
A Standard-Model Security Analysis of TLS-DHE

Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk

Horst Görtz Institute for IT Security
Chair for Network- and Data Security
Ruhr-University Bochum, Germany

{tibor.jager,florian.kohlar,sven.schaege,joerg.schwenk}@rub.de

September 30, 2011

Abstract

TLS is the most important cryptographic protocol in use today. However, up to now there is no
complete cryptographic security proof in the standard model, nor in any other model. We give
the first such proof for the TLS ciphersuites based on ephemeral Diffie-Hellman key exchange
(TLS-DHE), which include the cipher suite TLS DHE DSS WITH 3DES EDE CBC SHA mandatory in
TLS 1.0 and TLS 1.1. Due to subtle problems with the encryption of the final Finished messages
of the TLS handshake, this proof cannot be formulated in the Bellare-Rogaway (BR) or any other
indistinguishability-based model. Therefore we only prove the security of a truncated version of
the TLS handshake (which has been the subject of nearly all previous papers on TLS) completely
in the standard BR model. We then define the notion of authenticated and confidential channel
establishment (ACCE) as a model in which the combination of TLS handshake and TLS Record
Layer can be proven secure.
Keywords: authenticated key agreement, SSL, TLS, provable security, ephemeral Diffie-Hellman

1

Contents

1 Introduction 3
1.1 TLS and Authenticated Key Agreement . 3
1.2 Contribution . 4
1.3 Security Requirements on TLS Building Blocks . 4
1.4 Related Work . 6

2 Preliminaries and Definitions 7
2.1 The Decisional Diffie-Hellman Assumption . 8
2.2 Digital Signature Schemes . 8
2.3 Pseudo-Random Functions . 8
2.4 Stateful Length-Hiding Authenticated Encryption . 9

3 Transport Layer Security 10

4 AKE Protocols 13
4.1 Execution Environment . 13
4.2 Security Definition . 14

5 Truncated TLS with Ephemeral Diffie-Hellman is a Secure AKE Protocol 16
5.1 Authentication . 17
5.2 Indistinguishability of Keys . 21

6 ACCE Protocols 22
6.1 Execution environment . 22
6.2 Security Definition . 23
6.3 Relation to the classical AKE Security Definition from Section 4.2 24

7 TLS with Ephemeral Diffie-Hellman is a Secure ACCE Protocol 25

8 Conclusion 26

A Choosing the Right Model 32

2

1 Introduction

1.1 TLS and Authenticated Key Agreement

Transport Layer Security (TLS) is the single most important Internet security mechanism
today. Due to a subtle interleaving of the TLS handshake protocol with the TLS Record Layer it
is impossible to prove the security of TLS using well-established security models [11, 20, 19] which
define security via indistinguishability of keys. Therefore there is no security proof for the complete
protocol up to now, as we illustrate below. Instead, all prior work either considered a modified
version of the TLS handshake [36, 47], or weaker security goals [34].

In this paper we provide new security results for TLS. First we give a formal proof that the trun-
cated version of the TLS handshake protocol, which has been subject to prior work on TLS [36, 47],
is an authenticated key agreement protocol in the Bellare-Rogaway model. This enables direct com-
parison of our results. Then we extend both the model and the proof to cover the combination
of TLS handshake and TLS Record Layer, which allows us to show the security of full TLS ci-
phersuites. We consider TLS ciphersuites based on ephemeral Diffie-Hellman key agreement (TLS-
DHE), and assume that the building blocks of TLS (pseudo-random function, digital signature
scheme, MAC, symmetric cipher) meet certain classical security properties. Our proof is stated for
mutual authentication, i.e. the client authenticates itself using a client certificate. This allows us
to base our work on standard definitions for secure authenticated key agreement (AKE) protocols.
The result can be extended to server-only authentication. 1

We were not able to extend our techniques to RSA encrypted key transport, which is the basis
for the new mandatory ciphersuite in TLS 1.2. Such a result will be difficult to achieve, since it
would imply the security of RSA encryption with PKCS#1 v1.5 padding in the standard model.
In previous work this problem was circumvented by either using the Random Oracle Model [47], or
by assuming PKCS#1 v2.0 (RSA-OEAP), which is not used in TLS, and omitting authentication
[34].

Authenticated key agreement (AKE) is a basic building block in modern cryptography. Many
secure protocols for two-party and group key agreement have been proposed, including generic com-
pilers that transform simple key agreement protocols into authenticated key agreement protocols,
with many additional security properties. However, since many different formal models for different
purposes exist [9, 11, 15, 19, 20, 25, 43, 23], choice of the right model is not an easy task, and must
be considered carefully. We have to take into account that we cannot modify any detail in the TLS
protocol, nor in the network protocols preceding it.

We have chosen in essence the first model of Bellare and Rogaway [11] and the ability of the
adversary to perform adaptive queries. Essentially equivalent variants of this model have been
studied by [23, 15], and especially by [47]. The reasons for our choice are given in Appendix A.

Proving Security of TLS. Morissey et al. [47] consider a truncated handshake protocol, where
the final encryption of the Finished messages is omitted. This modification is necessary, since
the full TLS handshake does not provide indistinguishable keys due to an interleaving of the key
exchange part of TLS (the TLS handshake protocol) and the data encryption in the TLS record
layer. This interleaving provides a ’check value’ that allows to test whether a given key is ’real’
or ’random’. More precisely, the final messages of the TLS handshake protocol (the Finished

1Please note that TLS-DHE offers perfect forward security, in contrast to TLS-DH or TLS-RSA

3

messages), which are essential to provide security against active adversaries like e.g. man-in-the-
middle attackers, are first prepended with constant byte values (which provides us with known
plaintext), then MACed and encrypted with the keys obtained from the handshake protocol. Thus,
whenever an adversary receives a challenge key in response to a Test query, he can try to decrypt the
Finished message and check validity of the message authentication code (MAC). If this succeeds,
he will output ’real’, and otherwise ’random’. Even changing the behavior of the Test query to only
return the decryption keys (and not the MAC keys) does not help, since the adversary could still
use the known plaintext bytes to answer the Test query successfully. Therefore it is impossible to
prove the full TLS handshake protocol secure in any security model based on indistinguishability
of keys.

1.2 Contribution

The paradox that the most important AKE protocol cannot be proven secure in any existing security
model can be solved in two ways. Either one considers a truncated version of the TLS handshake
by omitting the encryption of the two Finished messages, or a new model for the combination of
the TLS-DHE handshake protocol and the record layer protocol must be devised. In this paper we
follow both approaches.

First we give a security proof for the truncated version of the TLS-DHE handshake protocol.
This allows to compare our results with previous work. We show that the truncated TLS-DHE
handshake is a secure AKE protocol in the standard Bellare-Rogaway model. We do not require
random oracles [10] or similar idealizations as in [47]. The proof relies solely on the DDH as-
sumption, and the assumption that the building blocks of TLS (i.e. the signature scheme and the
pseudo-random function) have certain standard security properties. It remains to consider whether
the building blocks have the required properties. Here we can build on previous works that analyzed
particular TLS components. (See Section 1.3 for details.)

Second we define the notion of authenticated and confidential channel establishment (ACCE).
ACCE protocols are an extension of AKE protocols, in the sense that the symmetric cipher is
integrated into the model. Loosely speaking, an ACCE channel guarantees that a message written
on this channel can only be read by a party X which has identity pkX , and that all messages
read from this channel indeed originate from party X. In contrast to AKE protocols, where one
requires key indistinguishability, we demand that a secure ACCE protocol allows to establish a
“secure channel” in the sense of stateful length-hiding authenticated encryption [50]. This captures
exactly the properties expected from TLS-like protocols in practice. We prove that full TLS-DHE
ciphersuites, i.e., the combination of TLS Handshake and TLS Record Layer, forms a secure ACCE
protocol, if the record layer protocol provides security in the sense of length-hiding authenticated
encryption. Note that the latter was proven recently by Paterson et al. [50] for CBC-based record
layer protocols.

