (implicit) protocol with an
ideal instance of such an F and the appropriate simulator for the sender. These two hybrids
are indistinguishable by the security of this implicit protocol (from the statistical binding
property of COM and the non-malleability of NMSS).

In each iteration of the main loop of the reveal phase, Hybrid 3 consists of an instance of Z%, Figeal,
and the new (leaky) instance of F, connected as in the R-splittability interaction. At no point are
any of these instances rewound. Everything else in the interaction (including the global environment
and the corrupt sender, each possibly being rewound) can therefore be taken as a machine 7 in the
definition of ]:STp“t. By the R-strong-unsplittability of 7, we have that Pr[Z% outputs 1] < —§(k).
For the receiver to output (REVEAL,1 — b), a majority of these N (k) = O(k/§(k)?) independent
splittability interactions must end with Z% outputting 1. By the Chernoff bound, this can happen
only with negligible probability. This completes the proof. O

5 UC-Equivocal Commitment from L/R-Splittability

In this section we show that if F is strongly unsplittable, L-splittable, and R-splittable, then F
can be used to construct a UC-equivocal commitment protocol.
5.1 Overview

Our approach is similar to that of the previous section — our protocol involves an ideal instance of
F along with a “virtual” instance of F within a standalone-secure subprotocol. The receiver runs

4 corrupt sender could interact with Figea and delay the notification sent to the receiver, but without loss of
generality the interaction with Figeal could itself be delayed instead.

18



instances of Z7%, the environment guaranteed by the strong unsplittability condition. The receiver
accepts the commitment if Z7 believes it is interacting with a single instance of F as opposed to
some ]—"Z;Ht. The primary difference from the previous section is in the “trapdoor mode” of the
virtual-F subprotocol. In this subprotocol, the trapdoor mode does not completely bypass the
virtual F, but instead it simply leaks the internal state of the virtual F to the receiver. With this

trapdoor, we have the following observations (Figure 4)):

e An honest sender who can activate the trapdoor mode of the virtual-F subprotocol is situated
between an ideal instance of F and (intuitively) an instance of F that leaks its internal state.
By the R-splittability of F, there exists a 7> that the sender can execute to make two such
instances behave to the sender as a single instance of F. Note that 72 must be a uniform
machine, since it is used as a subroutine in the description of the protocol.

e The simulator can honestly simulate Figea) while also having access to its internal state. The
remainder of the simulator is intuitively between this simulated instance of F and a (normal,
non trapdoor) instance of F. By the L-splittability of F, there exists a 77 that the simulator
can execute to make these two instances behave to the sender as a single instance of F.
Note that 7; need not be uniform, since it is used only by the simulator. Finally, since the
simulator is designed to interact with a corrupt receiver, 7; and 72 must be able to “fool”
every environment, not just the environment Z% from the strong unsplittability condition.

e A cheating sender cannot obtain the internal state from either the ideal or the virtual instance
of F. As such, it plays the role of the machine 7 in the (normal) splittability interaction.
By the strong unsplittability of F, the receiver’s environment Z% can detect a noticeable
deviation from the expected behavior.

In this section, we never have need to “bypass” an instance of F. The technical complications
described in the previous section are not present here, and the actual construction is a much more
straight-forward implementation of the intuition described above.

5.2 The Virtual-F Subprotocol

Similar to the previous section, we define an ideal functionality to specify the properties required
of the virtual-F subprotocol. Let NMSS = (Share, Reconstruct) be a non-malleable secret sharing
scheme that can support messages of length k, and let COM be a standalone-secure, plain-model
commitment protocol with non-interactive opening phase. Then .7?\,;“_2 is the non-reactive, 2-party
ideal functionality defined as follows, with global security parameter k:

1. Fuiro waits for an input of the form (a,z,b,C,0,51) from the sender, and an input of the
form (da’,y,b’,C’,S9) from the receiver.

2. If S and Sy are empty, then sample an initial state S for F (including random tape). Set
(S1,5%) « Share(S), then halt and give output (L,S7,S) to the sender and (L,S%) to the
receiver.

3. If Reconstruct(S1, S2) = L or b # V' or C # C' or a # d/, then halt and give output L to both
parties. Otherwise, set S = Reconstruct(S7, S2).

(a) If a = A-IN then simulate an activation of F on internal state S and input x from Alice
(y is ignored). If a = B-IN, then simulate an activation of F on internal state S and
input y from Bob (z is ignored). Suppose the activation results in new internal state S’
output p for Alice and output ¢ for Bob.
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(b) Generate (S7,5%) < Share(S’) and give output (q,S5) to the receiver. If o is a valid
opening of commitment transcript C to value b, then we say that the functionality is in
trapdoor mode. In trapdoor mode, give output (p, S, S) to the sender. Otherwise, in
normal mode give output (p, S]) to the sender.

Under the SHOT assumption, there exists a standalone-secure protocol Il 7o for ]?Vi,t_z.