1.3 Security Requirements on TLS Building Blocks

In our proofs we reduce the security of ephemeral Diffie-Hellman ciphersuites to certain security
properties of building blocks of TLS. These building blocks are (see Section 3 for precise definitions):

Pseudorandom function. Our proofs require that the pseudo-random function PRF meets the
standard security definition for pseudo-random functions, see Definition 3. All TLS versions specify

4

a construction of PRF from cryptographic hash functions. TLS 1.2 prescribes SHA-256 [30], while
previous standards used MD5 [53] and SHA-1 [31].

When using an ephemeral Diffie-Hellman based ciphersuite, there is a special requirement on
the pseudo-random function in use. Depending on the state of the protocol, the PRF is seeded with
keys from two different input spaces, namely either random bitstrings, or random elements of a
prime-order group (either a group defined over an elliptic curve or a subgroup of Z∗p). Fortunately,
Fouque et al. [33] where able to show that the pseudo-random function of TLS 1.2 indeed constitutes
a secure randomness extractor for both input spaces simultaneously (albeit under different security
assumptions, which however all are related to the fact that the compression function of the un-
derlying hash function behaves like a pseudo-random function), and thus implements the required
pseudo-random function. Their work focuses on TLS 1.2 while stressing that the implementation
of the key derivation function is not very different from the previous standards. We believe that
similar results can easily be obtained for TLS 1.0 and TLS 1.1.

Symmetric encryption. The purpose of the TLS protocol is to establish an authenticated
symmetric secret between two parties first (in the TLS handshake), and then to use this secret to
provide a “secure channel” based on symmetric encryption (in the TLS record layer). While the
informal idea of a “secure channel” is simple, defining its security requirements precisely is not so
trivial.

For instance, it is well-known that using e.g. IND-CCA secure encryption in the record layer
is not sufficient to provide what is expected from a secure TLS channel, since it does not prevent
many relevant attacks. For instance, it does not rule out replaying, dropping or re-ordering of
ciphertexts. This is certainly not desirable in a “secure channel”, since it may lead to various kinds
of attacks (cf. [18]). This issue can be solved by using a suitable stateful encryption scheme [5, 6].
For instance, TLS uses a “MAC-then-Encode-then-Encrypt” (MEE) approach where a sequence
counter is included in the MAC of each ciphertext. Moreover, it is well-known that sometimes even
only the plaintext length may reveal valuable informations to an adversary, such as web browsing
habits (e.g. [56]) or spoken phrases in Voice-over-IP connections (e.g. [60]). Therefore TLS may
utilize variable-length encoding to conceal the plaintext length up to some granularity.

To capture such requirements, the notion of stateful length-hiding authenticated encryption
(stateful LHAE) was recently introduced by Paterson et al. [50], as a formalization of the security
properties that are expected from the record layer of TLS. The authors of [50] were able to show
that CBC-based record layer protocols of TLS 1.1 and 1.2 provably meet this security goal under
reasonable assumptions.2 The results are not applicable to TLS 1.0, since it is well-known that this
version is insecure against chosen-plaintext attacks [2, 3] since intialization vectors are not always
chosen at random.

Digital signature. Our analysis furthermore requires that the employed signature scheme is se-
cure against existential forgeries under adaptive attacks (Definition 2). The current TLS standards
offer three different signature schemes for authentication: RSASSA-PKCS#1 v1.5 [37], DSA [44],
and ECDSA [35]. To our knowledge there exists currently no security proof for these signature
schemes (under standard complexity assumptions). In the random oracle model, DSA and ECDSA
are provably secure. More details can be found in [52, 57].

2The proceedings version of [50] contains only a proof of stateless LHAE security. However, as also noted in [50],
it is straightforward to adopt the results to the stateful setting. It was also announced that a full proof will appear
in the full version of [50].

5

Interpretation. Our results show that the TLS protocol framework itself is cryptographically
sound, if the building blocks are suitably secure. By combining our work with [50] we obtain a
standard-model security proof of TLS 1.1 and 1.2 for current ciphersuites if we assume directly
that the signature scheme is EUF-CMA secure.3

Our results can also be seen as a ’stepping stone’ towards a TLS version with a complete
security proof in the standard model. Essentially, we identify certain security properties and prove
that the TLS protocol framework yields a secure ACCE protocol under the assumption that the
TLS building blocks satisfy these properties. Thus, in order to obtain a TLS version with complete
security proof in the standard model, it suffices to specify a ciphersuite consisting of suitable building
blocks that have the desired security property. This seems achievable, since all requried security
notions are cryptographic standard definitions that have been shown to be achievable with practical
cryptosystems. In particular, we can build upon the results of Foque et al. [33] on the security of
the PRF, the results of Paterson et al. [50] on the security of the record layer protocols, and a large
number of practical signature schemes with provable EUF-CMA security in the standard model,
e.g. [32, 59, 17].

The proof that the truncated TLS handshake is a secure AKE protocol may be extended to static
DH, since this only involves a valid simulation for the DH game in Lemma 1. For RSA encrypted key
transport, the situation is more complex: Besides the know weaknesses of the PKCS#1 padding
scheme, a valid proof must take into account that the server only authenticates itself with the
ServerFinished message (m13 in Fig. 2), whereas our proof assumes that this happens already
with message m3 or m4. Thus the structure of such a proof may be completely different. In previous
publications, this problem was circumvented by either using a highly non-standard model [47], or
by omitting authentication [34].

1.4 Related Work

Because of its eminent role, TLS and its building blocks have been subject to several security
analyses. In 1996, Schneier and Wagner presented several minor flaws and some new active attacks
against SSL 3.0 [58]. Starting with the famous Bleichenbacher attack [16], many papers focus on
various versions of the PKCS#1 standard [37] that defines the encryption padding used in TLS
with RSA-encrypted key transport [24, 36, 39, 38]. At Crypto’02, Johnson and Kaliski showed
that a simplified version of TLS with padded RSA is IND-CCA secure when modeling TLS as
a ’tagged key-encapsulation mechanism’ (TKEM) [36] under the strong non-standard assumption
that a ’partial RSA decision oracle’ is available.

In an independent line of research, several works analyzed (simplified versions of) TLS using
automated proof techniques in the Dolev-Yao model [29]. Proofs that rely on the Dolev-Yao
model view cryptographic operations as deterministic operations on abstract algebras. There has
been some work on simplified TLS following the theorem proving and model checking approach,
i.e. Mitchell et al. used a finite-state enumeration tool named Murphi [46] while Ogata and
Futatsugi used the interactive theorem prover OTS/CafeObj [49]. Paulson used the inductive
method and the theorem prover Isabelle [51]. Unfortunately it is not known if these proofs are
actually cryptographically sound.

Bhargavan et al. [14] go two steps farther: First, they automatically derive their formal model

3To our best knowledge there is no proof for this for the currently used schemes, but also no result contradicting
these assumptions.

6

from the source code of an TLS implementation, and second they try to automatize computational
proofs using the CryptoVerif tool. However, the results are rather trivial. Chaki and Datta [22]
also use source code of TLS, automatically find a weakness in OpenSSL 0.9.6c, and claim that SSL
3.0 is correct.

In 2008, Gajek et al. presented the first security analysis of the complete TLS protocol, com-
bining handshake protocol and Record Layer, in the Universal Composability framework [19] for
all three key agreement protocols static Diffie-Hellman, ephemeral signed Diffie-Hellman, and en-
crypted key transport [34]. The nonces rC and rS exchanged between client and server can be
seen as an instantiation of the protocol of Barak et al. [1] to agree on a globally unique session
id. However, the ideal functionalities described in this paper are strictly weaker than the security
guarantees we expect from TLS: For the handshake part, only unauthenticated key agreement is
modelled (FKE), and thus the secure channel functionality (FSCS) only guarantees confidentiality,
not authenticity of endpoints. The paper further assumes that RSA-OEAP is used for encrypted
key transport, which is not the case for current versions of TLS.

Küsters and Tuengerthal [42] claim to prove composable security for TLS assuming only local
session identifiers, but leave out all details of the proof and only point to [34].

Morissey et al. [47] analyzed, in a paper that is closest to our results, the security of the
truncated TLS handshake protocol (cf. Section 5) in the random oracle model and provided a
modular proof of security for the established application keys. They make extensive use of the
random oracle model to separate the three layers they define in the TLS handshake, and to switch
from computational to indistinguishability based security models. The proof of Morissey et al.
proceeds in three steps. They first consider a very weak class of passively secure key agreement
protocols where the session key cannot be computed from the session transcript. As an example,
when considering encrypted key transport (of the premaster secret) this requirement can easily
be fulfilled if the employed public key encryption scheme is OW-CPA secure. Next they define
a slightly stronger security notion that additionally protects against unknown key share attacks
and show that it applies to the master secret key agreement of TLS. As before security of the
key is defined in a one-way sense. In the last step they show that the ’application keys’ (i.e. the
encryption keys and MAC keys) produced by TLS fulfill the standard notion of security, namely
indistinguishability from random values. The use of the random oracle model is justified by the
authors by the fact that it seems impossible to prove the PKCS#1 v1.5 based ciphersuites of TLS
secure in the standard model. This argumentation does not affect our work, since we only consider
Diffie-Hellman-based ciphersuites.

In a very recent work, Paterson, Ristenpart, and Shrimpton [50] introduce the notion of length-
hiding authenticated encryption, which aims to capture the properties from the TLS record layer
protocols. Most importantly, they were able to show that CBC-based ciphersuites of TLS 1.1 and
1.2 meet this security notion. This work matches nicely our results on the TLS handshake protocol.
Their paper extends the seminal work of Bellare and Namprempre [7, 8] on authenticated encryp-
tion, and on the analysis of different Mac-then-Encode-then-Encrypt (MEE) schemes analyzed by
Krawczyk [40] and Maurer and Tackmann [45].

2 Preliminaries and Definitions

In this section, we recall the required definitions for our result on the TLS protocol. We denote
with ∅ the empty string, and with [n] = {1, . . . , n} ⊂ N the set of integers between 1 and n. If A

7

is a set, then a
$← A denotes the action of sampling a uniformly random element from A. If A is a

probabilistic algorithm, then a
$← A denotes that A is run with fresh random coins and returns a.

2.1 The Decisional Diffie-Hellman Assumption

Let G be a group of prime order q. Let g be a generator of G. Given, (g, ga, gb, gc) for a, b, c ∈ Zq the
decisional Diffie-Hellman (DDH) assumption says that it is hard to decide whether c = ab mod q.

Definition 1. We say that the DDH problem is (t, εDDH)-hard in G, if for all adversaries A that
run in time t it holds that∣∣∣Pr

[
A(g, ga, gb, gab) = 1

]
− Pr

[
A(g, ga, gb, gc) = 1

]∣∣∣ ≤ εDDH,

where a, b, c
$← Zq.

2.2 Digital Signature Schemes

A digital signature scheme is a triple SIG = (SIG.Gen,SIG.Sign,SIG.Vfy), consisting of a key gen-

eration algorithm (sk, pk)
$← SIG.Gen(1κ) generating a (public) verification key pk and a secret

signing key sk on input of security parameter κ, signing algorithm σ
$← SIG.Sign(sk,m) generating

a signature for message m, and verification algorithm SIG.Vfy(pk, σ,m) returning 1, if σ is a valid
signature for m under key pk, and 0 otherwise.

Consider the following security experiment played between a challenger C and an adversary A.

1. The challenger generates a public/secret key pair (sk, pk)
$← SIG.Gen(1κ), the adversary

receives pk as input.

2. The adversary may query arbitrary messages mi to the challenger. The challenger replies
to each query with a signature σi = SIG.Sign(sk,mi). Here i is an index, ranging between
1 ≤ i ≤ q for some q ∈ N. Queries can be made adaptively.

3. Eventually, the adversary outputs a message/signature pair (m,σ).

Definition 2. We say that SIG is (t, εSIG)-secure against existential forgeries under adaptive chosen-
message attacks (EUF-CMA), if for all adversaries A that run in time t it holds that

Pr
[
(m,σ)

$← AC(1κ, pk) such that SIG.Vfy(pk,m, σ) = 1 ∧m 6∈ {m1, . . . ,mq}
]
≤ εSIG.

Note that we have q ≤ t, i.e. the number of allowed queries q is bound by the running time t of
the adversary.

2.3 Pseudo-Random Functions

A pseudo-random function is an algorithm PRF. This algorithm implements a deterministic function
z = PRF(k, x), taking as input a key k ∈ KPRF and some bit string x, and returning a string
z ∈ {0, 1}κ.

Consider the following security experiment played between a challenger C and an adversary A.

1. The challenger samples k
$← KPRF uniformly random.

8

2. The adversary may query arbitrary values xi to the challenger. The challenger replies to each
query with zi = PRF(k, xi). Here i is an index, ranging between 1 ≤ i ≤ q for some q ∈ N.
Queries can be made adaptively.

3. Eventually, the adversary outputs value x and a special symbol >. The challenger sets

z0 = PRF(k, x) and samples z1
$← {0, 1}κ uniformly random. Then it tosses a coin b

$← {0, 1},
and returns zb to the adversary.

4. Finally, the adversary outputs a guess b′ ∈ {0, 1}.
Definition 3. We say that PRF is a (t, εPRF)-secure pseudo-random function, if aa adversary
running in time t has at most an advantage of εPRF to distinguish the PRF from a truly random
function, i.e. ∣∣Pr

[
b = b′

]
− 1/2

∣∣ ≤ εPRF.

Again the number of allowed queries q is upper bounded by t (see Def. 2).

Remark 1. In 2008, Fouque et al. [33] showed that the HMAC-based key-derivation function of TLS
is a pseudo-random function for 1) KPRF = S, where S is a prime-order group of size |S| = q that is
either defined over an elliptic curve or as a subgroup of Z∗p such that q|p−1, and 2) KPRF = {0, 1}l
where l is the size of the master-secret (l = 384). The underlying security assumptions are all
related to the fact that the compression function of the hash function used in HMAC behaves like
a pseudo-random function. More details can be found in [33].

2.4 Stateful Length-Hiding Authenticated Encryption

Let us now describe the stateful variant of LHAE security (the following description and security
model was obtained from the authors of [50] via personal communication).

A stateful symmetric encryption scheme consists of two algorithms StE = (StE.Enc,StE.Dec).

Algorithm (C, st′e)
$← StE.Enc(k, `,H,m, ste) takes as input a secret key k ∈ {0, 1}κ, an output

ciphertext length ` ∈ N, some header data H ∈ {0, 1}∗, a plaintext m ∈ {0, 1}∗, and the current
state ste ∈ {0, 1}∗, and outputs a ciphertext C ∈ {0, 1}∗ and an updated state st′e. Algorithm
(m′, st′d) = StE.Dec(k,H,C, std) takes as input a key k, header data H, a ciphertext C, and the
current state std ∈ {0, 1}∗, and returns an updated state st′d and a value m′ which is either
the message encrypted in C, or a distinguished error symbol ⊥ indicating that C is not a valid
ciphertext. Both encryption state ste and decryption state std are initialized to the empty string
∅. Algorithm StE.Enc may be probabilistic, while StE.Dec is always deterministic.

Definition 4. We say that a stateful symmetric encryption scheme StE = (StE.Init,StE.Enc,StE.Dec)
is (t, εsLHAE)-secure, if Pr[b = b′] ≤ εsLHAE for all adversaries A running in time at most t in the
following experiment.

• Choose b
$← {0, 1} and k

$← {0, 1}κ, and set ste := ∅ and std := ∅,

• run b′
$← AEncrypt,Decrypt.

Here AEncrypt,Decrypt denotes that A has access to two oracles Encrypt and Decrypt. The encryption
oracle Encrypt(m0,m1, `,H) takes as input two messages m0 and m1. It maintains a counter i
which is initialized to 0. Oracle Decrypt(C,H) takes as input a ciphertext C and header H, and
keeps a counter j and a variable phase, both are initialized to 0. Both oracles proceed a query as
defined in Figure 1.