5.3 UC-Equivocal Commitment

Let COM be a statistically-binding, standalone-secure commitment protocol with non-interactive
opening phase. Let Il 7.2 be as above, with respect to the same COM protocol. Let Z% be the
environment guaranteed by the strong unsplittability of F, which outputs 1 with probability at
least 1 + 6(k) when interacting with an instance of F, and with probability at most § — (k) when
interacting with an instance of ]-"STp“t. The function ¢ is guaranteed to be a noticeable function. Let
71 and 72 be the machines guaranteed by the L- and R-splittability of F, respectively. We require
75 to be a uniform machine. The protocol Hé:qumz proceeds as follows, with security parameter k:

Commit phase: When the sender receives the command (COMMIT, b):

1. The sender commits to b under the COM scheme. Let C be the resulting transcript, and let
o be the non-interactive opening of C' to b.

2. The sender uses a (standalone-secure) zero-knowledge proof of knowledge to prove knowledge
of (o,b) such that o is a valid opening of C' to b.

Reveal phase: Both parties are connected to an ideal instance of the multi-session version of
F, which for clarity we denote Figea. The sender is connected to Figeas in the role of Bob, and
the receiver is connected in the role of Alice. When the sender receives the command REVEAL, the
parties continue as follows:

1. The sender gives b to the receiver.
2. The parties do the following, N (k) = O(k/5(k)?) times, each with a new session of Figeal:

(a) The receiver internally simulates a fresh instance of Z% on security parameter k. The
sender internally simulates a fresh instance of 73 on security parameter k.

(b) Both parties initialize a virtual F, by the sender providing input (A-IN, L, b, C,0,¢€) and
receiver providing input (A-IN, L,b,C,€) to an instance of Il r2. The receiver gets
output (L, S7,S5) and sender gets output (L,S5). Both parties update local variables
S1:= 87 or Sy := S}, appropriately. The sender gives S to T3 as the internal state from
Fr.

(c) Whenever Z% generates a command x to send to Alice, the parties do the following:

i. The receiver sends = to Figeal, resulting in output p for the receiver and ¢ for the
sender. The sender gives ¢ to 72 on behalf of Fr.

ii. When 75 generates an input z’ for Fpg, the parties initiate a new instance of
Iyit.72. The sender provides input (A-IN,z’,b,C,0,S1) and the receiver provides
input (A-IN, L,b,C,Ss). If Figeal is activated during the execution of Il 2, both
parties abort.
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iii. The Ilyi-r2 instance terminates with output (p,S7,S) to the sender and (¢’, S%)
to the receiver. The sender gives p’ and S to T3 on behalf of Fr (as the output
and internal state, respectively). The receiver gives both p and ¢’ to Z%, on its
Alice- and Bob- input/output tapes, respectively. Both parties update S; := S7 and
Sy := 5%, appropriately.

(d) Whenever Z% generates a command y to send to Bob, the parties do the following:

i. The parties initiate a new instance of Il r.2. The sender provides input (B-IN, L, b,C, 0, S7)
and the receiver provides input (B-IN,y,b,C,S2). If Figea is activated during the
execution of Il 7.2, both parties abort.

ii. The Il 7.2 instance terminates with output (p, S7,.5) to the sender and (g, S5) to
the receiver. The sender gives p and S to 72, on behalf of Fr (as the output and
internal state, respectively).

iii. When 73 generates an input 3’ to Fr,, the sender gives input 4 to Figeal, resulting in
output p’ for the receiver and ¢’ for the sender. The sender gives ¢’ to 73 on behalf
of Fr. The receiver gives both p’ and ¢ to Z%, on its Alice- and Bob- input/output
tapes, respectively. Both parties update S} := S} and Sz := S5, appropriately.

(e) When Z% terminates, the receiver privately records its output, and notifies the sender
to begin the next iteration of this loop.

3. If a majority of the simulated Z7-instances output 1, then the receiver terminates with local
output (REVEAL, b). Otherwise the receiver aborts.

sender receiver simulator receiver
" <a>\\ (b) <a)\\
T2
T Iyirt-F-2 yire-7-2
\
N\ r r
int. state] T (a b (N b)

trapdoor normal
mode mode

(b) The simulator simulates Figea honestly

(a) Honest sender behavior. o
but also gives its internal state to 77.

Figure 4: Interactions in H]Echom and its security proof.

5.4 Security Properties

Correctness of the protocol can be seen by inspection, similar to the previous section. We now
sketch the security of Hé—qum2 in the following lemmas.

Lemma 6. ngcom2 has a UC simulator in the case that the receiver is corrupt (i.e., an equivocating
simulator).
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Proof. Many technical aspects of the proof follow those of the previous section, so we focus on
the important differences. We start by considering an interaction between an honest sender and
corrupt receiver, with all instances of Figea being simulated honestly.

Hybrid 1: Same as the real interaction, except that inq‘gead of running the Il 7> protocol, the
sender gives its input to a simulated instance of Fyit2, and then runs the (possibly rewind-
ing) simulator for the Il r2 protocol with the receiver. As before, it is without loss of
generality that the rewinding does not involve any instance of Figeas. This hybrid is indis-
tinguishable from the real interaction by a straight-forward application of the standalone
security of Il r.2.

Hybrid 2: Same as Hybrid 1, except that each time through the main loop of H]EEqCOm, the multiple

activations of f\,;rt_g are replaced with a single instance of F that leaks its internal state to
Alice. These hybrids are indistinguishable by the non-malleability property of NMSS, and
the definition of Fyjt».

Hybrid 3: Same as Hybrid 2, except that instead of Figeal, T2, and this new instance of F each
time through the main loop of qucom, the sender uses an instance of Figea that leaks its
internal state to Bob, 77, and a (non-leaking) instance of F, respectively. Such a change is
indistinguishable by the L/R-splittability of F[7]

Hybrid 4: Same as Hybrid 3, except that the plain (virtual) instance of F is replaced with successive
executions of the Il r.o protocol, in which the sender does not provide the value o. These
hybrids are indistinguishable, by essentially the same argument for Hybrids 1-2 but in reverse.
We also use the fact that Bob’s prescribed output from Fy;+» is identical whether Fyjto is in
trapdoor or normal mode. In this hybrid, the value o is not used in the reveal phase.

Hybrid 5: Same as Hybrid 4, except that the sender commits to an independently random bit in
the commit phase. Using the same argument as earlier, we apply the security of the ZK
proof system and the computational binding property of COM to show that these hybrids are
indistinguishable.

Although the intermediate steps involved rewinding, Hybrid 5 is a straight-line simulation. The
simulation implicit in Hybrid 5 (namely, it commits to a random bit, then in the reveal phase
honestly simulates Figeal while leaking internal state to 7; and using the normal mode of I 7.2)
is our final UC simulation, since it does not require the value b until the reveal phase. ]

Lemma 7. Hé—qum2 1s binding wn the standalone sense. For all adversarial senders, there ez-
ists a (possibly rewinding) simulator that extracts a value b during the commit phase such that
Pr[receiver outputs (REVEAL, 1 — b)] is negligible.

Proof. This proof is similar to the analogous one in the previous section. The rewinding simulator
uses the proof-of-knowledge extractor in step 2 of the commit phase to extract b. To show that
Pr[receiver outputs (REVEAL, 1 — b)] is negligible, we condition on the event that the standalone
commitment C' can be opened only to a unique value b. In that case, a corrupt sender cannot use
the trapdoor mode of Il . 7.». As before, we repeatedly apply the standalone security of Il 7.0
and the specification of .f’-v"\,;rt_z to obtain an indistinguishable interaction that involves Z%, two
instances of F, and an adversarial machine between them just as in the unsplittability definition.
Now neither of the two instances of F leak their internal state, so we have an interaction as in

5 Here it is important that 71 and 72 be able to “fool” all environments, not just Zr.
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the definition of (plain) strong unsplittability. Therefore Z% outputs 1 with probability at most
% — d(k), by the strong unsplittability of F. It follows that Pr[receiver outputs (REVEAL, 1 — b)] is
negligible. O

6 Full-Fledged UC Commitment from Equivocal Commitment

We now show how our UC-equivocal commitment protocols can be “compiled” into a full-fledged
UC commitment protocol. In this protocol we use the following additional properties of the H-I;:q(: om
protocols from the previous sections:

e Both Hi?qum protocols use the same commit phase; namely, commit to b under COM and give
a zero-knowledge proof of knowledge of the opening to the commitment. Therefore, for both
of these protocols we could define a non-interactive reveal phase in which the sender simply
reveals o (the non-interactive opening to the COM commitment). It follows immediately from
the statistical binding property of COM that the H]EEqum commitment is statistically binding

with respect to this alternative non-interactive opening phase.

e For both protocols, the (equivocating) UC simulator for a corrupt receiver gives honest com-
mitments to a random bit in the commit phase.

Our final UC commitment protocol is as follows:

H]:

com
ing scheme, and let II

commitment protocol: Let NMSS = (Share, Reconstruct) be a non-malleable secret shar-

F . Ll . . .
EqCom be a commitment protocol as in the previous sections. Our final

7 is defined as follows:

commitment protocol ITZ,,,

Commit phase: When the sender receives input (COMMIT, b):

1. The receiver chooses random r < {0,1}* containing half Os and half 1s, then commits to r

under ngCom‘
2. The sender chooses random z < {0, 1}* and commits to x, bitwise under ngcom. Let C; and

o; denote the commitment transcripts and non-interactive decommitment values, respectively,
for the commitment to bit x;. The sender gives gives z = b @ (), x;) to the receiver.

3. Both parties engage in a standalone-secure subprotocol p for the following task, with the
sender providing input (z, C1,...,Ck,01,...,0%) and the receiver providing input (C1, ..., Ck):

(a) On input (z,C4,...,Ck,01,...,0%) from the sender and (Cf,...,C}) from the receiver,
verify that for all ¢, C; = C! and o; is a valid decommitment of C; to value z;. If not,
output L to both parties.

(b) Choose random s < {0,1}* containing half Os and half 1s. Define z|, to be the string
in {0,1, L}*, where
€Ty if S; = 1
Tis)i =
() {J_ ifs; =0
(c) Generate («, 3) < Share(s).

(d) Give output « to the sender and (3, z|s) to the receiver.
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If the subprotocol aborts or outputs L, both parties abort.

4. The receiver opens the Hé’;com commitment to r. If » does not contain half 0s and half 1s

(or if the commitment cannot be successfully opened), then the sender aborts. Otherwise the
sender gives x|, to the receiver.

5. The receiver outputs (COMMITTED).

Reveal phase: When the sender receives input (REVEAL):

1. The parties engage in a standalone-secure subprotocol ¢ for the following task, with the sender
providing input (r, ), and the receiver providing input (r, 5):

(a) On input (r,«) from the sender and (r/,3) from the receiver: if Reconstruct(a, ) = L
or r # r’ then output L to both parties.