9

Figure 1: Encrypt and Decrypt oracles in the stateful LHAE security experiment.

Encrypt(m0,m1, `,H): Decrypt(C,H):

i := i+ 1 j := j + 1

(C(0), st
(0)
e)

$← StE.Enc(k, `,H,m0, ste) If b = 0, then return ⊥
(C(1), st

(1)
e)

$← StE.Enc(k, `,H,m1, ste) (m, std) = StE.Dec(k,H,C, std)

If C(0) = ⊥ or C(1) = ⊥ then return ⊥ If j > i or C 6= Cj , then phase := 1

(Ci, ste) := (C(b), st
(b)
e) If phase = 1 then return m

Return Ci Return ⊥

3 Transport Layer Security

The current version of TLS is 1.2 [28] and coexists with its predecessors TLS 1.0 [26] and TLS 1.1 [27].
Figure 2 illustrates the TLS protocol with ephemeral Diffie-Hellman key exchange and client au-
thentication (i.e. ciphersuites TLS DHE *). This figure and the following description are valid for
all TLS versions since v1.0.

The TLS handshake protocol consists of 13 messages, whose content ranges from constant byte
values to tuples of cryptographic values. Not all messages are relevant for our security proof, we
list them merely for completeness. All messages are prepended with a numeric tag that identifies
the type of message, a length value, and the version number of TLS. All messages are sent through
the ’TLS Record Layer’, which at startup provides no encryption nor any other cryptographic
transformations.

Client hello. Message m1 is the Client Hello message. It contains four values, two of which
are optional. For our analysis the only important value is rC , the random value chosen by the client.
It consists of 32 bytes (256 Bits), where 4 Bytes are usually used to encode the local time of the
client. The remaining 28 Bytes are chosen randomly by the client. If the client wants to resume a
previous TLS session, he may optionally include a TLS session ID value received from the server in
a previous session. (This value is not protected cryptographically and should thus not be confused
with session IDs used in formal security proofs.) This is followed by a list cs-list of ciphersuites,
where each ciphersuite is a tuple of key exchange method, signing, encryption and MAC algorithms,
coded as two bytes. Data compression is possible before encryption and is signaled by the inclusion
of zero or more compression methods.

Server hello. The Server Hello message m2 has the same structure as Client Hello, with
the only exception that at most one ciphersuite and one compression method can be present. In
our analysis the random value rS is important. The server may send a TLS session ID sID to
the client. Message m3 may contain a chain of certificates, starting from the TLS server certificate
up to a direct child of a root certificate. Since we do not include public key infrastructures in our
analysis (the identity of each party is its public key pkS), one certificate certS containing pkS (which
may be self-signed) is sufficient for this paper. The public key in the certificate must match the
ciphersuite chosen by the server. For ephemeral Diffie-Hellman key exchange, the public key may
be any key that can be used to sign messages. The Diffie-Hellman (DH) key exchange parameters
are contained in the Server Key Exchange message m4, including information on the DH group
(e.g. prime number p and generator g for a prime-order q subgroup of Z∗p), the DH share TS , and

10

C S

(IC = pkC , skC)(IC = pkC , skC) (IS = pkS , skS)

rC
r←− {0, 1}λ1 m1 : rC , cs-list

rS
r←− {0, 1}λ1

tS
r←− Zq, TS = gtS mod p

σS := SIG.Sign(skS , rC ||rS ||p||g||TS)
m2 : rS , cs-choice

m3 : certS
m4 : p, g, TS , σS
m5 : get-cert

m6 : done

If SIG.Vfy(pkS , σS , rC ||rS ||p||g||TS) = 0→ Λ = reject

tC
r← Zq, TC = gtC mod p

σC := SIG.Sign(skC ,m1|| . . . ||m8)

pms := T tCS mod p

ms := PRF(pms, label1||rC ||rS)

KC→S
enc ||KS→C

enc ||KC→S
mac ||KS→C

mac := PRF(ms, label2||rC ||rS)

finC := PRF(ms, label3||m1|| . . . ||m10) m7 : certC

m8 : TC

m9 : σC

m10 : flagenc

m11 : (C11, ste) = StE.Enc(KC→S
enc ||KC→S

mac , `,H, finC , ste)

If SIG.Vfy(pkC , σC ,m1|| . . . ||m8) = 0→ Λ = reject

pms := T tSC mod p

ms := PRF(pms, label1||rC ||rS)

KC→S
enc ||KS→C

enc ||KC→S
mac ||KS→C

mac := PRF(ms, label2||rC ||rS)

finS := PRF(ms, label4||m1|| . . . ||m12)
m12 : flagenc

m13 : (C13, ste) = StE.Enc(KS→C
enc ||KS→C

mac , `,H, finS , ste)

pre-accept phase

If finS 6= PRF(ms, label4||m1|| . . . ||m12)→ Λ = reject

If finC 6= PRF(ms, label3||m1|| . . . ||m10)→ Λ = reject

——
post-accept phase StE.Enc(KC→S

enc ||KC→S
mac , `,H, data, ste)

StE.Enc(KS→C
enc ||KS→C

mac , `,H, data, ste)

Figure 2: TLS handshake for ciphersuites TLS DHE * with client authentication

a signature computed over these values plus the two random numbers rC and rS . The next two
messages are very simple: the Certificate Request message m5 only contains a list of certificate

11

types that the client may use to authenticate itself, and the Server Hello Done message m6 does
not contain any data, but consists only of a constant tag with byte-value ’14’ and a length value
’0’.

Client Key Exchange. Having received these messages and after successful verification of σS
the client is able to complete the key agreement and to compute the cryptographic keys. The
Client Certificate message m7 contains a signing certificate certC with the public key pkC of
the client. Message m8 is called Client Key Exchange, and contains the Diffie-Hellman share TC
of the client. To authenticate the client, a signature σC is computed on a concatenation of all
previous messages (up to m8) and padded prefixes, thus including the two random nonces and the
two Diffie-Hellman shares. This signature is contained in the Certificate Verify message m9.

The client is now also able to compute the premaster secret pms, from which all further secret
values are derived. After computing the master secret ms, it is stored for the lifetime of the TLS
session, and pms is erased from memory. The master secret ms is subsequently used, together with
the two random nonces, to derive all encryption and MAC keys as well as the key confirmation
message finC .

Client Finished. After these computations have been completed, the values are handed over to
the TLS record layer of the client, which is now able to encrypt and MAC protect any data. To
signal the ’start of encryption’ to the server, a single message m10 (Change Cipher Spec) with byte
value ’1’ (flagenc) is sent unencrypted to S. The next data to be sent is Client Finished finC ;
message m11 consists of an encryption of finC concatenated with its MAC, where the padding
described above is applied to finC before encryption.

Remark 2. Please note that this padding allows for (partially) known plaintext attacks on m11.
Thus if we analyze TLS in the BR model, the answer to a Test query could be tested by an
adversary by simply decrypting m11, and checking if the resulting plaintext has the appropriate
padding. Thus TLS is not provably secure in the BR model.

Server Finished. After the server has received messages m7,m8,m9, and after having checked the
signature in m9, the server can also compute pms, ms, encryption and MAC keys, and the Server

Finished message finS . He can then decrypt m11 and check finC by computing the pseudo-
random value on the messages sent and received by the server. If this check fails, he ’rejects’ and
aborts the handshake. If the check is successful, he ’accepts’ and sends messages m12 and m13 to
the client. If the check of finS on the client side is successful, the client also ’accepts’.

Encrypted Payload Transmission. The obtained keys can now be used to transmit payload
data in the TLS Record Layer using a stateful symmetric encryption scheme StE = (StE.Enc, StE.Dec)
(cf. Section 2.4). The CBC-based TLS record layer protocols work as follows. The state ste of
the encryption algorithm consists of a sequence number, which is incremented on each encryption
operation. The encryption algorithm takes a message m and computes a MAC over m, the sequence
counter, and some additional header data H (such as version numbers, for instance). Then message
and MAC are encoded into a bit string by using a padding to a specified length l and encrypted
(“MAC-then-Encode-then-Encrypt”).