(b) Otherwise, let s = Reconstruct(a, 3). If s =7 then choose random i* «— {1,... .k |r; =
0}. If s # 7 then choose random i* < {1,...,k | r; = s; = 0}. Give i* to the sender and
output OK to the receiver.

If the subprotocol aborts or gives output L then both parties abort.

2. The sender gives b and x to the receiver and opens the commitments C1,...,Cy using the
interactive opening of ngcom. The receiver aborts if for any i, the commitment C; is not
opened to ;. The receiver further verifies that « is consistent with the values z|; and z|, from
the commit phase, and that z = b @ (€D, x;). If so, then the receiver outputs (REVEAL, b);

otherwise it aborts.
Lemma 8. 117, is a UC-secure protocol for commitment, in the F-hybrid model.

Proof. The correctness of the protocol can be seen by inspection. We must demonstrate a simulation
for both of the following cases:

When the sender is corrupt: We construct the simulator via the following sequence of hybrids:

Hybrid 0: The real-process interaction, between an honest receiver and corrupt sender. All instance
of F are simulated honestly.

Hybrid 1: Same as Hybrid 0, except that the receiver uses the simulator for qucom to give an
equivocal commitment to . Then the random selection of r can be postponed until step 4 of
the commit phase. These hybrids are indistinguishable by the security of qucom.

Hybrid 2: Same as Hybrid 1, except that in step 4, r is chosen as 5. This correlates r and s,
whereas before they were independent. However, the sender’s view is only influenced by s
within the p and ¢ subprotocols. The sender’s prescribed output in the p and ¢ subprotocols
is independent of s (in the ¢ subprotocol, the sender’s output is always a randomly chosen
position at which r contains a zero). Thus by the security of the ¢ and p subprotocols,
these two hybrids are indistinguishable. As in all of the hybrids, the honest receiver will
only accept a decommitment if z is revealed to be consistent with both z|s and z|,. But in
this interaction, there is a unique value & consistent with both z|s and z|,. The sender can
compute b = z @ (B, :), and we have that Prreceiver outputs (REVEAL, 1 — b)] is zero.
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Hybrid 2 defines our final simulator: it uses equivocal commitments to r, and then after running the
p subprotocol opens these commitments to r = 3. As such, it learns all the bits of z and can extract
the committed value b. The soundness of this simulation follows from the indistinguishability of
Hybrids 0-2.

When the receiver is corrupt: We construct the simulator via the following sequence of hybrids:

Hybrid 0: The real-process interaction, in which an honest sender commits to b to an adversarial
receiver. All instances of F are simulated honestly.

Hybrid 1: Same as Hybrid 0, except that the sender runs the (rewinding) extracting simulator for
the receiver’s commitment of r in the ngcom protocol. The sender thus obtains a value
r that with overwhelming probability equals the value r to which the receiver opens the
commitment in step 5. These two hybrids are indistinguishable by the standalone security
property of H]Echom.

Hybrid 2: Same as Hybrid 1, except that in step 4 the sender chooses random s € {0, 1}’7C with half
0s and half 1s. It generates («, 3) < Share(s). It then runs the (rewinding) simulator for
the p subprotocol with (8, xz|s) as its input. These two hybrids are indistinguishable by the
standalone security of the p subprotocol.

Hybrid 3: Same as Hybrid 2, except that the sender chooses s as above, subject to the additional
constraint that s # 7. Therefore we have that s V r contains a zero in at least one position.
These two hybrids are statistically indistinguishable.

Hybrid 4: Same as Hybrid 3, except that at the beginning of the interaction the sender chooses a
random value i* < {1, ..., k}. Then the sender chooses the values 1, ..., Tj*—1, Tix41,. .., Tk, 2
to be random bits, and sets z;» = b® 2 & (@Z#Z x;). Later, in step 4 the sender chooses
s € {0,1}* subject to the constraint that sV r contains a zero in position i*. Hybrids 3 and
4 are thus identically distributed. Note that b is used only to determine the value z;«. In
the commit phase, the value z;+ is used only to generate a Hg‘com—commitmen‘c, except with

overwhelming probability (corresponding to the event that the receiver opens its qucom—

commitment to a different value of r than was extracted in step 1, and the sender would have

to explicitly reveal z;+ in step 4).

Hybrid 5: Same as Hybrid 4, except the sender runs the UC simulator rather than the honest

protocol for all of the Hé‘;‘com commitments it sends and opens. These hybrids are indistin-

guishable by the security of H]Echom. Importantly, this interaction does not use the value of

x;+ (and thus b) during the commit phase (either by sending it to the receiver of as input to
a H]Echom commitment). We also know that the H]Echom simulator gives honest commitments
to randomly chosen bits in the commit phase. Thus we also make the following modification
which does not affect the distribution of the interaction: all x; values (including z;+) are
chosen to be the random bits that are honestly committed to by the qucom simulator. Only

after step 1 of the reveal phase do we then change z;+ to the value b & z & (D, i)-

Hybrid 6: Same as Hybrid 5, except that the sender does not pick * during the commit phase.
Instead it chooses s as it did in Hybrid 3. Then after step 1 of the reveal phase, it determines
a position ¢* at which s V r contains a zero (which must exist because of how s is chosen).
This hybrid is distributed identically to Hybrid 5.
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Hybrid 7: Same as Hybrid 6, except that instead of honestly running the ¢ subprotocol, it simulates
an ideal instance of the appropriate functionality and uses the (rewinding) simulator on the
adversary. By the standalone security of ¢, the hybrids are indistinguishable. Furthermore,
the sender obtains the receiver’s effective input 5’ to ¢. By the non-malleability of NMSS, we
have that with overwhelming probability, either the sender aborts after the ¢ subprotocol, or
the sender’s output from the ¢ subprotocol is distributed identically to the i* value chosen
by the sender at this point. Thus it does not affect the interaction for the sender to use the
output of ¢ as its ¢* value, instead of how ¢* is chosen in Hybrid 6. This hybrid therefore
does not use the value s generated in the commit phase.

Hybrid 8: Same as Hybrid 7, except that the sender runs the p and ¢ subprotocols honestly. By the
same arguments as in Hybrids 2-3 and 7, we have that Hybrids 7 and 8 are indistinguishable.
We note that because the sender is giving honest Hé;com commitments to the bits z1, ...,z
in the commit phase, it has appropriate inputs o1, . . ., g% to give as input to the p subprotocol

to yield the correct prescribed output for the receiver.

Hybrid 9: Same as Hybrid 8, except that the sender does not extract the value r; instead it runs
the ngcom protocol receiver protocol honestly in step 1 of the commit phase. The value
r is no longer being used in the commit phase in these interactions, so these hybrids are

indistinguishable from the standalone security property of H]Echom.

Hybrid 9 finally defines our simulation: the sender commits to random values x in the commit
phase. Then later in the reveal phase, the sender learns a position ¢* at which r V s contains a
zero (except in the negligible-probability event that » = 5). It then equivocates on the opening
of commitment #i*, if necessary, to decommit to the value of its choice. The soundness of the
simulation follows from the indistinguishability of Hybrids 0 and 9. 0

7 Necessity of the SHOT Assumption and Strong Unsplittability

The SHOT assumption is necessary for many strongly unsplittable functionalities (e.g., coin-tossing,
commitment) to be complete under static corruption [DNOT0L MPRI0]. Thus the SHOT assumption
is the minimal assumption for a completeness result such as ours.

In this work we used strong unsplittability (and several minor variants) as the basis to show
that certain functionalities are complete. Ideally, we would like to prove that strong unsplittability
is necessary for completeness; that is, if F is not strongly unsplittable then F is not complete.
However, the condition “F is not strongly unsplittable” is not easily amenable to such an approach.

If F is not strongly unsplittable, then for every suitable Z, there is a machine 7 so that
Agpiit(Z, F, T, k) is negligible for infinitely many values of the security parameter. A typical ap-
proach to showing that F is not complete would be to consider a hypothetical protocol for, say,
oblivious transfer in the F-hybrid model and then derive a contradiction. But such a hypotheti-
cal protocol can invoke many instances of F, and one must presumably apply the aforementioned
condition to each of them. To do so would require a hybrid argument, with slightly different envi-
ronments — and thus potentially a different 7 and subset of security value parameters — in each
hybrid. There may not be an infinite number of security parameter values for which every step of
the hybrid argument succeeds.

We can, however, prove the necessity of two very slight variants of strong unsplittability:

Lemma 9. If the multi-session version of F is not strongly unsplittable, then F is not complete.
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Proof. Let F denote the multi-session version of F. It suffices to show that the fair coin tossing
functionality Foin cannot be securely realized in the F-hybrid model. For the sake of contradiction,
let 7 be such a purported protocol. Consider an environment Z that internally simulates two honest
parties executing one instance of the m protocol, where the communication is routed to an external
instance of F. The environment outputs 1 if both parties obtain the same output from 7. By the
correctness of 7, we have that Z outputs 1 with overwhelming probability.

This environment Z is uniform and suitable, in the sense of the splittability definition. Then
since F is not strongly unsplittable, there exists a machine 7 such that Agyit(Z ,]/-: , T, k) is non-
noticeable. In other words, there exists a negligible function v so that Agpiit(Z, F.T, k) < v(k) for
infinitely many k.

The interaction with Z and F is infinitely-often indistinguishable from an interaction with Z

and F7 .. Take this interaction and “repackage” it as follows: Take the honest Bob out of the

split*
environment, and subsume 7 and F 7, into the environment, so that only F r and the honest Bob
are outside of the environment. We also insert a dummy adversary relaying between 7 (within
the environment) and the external .7?R. We apply the security of m to this interaction, replacing
the dummy adversary, F R, and honest m with a simulator §, ideal functionality Feoin, and dummy
protocol, respectively. The resulting interaction is indistinguishable by the security Qf .

Again we repackage the resulting interaction, so that only the honest Alice and Fj, are outside
of the environment (along with a dummy adversary interacting as Bob with F 7). Again, we apply
the security of m to replace the real interaction with an ideal one involving an instance of Feoin.

However, in this final interaction, the environment outputs 1 if two independent, ideal instances
of Feoin output the same bit. This can only happen with probability 1/2, but by the indistinguisha-
bility of the interactions we see that it in fact the environment must output 1 with probability
negligibly close to 1, for infinitely many values of k. This is a contradiction, so the purported
protocol 7 cannot exist. O

Lemma 10. If F is not strongly unsplittable with respect to environments with multi-bit output,
then F is mot complete.