The state std of the decryption algorithm consists of a sequence number, which incremented on
each decryption operation. Given a ciphertext, the algorithm decrypts and verifies the MAC using
its own sequence counter. See [50] for details.

Abbreviated handshake. In our analysis, we do not consider abbreviated TLS handshakes. We

12

note however that the server can always enforce a full handshake, and that it may also be possible
to prove the security of abbreviated handshakes in our framework. Also note that abbreviated
handshakes (or renegotiations) may lead to attacks on TLS, e.g. the attack in 2009 on TLS
renegotation which gave an adversary access to a limited encryption oracle. We do not cover such
attacks in our model as of now, see also the discussion in App. A.

Error messages. Error messages and other side channel information can be extremely useful to
mount attacks on TLS. However they are outside the scope of this paper, and left as future work.

4 AKE Protocols

AKE Protocols. Let K = {0, 1}κ. An authenticated key-exchange (AKE) protocol is a protocol
executed among two parties. Each party maintains (at least) two internal state variables Λ ∈
{accept, reject} and k ∈ K. At some point during the protocol execution (typically after the
last message according to the protocol specification has been sent) each party ends up either with
an internal state (Λ, k) = (accept, k) for some k ∈ K, or with internal state (Λ, k) = (reject, ∅)
where ∅ denotes the empty string.

While the security models for, say, (public-key) encryption (e.g., IND-CPA or IND-CCA secu-
rity), or digital signature schemes (e.g., EUF-CMA), are clean and simple, a more complex model is
required to model the capabilities of active adversaries to define secure authenticated key-exchange.
An important line of research [15, 20, 43, 25] dates back to Bellare and Rogaway [11], where an
adversary is provided with an ’execution environment’, which emulates the real-world capabilities of
an active adversary. In this model, the adversary has full control over the communication network,
which allows him to forward, alter, or drop any message sent by the participants, or insert new
messages.

4.1 Execution Environment

Consider a scenario where there is a set of parties {P1, . . . , P`} for ` ∈ N, where each party Pi ∈
{P1, . . . , P`} is a potential protocol participant and each party has a long-term key pair (pki, ski)

4.
To model several sequential and parallel executions of the protocol, each party Pi is modeled

by a collection of oracles π1i , . . . , π
d
i for d ∈ N. Each oracle πsi represents one single process that

executes an instance of the protocol. All oracles π1i , . . . , π
d
i representing party Pi have access to the

same long-term key pair (pki, ski) of Pi and to all public keys pk1, . . . , pk`. Moreover, each oracle
πsi maintains a separate internal state

• a variable Π storing the ’destination address’ dj (not an identity nor a cryptographic identifier)
of an intended communication partner Pj ,

5

• a variable Λ ∈ {accept, reject},

• a counter ∆ used to keep track of the current status of the protocol execution,

• a variable k storing the session key used for symmetric encryption between πsi and Π

4We assume that each party Pi is uniquely identified by its public key pki. In practice, there may be other
identities that are bound to this public key, e.g. by using certificates. However, this is out of scope of this paper.

5Please note that we use a post-specified peer model here [21].

13

• and some additional temporary state variable st (which may, for instance, be used to store
ephemeral Diffie-Hellman exponents or the transcript of all messages sent/received during the
handshake).

When describing a protocol in the sequel, we will enumerate the protocol messages. The oracles
keep track of the protocol execution by setting the counter state equal to the message number that
the oracle expects to receive next, and update the counter on each message sent (e.g. ∆← ∆ + 1).
The internal state of each oracle is initialized to (Π,Λ,∆, k, st) = (∅, ∅, 1, ∅, ∅). Furthermore, we
will always assume (for simplicity) that k = ∅ if an oracle has not reached accept-state (yet), and
contains the computed key if an oracle is in accept-state, so that we have

k 6= ∅ ⇐⇒ Λ = accept. (1)

An adversary may interact with these oracles by issuing the following queries.

• Send(πsi ,m): The adversary can use this query to send any message m of his own choice to
oracle πsi . The oracle will respond according to the protocol specification, depending on its
internal state. If ∆ = 1 and m = (>, dj) consists of a special symbol > and a destination
address dj , then πsi will set Π = dj and respond with the first protocol message.

• Reveal(πsi): Oracle πsi responds to a Reveal-query with the contents of variable k. Note that
we have k 6= ∅ if and only if Λ = accept, see (1).

• Test(πsi): This query may only be asked once throughout the game. Oracle πsi handles this
query as follows: If the oracle has state Λ 6= accept, then it returns some failure symbol ⊥.

Otherwise it flips a fair coin b, samples a random element k0
$← K, sets k1 = k to the ’real’

session key, and returns kb.

The Send message enables the adversary to initiate and run an arbitrary number of protocol
instances, sequential or in parallel, and provides full control over the communication between all
parties. The Reveal query may be used to learn the session keys used in previous/concurrent
protocol executions. The Test-query will be used to define security.

There exist variants of the above model [12, 15] that also allow Corrupt-queries which reveal
the long-lived key of a party Pi. To keep the model simple, we omit such an explicit Corrupt-query
and use that in the BR-model static corruptions are equivalent to strong adaptive corruptions
(see [54, §15]). In our definition, static corruptions are modeled by letting the adversary choose a
set of public-keys at the beginning of the security game. In response, all corresponding parties are
marked as ’corrupted’ and the adversary is provided with the corresponding secret keys. 6

4.2 Security Definition

Bellare and Rogaway [11] have introduced the notion of matching conversations in order to define
correctness and security of an AKE protocol precisely.

Let Ti,s denote the transcript of all messages sent and received by process πsi . Let T
(−1)
i,s be the

transcript Ti,s truncated by the last message.

Definition 5. We say that a processes πsi has a matching conversation to process πtj , if

6Note that in doing so we loose a factor of 1
d2`2

in the reduction.

14

• πsi has sent the last message, and it holds that T
(−1)
i,s = T

(−1)
j,t , or

• πtj has sent the last message, and it holds that Ti,s = Tj,t.

We say that two processes πsi and πtj have matching conversations if πsi has a matching conversation
to process πtj , and vice versa.

Remark 3. We remark that matching conversations in the above sense can also be seen as post-
specified session identifiers. The ’asymmetry’ of the definition (i.e., the fact that we have to
distinguish which party has sent the last message) is necessary, due to the fact that protocol
messages may be sent sequentially. For instance in the TLS handshake protocol (see Figure 2) the
last message of the client is the ’client finished’ message finC , and then it waits for the ’server
finished’ message finS before acceptance. In contrast, the server sends finS after receiving finC .
Therefore the server has to ’accept’ without knowing whether its last message was received by the
client correctly. We have to take this into account in the definition of matching conversations, since
it will later be used to define security of the protocol in presence of an active adversary that may
simply drop the last protocol message.

Security of AKE protocols is now defined by requiring that (i) the protocol is a secure authen-
tication protocol, thus any party πsi accepts only if there exists another party πtj such that πsi has
a matching conversation to πtj , and (ii) the protocol is a secure key-exchange protocol, thus an
adversary cannot distinguish the session key k from a random key.
AKE Game. We formally capture this notion as a game, played between an adversary A and
a challenger C. The challenger implements the collection of oracles {πsi : i ∈ [`], s ∈ [d]}. At the
beginning of the game, the challenger generates ` long-term key pairs (pki, ski) for all i ∈ [`]. The
adversary receives the public keys pk1, . . . , pk` as input. Then it may submit a subset corrupt ⊆ [`]
and receives the secret keys ski for all i ∈ corrupt. All parties Pi with i ∈ corrupt are said to be
corrupted. Now the adversary may start issuing Send and Reveal queries, as well as one Test query.
Finally, the adversary outputs a bit b′ and terminates.

Definition 6. We say that an AKE protocol is (t, ε)-secure, if for all (possibly probabilistic)
adversaries A running in time t and for all uncorrupted parties Pi and Pj in the AKE Game it
holds that:

1. When A terminates, there exists no oracle πsi (except with probability ε), such that

• πsi has internal state Λ = accept with Π = dj , and

• there is no oracle πtj such that πsi and πtj have matching conversations.

2. When A returns b′ such that

• A has issued a Test-query to oracle πsi , and

• πsi has internal state Π = dj , and

• A did not issue a Reveal query to πsi , nor to an oracle πtj such that πtj has a matching
conversation with oracle πsi ,

then the probability that b′ equals the bit b sampled by the Test-query is bounded by∣∣Pr[b = b′]− 1/2
∣∣ ≤ ε.

15

Remark 4. There is a subtle difference between the model described above and the classical model
of Bellare and Rogaway from [11], which we want to highlight due to its importance. Bellare
and Rogaway made the restriction that the Test-query is the adversary’s last. It was pointed out
(see Remark 5 in [9]) that this does not guarantee security for certain applications. It is however
folklore [9] that simply removing the restriction suffices to solve the issue. Accordingly, we allow
the adversary explicitly to make further queries after the Test-query.

Remark 5. It is easily possible to extend the above Bellare-Rogaway model, such that also perfect
forward secrecy of key exchange protocols is considered. This can be done by allowing to corrupt
even the “test oracle” or its partner, but only after issuing the Test query. Though we do not
consider it in detail, we are confident that all our proofs are valid in this extended model as well.
A detailed analysis is left open for future extensions of this work.

5 Truncated TLS with Ephemeral Diffie-Hellman is a Secure AKE
Protocol

In this section we prove the security of a modified version of the TLS handshake protocol. As
discussed in the introduction, it is impossible to prove the full TLS handshake protocol secure in
the BR model, since the encryption and MAC of the Finished messages provide a ’check value’,
which can be exploited by an adversary to answer the Test query correctly with probability 1.

Therefore we consider the ’truncated’ TLS version from [47, 48]. In this truncated version, we
assume that the Finished messages are sent in clear, that is, neither encrypted nor authenticated
by a MAC. More precisely, we modify the TLS protocol depicted in Figure 2 such that message
m11 contains only finC (instead of StE.Enc(KC→S

enc ||KC→S
mac , `,H, finC , ste)), and m13 contains only

finS (instead of StE.Enc(KS→C
enc ||KS→C

mac , `,H, finS , ste)). Interestingly, this simple modification
allows us to prove security in the standard Bellare-Rogaway model.

We consider an ’exact security’ setting, where the success probability of all adversaries running
in some time t is bounded using the concrete parameter size specified in the TLS standard.

Theorem 1. Assume that the pseudo-random function PRF is (t, εPRF)-secure, the signature scheme
is (t, εSIG)-secure and the DDH-problem is (t, εDDH)-hard in Zq with respect to the definitions in
Section 2. Then the truncated ephemeral Diffie-Hellman TLS handshake protocol is a (t′, ε)-secure
AKE protocol with t ≈ t′ and

ε ≤ d2`2

2λ1−1
+ 2 · (` · εSIG + 2 · d` · εPRF + ·εDDH) +

d`

2µ

in the sense of Definition 6.

Proof Overview. We prove Theorem 1 in two stages. First, we show that TLS is a secure
authentication protocol, that is, TLS meets Property 1.) of Definition 6. On a high level, the proof
proceeds as follows.

In a first step, we ensure that no adversary can modify the Diffie-Hellman shares sent by two
(uncorrupted) oracles. To this end, both oracles verify exchanged signatures and ’reject’ on failure.
Since both random nonces and the Diffie-Hellman shares are input to the digital signatures, any
adversarial modification of the Diffie-Hellman shares will result in a ’reject’ of one of the two oracles.
The fact that these values cannot be altered by an adversary enables us in a second step to use

16

the DDH assumption to replace the premaster secret (the seed to the PRF, which consists of the
Diffie-Hellman key) with a random value. The remaining steps of the proof exploit that the PRF
seed is an independent random value, since this implies that we can replace both the master secret
and the returned keys with random values, assuming that the PRF is secure. Finally, observe that
the PRF is used to compute the Finished messages. We now exploit that a PRF trivially gives rise
to a MAC. As both oracles verify this MAC, we conclude that no adversary can alter any message
without detection, otherwise we are able to break the security of the PRF.

Second, we show that TLS is a secure key-exchange protocol (Property 2.) of Definition 6).
The proof is very similar to the above, we merely add two steps. We first replace the keys output
by PRF with independent random values. Then we reduce to the sLHAE security of the record
layer protocol, which is possible due to the fact that the keys now are independently random.

Proof. We prove Theorem 1 by two lemmas. Lemma 1 states that the AKE protocol meets
Property 1.) of Definition 6 (authentication), Lemma 2 states that it meets Property 2.) of
Definition 6 (indistinguishable keys).

5.1 Authentication

Lemma 1. The TLS handshake protocol meets property 1.) of Definition 6.

Proof. The proof proceeds in a sequence of games, following [13, 55]. The first game is the real
security experiment. We then describe several intermediate games that modify the original game
step-by-step, and argue that our complexity assumptions imply that each game is computationally
indistinguishable from the previous one. We end up in the final game, where no adversary can
break the security of the protocol. All modifications are made only to uncorrupted oracles whose
intended partner is not corrupted, i.e., oracles whose internal state Π points to a non-corrupted
party, as otherwise the adversary can trivially detect these modifications.

Let λ1, µ ∈ N. Assume PRF has output bit-length µ, the exchanged random nonces have size

λ1. Let break
(1)
τ be the event that (i) there exists oracle πsi reaches internal state Λ = accept, but

(ii) there is no oracle πtj such that πsi and πtj have matching conversations, in Game τ .

Game 0. This game equals the AKE security experiment described in Section 4.2.

Game 1. In this game, the challenger proceeds exactly like the challenger in Game 0, except that
we add an abort rule. The challenger raises event abortnonce and aborts, if during the simulation a
pair of nonces (rC , rS) appears twice.

Since both games proceed identical until abortnonce is raised, we have∣∣∣Pr[break
(1)
0]− Pr[break

(1)
1]
∣∣∣ ≤ Pr[abortnonce].

All oracles sample rC or rS uniformly random from {0, 1}λ1 . Thus, by applying the birthday
bound and the fact that the adversary has access to at most d` oracles, we have

Pr[abortnonce] ≤
d2`2

2λ1
.

Note, that each oracle sends and receives exactly one nonce and that the combination of both
nonces is unique in Game 1 (as the game is aborted otherwise). Therefore we may regard a

17

tuple (rC , rS) as a ’session identifier’ for one particular oracle. We will use in the sequel that this
’session identifier’ is used as input to both the signing algorithm (providing authentication of the
communication partner) and to the computation of the Finished message (which ensure matching
conversations).

Game 2. In this game we want to make sure that each accepting oracle receives as input exactly
the nonce rC or rS and the ’Diffie-Hellman key exchange value’ TC or TS which was chosen and sent
by its ’partner’ oracle. Here we can use the fact that the random nonces rC and rS are unique due
to Game 1 and that the tuple (rC , rS) is included together with (at least one of) the Diffie-Hellman
shares in both signatures issued by the partners.

Technically, we add another abort condition. The challenger proceeds exactly as before, but
raises event abortsig and aborts if there exists an oracle πsi such that πsi ’accepts’, and

• πsi has session identifier (rC , rS) and Diffie-Hellman shares (TC , TS)

• there is no oracle πtj which has the same combination of session identifier (rC , rS) and Diffie-
Hellman shares (TC , TS)

• but the signature received by πsi and computed over TS or (TC , TS) verifies correctly under
the long-term public key pkj of πtj .

7,

Clearly we have ∣∣∣Pr[break
(1)
1]− Pr[break

(1)
2]
∣∣∣ ≤ Pr[abortsig].

To show that Pr[abortsig] is negligible, we construct a signature forger as follows. The forger

receives as input a public key pk∗ and simulates the challenger for A. It guesses an index φ
$← [`],

sets pkφ = pk∗, and generates all long-term public/secret keys as before. Then it proceeds as the
challenger in Game 2, except that it uses its chosen-message oracle to generate a signature under
pkφ when necessary.