Proof. We show that if the condition in the lemma is met, then the multi-session version of F is not
strongly unsplittable (with respect to environments with single-bit output), as in Let
Z be a suitable (single-bit output) environment that expects to interact with F, the multi-session
version of F. Let N(k) be a polynomial upper bound on the number of instances of F invoked by
Z, on security parameter k.

Define Z* to be the environment that first chooses a random * < {1,...,N(k)}. It then
internally simulates Z and all sessions of F, except for the ¢*-th instance, which it routes to an
external instance of 7. When the internal instance of Z terminates, Z* outputs the entire view of Z,
as well as the output of Z. Since Z* is a suitable and uniform (multi-bit output) environment that
expects to interact with a single instance of F, there exists a machine 7 such that Agpie(Z2*, F, T, k)
is non-noticeable. In other words, there is an infinite set K C N for which Agic(Z*, F, T, k) is
negligible when restricted to & € K. Hereafter, we implicitly restrict the security parameter to the
set K.

Define Z¥ to be Z* conditioned on ¢* = j. We have that for each j, Asp“t(Z;,f, T,k) <
Agpiit(Z*, F,T,k)- N(k), and thus Asp“t(Z;,}', T, k) is negligible (for security parameters k € K).

Let T be the “multi-session” extension of T; that is, for every session sid of F started within Fr
or F R, T creates a new session of 7~ with the same sid, and routes it to the sessions of F within F )3
T

and T, ®. In other words, FT . behaves exactly as the multi-session version of F,

split oplit- We now argue
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that 7 demonstrates the non-strong-splittability of F with respect to Z; i.e., Aglit(Z ,]? , ’/f, k) is
non-noticeable.
We consider a series of hybrids indexed by h € {0,..., N(k)}, which involve Z interacting with

ﬁz;;lit for the first h sessions of F, and F for the remaining sessions. Hybrids 0 and N (k) are the two
interactions referenced in the definition of Agyi(Z, F , 'YA’, k). Our invariant is that in every hybrid
h and for every session j, the input/output to the jth session of F is indistinguishable from that
induced by Z7 above. This is trivially true in hybrid 0. Assume the invariant holds in hybrid A — 1.
Hybrid A differs only in whether the h-th session of F is serviced by F or .Fzr;“t. We have that
]:sfgnt and F induce indistinguishable input/output views when interacting with Z;, as this view is
included in the output of Z}; thus they must also do so against environments whose input sequence
to F is indistinguishable from that of Z;. Therefore the invariant holds for hybrid h. Finally, if
the input/output view of Z is indistinguishable between hybrids 0 and N (k), then it follows that
the output of Z is indistinguishable between these hybrids. This completes the claim, and we have

that the multi-session version of F is not strongly splittable. ]
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A Understanding and Interpreting our Splittability Definitions

A.1 L/R-splittability

Because of some technical subtleties that arise in our construction, we introduce the notions of
L/R-strong-unsplittability. Here we show that for the case of secure function evaluation, these
notions are equivalent to the plain definition of strong unsplittability. We also show an example
functionality for which the notions differ.

Definition 11. A functionality F is a secure function evaluation (SFE) if it does the following.
It waits for an input x from Alice and an inputy from Bob, and then gives output fa(z,y) to Alice
and fp(x,y) to Bob, where fa and fp are deterministic functions.

Lemma 12. The notions of strong unsplittability, L-strong-unsplittability, and R-strong-unsplittability
are equivalent for SFE functionalities.

Proof. Suppose F is strongly unsplittable. Then the environment Z% samples inputs = and y to
give to F. Sending each of these inputs to F requires two activations of F. To show that Z7 is
also successful in the L-strong-unsplittability definition, we need only ensure that Z7 gives y first.

When Z7% gives input y and is interacting with F, both parties will receive an empty output.
In .7-"2;“,(, the input y will go to Fr. In order to give an empty output to Alice, the machine T
must provide some input 3’ to Fr. Now Fpr does not leak its internal state, and 7 is the only one
who has influenced F7’s internal state. So in this step 7 receives no more information than in the
(plain) splittability interaction. Then after Z% provides input = to Fr, the machine 7 receives
output, but that functionality has no need for further internal state. So again 7 receives no more
information than in the (plain) splittability interaction. 7’s overall behavior is exactly the same as
in the (plain) splittability interaction, so again the environment successfully distinguishes F from
the FJ .. (with leaking internal state) with noticeable probability.

split
The reverse direction follows trivially: L/R-strong-unsplittability always implies (plain) strong
unsplittability. O

A functionality that is strongly unsplittable but L/R-splittable. The notions of L/R-
splittability and plain splittability are not equivalent for all functionalities. Consider the following
functionality F, which does the following on security parameter k: It first chooses a random string
5 < {0,1}* and random bit b < {0,1}. It waits for input (tg,bo) from Alice and (t1, b1) from Bob.
If s & {to,t1} then F gives output b to both parties. Otherwise, if s = ¢; for some i € {0, 1}, it
gives output b; to both parties. (If both parties send t; = s, then the functionality gives output by
to both).