When abortsig is raised, then this means that

• πsi has received as input a signature containing (rC , rS) and either TS or (TC , TS)

• no oracle πtj has ever issued a signature containing (rC , rS) and either TS or (TC , TS)

• but the signature verifies correctly under pkj .

If φ = j, which happens with non-negligible probability 1/`, then the forger can use the signature
received by πsi to break the EUF-CMA security of the signature scheme with success probability

εSIG, so
Pr[abortsig]

` ≤ εSIG. Therefore if Pr[abortsig] is not negligible, then εSIG is not negligible as well
and we have ∣∣∣Pr[break

(1)
1]− Pr[break

(1)
2]
∣∣∣ ≤ ` · εPRF.

Note that in Game 2 each accepting oracle πsi has a unique ’partner’ oracle πtj sharing the same
session identifier (rC , rS), as otherwise the game is aborted. Note also that in Game 2 each Diffie-
Hellman share received by an accepting oracle πsi is exactly the value that was sent by the partner

7It is important to note that the signature sent by a ’server’ oracle is only computed over the Diffie-Hellman share
of this oracle TS , whereas the signature sent by a ’client’ oracle protects both shares (TC , TS).

18

oracle πtj of πsi . Both oracles are implemented by the challenger, thus, in Game 2 the challenger has
full control over all Diffie-Hellman keys computed by all accepting oracles throughout the game.
This enables us to exchange the premaster secret values in Game 3.

Game 3. In this game, we replace the Diffie-Hellman keys computed by all oracles with uniformly
random group elements of the subgroup. The fact that the challenger has full control over the
established Diffie-Hellman keys, due to the modifications introduced in the previous games, provides
us with the leverage to prove indistinguishability under the Decisional Diffie-Hellman assumption.

Technically, the challenger in Game 3 proceeds as before, but whenever a premaster secret pms
has to be computed as pms = gtCtS , the challenger replaces this value with a uniformly random

value p̃ms = gr for r
$← Zq, which is in the following used by both partner oracles.

Suppose there exists an algorithm distinguishing Game 3 from Game 2. Then we can construct
an algorithm B solving the DDH problem as follows. Algorithm B receives as input a DDH challenge
(g, ga, gb, gc). It runs the (efficient) algorithm described in [4, Lemma 5.2] to generate 3d` group
elements8

(ga1 , gb1 , gc1), . . . , (gad` , gbd` , gcd`)

such that

• ci = aibi for all i ∈ d`, if c = ab, and

• the vector (gai , gbi , gci)i ∈ d` is uniformly distributed over (Z∗p)3d`, if c 6= ab.

The challenger uses the values gai instead of the gtS values chosen by a ’server’ oracle, and the
corresponding value gbi instead of the gtC for the ’client’ oracle sharing the same session identifier
(rC , rS) with the ’server’ oracle. Instead of computing the Diffie-Hellman key as in Game 2, it sets
pms = gci both for the ’client’ and the ’server’ oracle. Now if ci = aibi, then this game proceeds
exactly like Game 2, while if ci is random than this game proceeds exactly like Game 3. Now if the
algorithm that is able to distinguish Game 3 from Game 2 outputs 1 (meaning this game proceeds
like Game 3), B outputs 1 as answer to the DDH challenge (meaning ci is chosen at random),
otherwise B outputs 0. The DDH assumption therefore implies that∣∣∣Pr[break

(1)
2]− Pr[break

(1)
3]
∣∣∣ ≤ εDDH

Note that in Game 3 all premaster secrets of accepting oracles are uniformly random, and
independent of any messages sent throughout the game. This will provide us with the leverage to
replace the function PRF(p̃ms, ·) with a truly random function, whose output is also independent
of any messages sent, in the next game.

Game 4. In Game 4 we make use of the fact that the premaster secret p̃ms is chosen uniformly
random, and independent of any message sent. We thus replace the value ms = PRF(p̃ms, ·) with
a random value sampled from a truly random function m̃s = Fp̃ms, since PRF is assumed to be a
pseudo-random function which is secure according to Definition 3.

We prove this by a hybrid argument and define a sequence of hybrid games H0, . . . ,Hn, such
that hybrid H0 equals Game 3 and Hn equals Game 4. Then we argue that hybrid Hi−1 is

8Recall that d` equals the number of oracles the adversary may query.

19

indistinguishable from Hi for i ∈ {1, . . . , n}, except for some small probability εPRF. We define
the hybrids as follows: H0 behaves exactly as Game 3. Then in hybrid i we replace the computed
master secret ms with a uniformly random value m̃s for oracle πtj , where j and t are uniquely
identified by index i. Hybrid Hn then behaves exactly as Game 4. Let Ei denote the event that A
outputs 1 in hybrid i. Suppose for contradiction

|Pr[E0]− Pr[En]| > n · εPRF,

that is the difference in the success probability ofA in hybridH0 compared to the success probability
in Hn is negligible except for probability n · εPRF.9 In this case there must exist an index i such
that |Pr[Ei−1]− Pr[Ei]| > εPRF.

Suppose there exists an algorithm D able to distinguish between two hybrids Hi−1 and Hi

(with probability |Pr[Ei−1]− Pr[Ei]| = εPRF). Then we can construct an adversary B breaking
the security of the PRF as follows. At first, B, guesses an index i ∈ [n] (and with probability 1

n
this index corresponds to the index i where |Pr[Ei−1]− Pr[Ei]| = maxi |Pr[Ei−1]− Pr[Ei]|) and
inputs (rC , rS) to the PRF-challenger. The challenger computes z0 = PRF(p̃ms, label1||rC ||rS) and
z1 = Fp̃ms, tosses a coin b = 0/1 and outputs zb to the adversary. Then B sets ms = zb for party
πtj indexed by i. Now, if D outputs 1, B returns 1 to the challenger, otherwise it returns 0. If B
guessed the correct index, then the answer of B is correct with probability maxi |Pr[Ei−1]− Pr[Ei]|

Thus we have ∣∣∣Pr[break
(1)
3]− Pr[break

(1)
4]
∣∣∣ ≤ d` · εPRF

Game 5. In this game we make a modification similar to the changes introduced in Game 4.
This time we replace the function PRF(m̃s, ·) with a random function, which is possible since m̃s
is independent and uniformly random.

Instead of evaluating the function PRF(m̃s, ·) to compute and verify the Finished messages,
the challenger in Game 5 samples a truly random function Fm̃s with output bit-length µ. Of course
the same random function is used for both partner oracles sharing the same m̃s. In particular, this
function is used to compute the Finished messages by both partner oracles.

With the same arguments as in Game 4 distinguishing Game 5 from Game 4 implies an algorithm
breaking the security of the pseudo-random function PRF, thus∣∣∣Pr[break

(1)
4]− Pr[break

(1)
5]
∣∣∣ ≤ d` · εPRF

Game 6. Finally we use that the full transcript of all messages sent and received is used to
compute the Finished messages, and that Finished messages are computed by evaluating a truly
random function due to Game 5, to show that any adversary has only a negligible probability of
making an oracle accept without a partner oracle having a matching conversation.

Thus, this game proceeds exactly like the previous game, except that the challenger now raises
event abortfin and aborts if an oracle πsi accepts, but there is no oracle πtj having a matching
conversation to πs.

The Finished messages are computed by evaluating a truly random function Fm̃s, which is
only accessible to the partner oracles sharing m̃s, and the full transcript containing all previous

9Note that n ≤ d`.

20

messages is used to compute the Finished messages. If there is no oracle having a matching
conversation to πsi , the adversary receives no information about Fm̃s(preamble||m1|| · · · ||m10) (resp.

Fm̃s(preamble||m1|| · · · ||m12)). Therefore we have Pr[break
(1)
6] = 1

2µ and∣∣∣Pr[break
(1)
5]− Pr[break

(1)
6]
∣∣∣ ≤ d`

2µ
.

Collecting probabilities from Game 0 to Game 6 proves Lemma 1.
Together we have∣∣∣Pr[break

(1)
0]− Pr[break

(1)
6]
∣∣∣ ≤ d2`2

2λ1
+ ` · εSIG + 2 · d` · εPRF + εDDH +

d`

2µ
.