Intuitively, F simply provides a fair coin toss. It is only with negligible probability that either
party can guess the secret value s to force the output to be b;. In fact, it is not hard to see
that F is equivalent to the fair coin-toss functionality (there is a UC-secure protocol for either
functionality, using the other as a setup). Similarly, F can be seen to be strongly unsplittable, via
the functionality that uses (0¥,0) as input for both parties and then checks whether both parties
receive the same output.

However, in the L-splittability interaction, 7 receives the internal state of F, including the
secret value s. It can then receive the fair coin b generated from Fp, and then send input (s,b)
to Fr. Thus 7T is able to make both parties’ outputs match. This 7 demonstrates that F is
L-splittable (the functionality is symmetric with respect to Alice and Bob, and so a symmetric
argument holds for R-splittability).
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We note that in this example, the difference between L- and plain splittability appears to be
an artifact of the code of F rather than the behavior of F. Indeed, for all purposes which
don’t involve F’s internal state, F is equivalent to a fair coin-toss functionality which is L-strongly-
unsplittable. The L/R-splittability properties of F also appear to be very sensitive to minor changes
in F’s behavior. For this reason we offer the following conjecture:

Conjecture 13. If F is strongly unsplittable, then F is equivalent (in the sense of UC-secure
reductions) to a functionality that is L-strongly-unsplittable.

If true, this conjecture would imply that every strongly unsplittable functionality is complete,
as well as eliminate the second case of our main construction.

A.2 Between Splittability & Strong Unsplittability

We give several examples of functionalities which are neither splittable nor strongly unsplittable,
for different reasons:

Example: neither noticeable nor negligible. The following functionality has “fluctuating”
behavior as a function of the security parameter, even though it is uniform in the sense that its
internal code does not depend on the security parameter:

Let f be a one-way function, and consider an F which does the following. On input = € {0,1}*
from Alice, compute y = f(z). If 2] is a tower-of-twos (22° ), then give y to Bob; otherwise give x
to Bob. Then F is strongly unsplittable because no efficient 7 can succeed against environments
who provide random inputs to F with tower-of-twos length. However, the “nontrivial” behavior of
F is out of reach for most values of the security parameter k (input lengths that are a tower-of-twos
length are either exponential in k, or logarithmic in k, in which case the OWF can be inverted in
polynomial time), so F is splittable for infinitely many values of k. This example was previously
observed in [MPRIQ].

Example: arms race. The following functionality does not allow either party to have a fixed
winning strategy in the splittability “game.”

Let f be a one-way function and consider a functionality F that does the following: Upon
receiving input (z,1%) from Alice and 1 from Bob, it computes y = f(x). If s > ¢, it gives (y, 1¥)
as output to Bob, but if ¢t > s, it gives (x,y, 1¥) as output to Bob. For any fixed 7, there exists a
polynomial bound (in k) on the maximum length of 1! it sends to JF in the first activation. Then a
Z which picks a random z and sends (z,1° = 1/™!) to F on behalf of Alice “wins” the splittability
game against this 7, since 7 must now invert the one-way function. Similarly, for any fixed Z
there exists a polynomial bound on the length of 1° that it sends to F. A 7 which uses 1 = 15+1
can “win” the splittability game against this Z because it obtains Alice’s entire input. Such a
functionality F admits an “arms race” between T and Z [

Note that this F cannot be represented as a circuit family in which all inputs are bounded in
length by a fixed polynomial p(k) in the input parameter k. The discussion above crucially uses
the fact that there is no a priori limit to the length of inputs that the parties can give. Limiting
the input length allows a successful splitting strategy, by always providing 1! as large as allowed.
For this reason, such “arms race” behavior seems to require a functionality that is outside the class
of functionalities we consider in this work (defined formally in [Section 2.2)).

161 F also gives 1* as output to Alice, then it is strongly unsplittable for reasons unrelated to the one-way function.
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Example: uniform vs. non-uniform. The following functionality exhibits non-trivial behavior
that only non-uniform parties can access. An evasive set [GK92] is a non-empty set X in the
complexity class P, such that no uniform PPT machine can output an element of X except with
negligible probability.

Let f be a one-way function and X be an evasive set. Consider a functionality F which does
the following on input (z, z) € {0,1}* x {0, 1}* from Alice: Compute y = f(z). If z € X, then give
output y to Bob; otherwise, give output (z,y) to Bob. The functionality is not splittable, because
the splittability definition permits a non-uniform environment that can choose a random string
x € {0,1}*, and has an element z € X hard-coded. Any splitting strategy 7 would therefore be
required to invert the one-way function. On the other hand, F is not strongly unsplittable because
a uniform environment cannot give an element of X to F to access its non-trivial behavior. Then
T will always obtain the input = of Alice and its successful strategy is straight-forward.

As in the case of the negligible vs. noticeable gap, this gap can be essentially mitigated by
considering a notion of UC-realizable via non-uniform protocol. The only reason we restrict Z in
the strong unsplittability definition to be a uniform machine is because it is used as a subroutine
in a protocol.

B Unifying Existing Results

Several previous results have proved the completeness of various setup functionalities. In this
section, we show how our strong unsplittability characterization can “explain” and unify all these
disparate completeness results.

Common random string (CRS) and variants. The first functionality to be shown complete
for UC security is the common random string (CRS), in [CLOS0Z]. It is trivial to see that a CRS is
strongly unsplittable. The environment simply activates the setup and checks whether both parties
receive the same output. In any .7-"57';“t, we have that F; and Fgr give completely independent
outputs regardless of T, so the parties’ outputs agree only with probability 1/2™ (n is the length of
the reference string). Of course, read-only access to the functionality’s internal state does not give
T any advantage in making F, and Fg generate the same output. Thus, the CRS functionality is
both L- and R-strongly-unsplittable as WGHE]

It is desirable for a CRS to be used only with static access — i.e., in an “offline” phase the
beginning of the protocol. Our constructions do not satisfy this additional requirement. Indeed, it
is important to our results that the setup functionality JF is not activated until after the virtual-F
subprotocol is initialized in the reveal phase of our commitment protocol.

The multi-string model [GO0T7| captures situations in which many parties generate common ran-
dom strings, and a functionality enforces that a majority of them are honestly generated. Similarly,
the sunspots model [CPSOT] allows a reference string to be sampled from an adversarially-influenced
distribution. The setup functionality in each of these models crucially depends on the adversary’s
ability to interact with it, and thus it is beyond the scope of our characterization. Additionally in
the sunspots model, completeness can only be proven with respect to environments that influence
the setup functionality in non-degenerate ways.

Trusted hardware tokens & signature cards. Katz [KO7] proposed a variant of the UC
framework in which parties have access to trusted hardware tokens. Although not often grouped

1A similar argument applies to common reference strings selected from any distribution X for which Pr[z <«
X;2' < X : x # 2'] is noticeable.
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with other setup assumptions, these tokens can be modeled via an ideal functionality and thus be
considered within our classification.

A simplified formulation of the trusted hardware token functionality is as follows: It takes as
input the description of a Turing machine M from Alice and notifies Bob that the token is ready.
Thereafter, Bob can repeatedly give inputs x and receive the corresponding value M (x)@ In
[KO7], the functionality even allows M to have a persistent state, but we do not need to exploit
that capability to demonstrate strong unsplittability.

To see that this hardware-token functionality is strongly unsplittable, consider an environment
Z% that chooses random string s and lets M(-) = F(s,-), where F' is a pseudorandom function.
It gives input M to Alice, waits for a notification from Bob, then chooses a random string x as
input for Bob and simply checks whether Bob receives the correct output F'(s,z). In any splitting
strategy, 7 can query the pseudorandom function (sent to F7,) on polynomially many inputs of its
choice. With overwhelming probability, 7 will never query the function on the input x chosen by the
environment. By the pseudorandomness of F', the correct value M (z) = F(s,z) is pseudorandom
given 7T’s view. When 7 sends a Turing machine M’ to Fg, it is therefore only with negligible
probability then that M’(z) = M(x). Note that Bob cannot influence the internal state of the
functionality (it can forget his inputs after each activation), so the functionality is also R-strongly-
unsplittable.

In a related work, Hofheinz et al. show the completeness of a special kind of hardware token
called a signature card [HMQUO7]. The analysis of the signature card functionality is even easier
since the functionality itself generates verification keys that are publicly announced. Following the
same argument as for the CRS functionality, we see that these tokens are strongly unsplittable
(surprisingly, for reasons unrelated to their ability to compute signatures).

Unsplittable deterministic finite functionalities. Maji et al. [MPRIO] show that every de-
terministic, finite-memory functionality that is not useless (i.e., not splittable) is in fact complete.
Intuitively, a functionality whose input/output alphabet is finite cannot be in the space between
splittable and strongly unsplittable. More formally, in the case of non-reactive functionalities (i.e.,
secure function evaluation), a complete characterization of splittability is given by Prabhakaran &
Rosulek [PROS]. In fact, the characterization is proven in a way that is quite amenable to the strong
unsplittability definition. For all unsplittable non-reactive functionalities, they demonstrate a fized
environment that can distinguish between F and any fg;“t. In the case where the functionality is
finite, one can easily see that the environment has a constant distinguishing bias.

For the case of reactive functionalities, [MPRI10] explicitly contains an argument reminiscent of
strong unsplittability. They essentially show that if a finite F is not splittable, then an environment
which sends inputs uniformly at random can determine (with bias ©(1)) a predicate P(z) on the
first input used by Alice in the first activation. There also exist inputs zp and x; satisfying
P(xz0) # P(x1) which induce identical outputs for Bob in the first activation. The argument
in [MPRIO] is combinatorial, using an understanding of such functionalities as finite automata.
From this we can see that J is strongly unsplittable by an environment Z% that chooses random
b < {0,1}, instructs Alice to send z} in the first activation, and thereafter chooses random inputs
for all the parties. Because the view of T is independent of b in the first activation, the environment
will detect the splitting strategy with constant bias.

8n [K07], Alice is not notified of Bob’s accesses to the functionality, to fully model the fact that a hardware
token is a physical object that cannot “phone home” to its creator. Technically, this puts it outside of the class of
functionalities we consider in this work. Still, our construction works for the Z» we demonstrate here. More formally,
suppose F does not necessarily inform Alice of every activation. If F is R-strongly unsplittable even when Fr informs
both parties of every activation, then our protocol construction is still secure in the F-hybrid model.
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