�

5.2 Indistinguishability of Keys

Lemma 2. The TLS handshake protocol meets property 2.) of Definition 6.

Proof. Let break
(2)
τ denote the event that the A returns a bit b′ such that A has issued a Test-query

to oracle πsi , and

• A did not issue a Reveal query to πsi , nor to an oracle πtj having a matching conversation with
oracle πsi ,

• party Pi is not corrupted and for any oracle πtj having a matching conversation to πsi , it holds
that Party Pj is not corrupted as well,

and b′ equals the bit b sampled by the Test-query, in Game τ .

Game 0. This game equals the AKE security experiment described in Section 4.2.

Game 1. This game equals Game 4 from the proof of Lemma 1. With the same arguments as in
the proof of Lemma 1, we have∣∣∣Pr[break

(2)
0]− Pr[break

(2)
1]
∣∣∣ ≤ d2`2

2λ1
+ ` · εSIG + d` · εPRF + εDDH.

Game 2. Finally, we replace the key KC→S
enc ||KS→C

enc ||KC→S
mac ||KS→C

mac = PRF(m̃s, label2||rC ||rS)
with a uniformly random key vector. The fact that the seed to the PRF m̃s is uniformly random
and independent of any messages sent, enables us to argue that Game 2 is indistinguishable from
Game 1 assuming that the PRF is secure.

Technically, this game proceeds exactly like the previous game, except that the challenger now
chooses the vector

KC→S
enc ||KS→C

enc ||KC→S
mac ||KS→C

mac

21

uniformly random. Again an algorithm distinguishing Game 2 from Game 1 implies an algorithm
breaking the security of the pseudo-random function PRF. Thus we have∣∣∣Pr[break

(2)
1]− Pr[break

(2)
2]
∣∣∣ ≤ d` · εPRF.

Note that in Game 2 the response to the Test query consists always of an uniformly random
key, independent of the bit b sampled in the Test query. Thus we have

Pr[break
(2)
2] = 1/2.

Collecting probabilities from Game 0 to Game 2 proves Lemma 2.
Together we have∣∣∣Pr[break

(2)
0]− Pr[break

(2)
2]
∣∣∣ ≤ d2`2

2λ1
+ ` · εSIG + 2 · d` · εPRF + εDDH.

�

6 ACCE Protocols

An authenticated and confidential channel establishment (ACCE) protocol is a protocol executed
among two parties. The protocol consists of two phases, called the ’pre-accept’ stage and the
’post-accept’ stage.

Pre-accept stage. In this stage a ’handshake protocol’ is executed. In terms of functionality
this protocol is an AKE protocol as in Section 4.2, that is, both communication partners are
mutually authenticated, and a session key k is established. However, it need not necessarily
meet the security definition for AKE protocols (Definition 6). This stage ends, when both
communication partners reach an accept state.

Post-accept stage. This stage is entered, when both communication partners reach accept state.
In this stage data can be transmitted, encrypted with a stateful symmetric encryption scheme
SE = (StE.Enc,StE.Dec) under the key k established in the pre-accept phase.

The prime example for an ACCE protocol is TLS. Here, the pre-accept stage consists of the TLS
handshake protocol. Then both parties enter the post-accept stage, where data is transmitted using
the MAC-then-encrypt paradigm.

Defining ACCE. To define security of ACCE protocols, we combine the Bellare-Rogaway model
for authenticated key exchange (see Section 4) with length-hiding stateful encryption in the sense
of [50]. Technically, we provide a slightly modified execution environment that extends the types
of queries an adversary may issue.

6.1 Execution environment

The execution environment is very similar to the model for AKE from Section 4, except for a
simple modification. We extend the model such that in the post-accept stage an adversary is also

22

able to ’inject’ arbitrary chosen-plaintexts by making an Encrypt query,10 and chosen-ciphertexts

by making a Decrypt query. Moreover, each oracle πsi samples a random bit bsi
$← {0, 1} at the

beginning of the game.

Execution model. An adversary may interact with the provided oracles by issuing the following
queries.

• Sendpre(πsi ,m): This query is identical to the Send-query in the BR model described in Sec-
tion 4, except that it replies with an error symbol ⊥ if oracle πsi has state Λ = accept.
(Send-queries in accept-state are handled by the Decrypt query below).

• Reveal(πsi): This query is identical to the Reveal-query in the BR model.

• Encrypt(πsi ,m0,m1, `,H): This query depends on the random bit bsi
$← {0, 1} sampled by πsi

at the beginning of the game. It takes as input two messages m0 and m1 and header data H.
It maintains a counter i which is initialized to 0, and proceeds as depicted in Figure 3.

• Decrypt(πtj , C,H): This query takes as input a ciphertext C and header dataH. If Λ 6= accept

then πtj returns ⊥. Otherwise, it proceeds as depicted in Figure 3.

Figure 3: Encrypt and Decrypt oracles in the ACCE security experiment.

Encrypt(πsi ,m0,m1, `,H): Decrypt(πtj , C,H):

i := i+ 1 j := j + 1

(C(0), st
(0)
e)

$← StE.Enc(ksi , `,H,m0, ste) If b = 0, then return ⊥
(C(1), st

(1)
e)

$← StE.Enc(ksi , `,H,m1, ste) (m, std) = StE.Dec(ktj , H,C, std)

If C(0) = ⊥ or C(1) = ⊥ then return ⊥ If j > i or C 6= Cj , then phase := 1

(Ci, ste) := (C(bsi), st
(bsi)
e) If phase = 1 then return m

Return Ci

Here we denote with kba the value stored in the internal variable k of oracle πba.

6.2 Security Definition

Security of ACCE protocols is defined by requiring that (i) the protocol is a secure authentication
protocol, thus any party πsi reaches the post-accept state only if there exists another party πtj such
that πsi has a matching conversation (in the sense of Definition 5) to πtj , and (ii) data transmitted
in the post-accept over a secure channel in the sense of Definition 4.

Again this notion is captured by a game, played between an adversary A and a challenger C.
The challenger implements the collection oracles {πsi : i ∈ [`], s ∈ [d]}. At the beginning of the
game, the challenger generates ` long-term key pairs (pki, ski) for all i ∈ [`]. The adversary receives
the public keys pk1, . . . , pk` as input. Then it may submit a subset corrupt ⊆ [`] and receives the

10This models that an adversary may trick one party into sending some adversarially chosen data. A practical
example for this attack scenario are cross-site request forgeries [61] on web servers, or Bard’s chosen-plaintext attacks
on SSL3.0 [2, 3].

23

secret keys ski for all i ∈ corrupt. All parties Pi with i ∈ corrupt are said to be corrupted. Now
the adversary may start issuing Send, Reveal, Encrypt and Decrypt queries. Finally, the adversary
outputs a triple (i, s, b′) and terminates.

Definition 7. We say that an ACCE protocol is secure, if for all (possibly probabilistic) adversaries
A and for all uncorrupted parties Pi and Pj holds that:

1. When A terminates, there exists no oracle πsi (except with probability ε), such that:

• πsi has internal state Λ = accept with Π = dj ,

• there is no oracle πtj such that πsi and πtj have matching conversations.

2. When A terminates and outputs a triple (i, s, b′) such that

• πsi has internal state Π = dj ,

• A did not issue a Reveal query to πsi , nor to an oracle πtj , such that πsi and πtj have
matching conversations,

then the probability that b′ equals bsi is bounded by∣∣Pr[bsi = b′]− 1/2
∣∣ ≤ ε.

6.3 Relation to the classical AKE Security Definition from Section 4.2

Note that an ACCE protocol can be constructed in a two-step approach.

1. (AKE part) First an authenticated key-exchange (AKE) protocol is executed. This protocol
guarantees the authenticity of the communication partner, and provides a cryptographically
’good’ (i.e., indistinguishable from random for the adversary) session key.

2. (Symmetric part) The session key is then used in a symmetric encryption scheme providing
integrity and confidentiality.

This modular approach is simple and generic, and therefore appealing. It can be shown for-
mally that this two-step approach yields a secure ACCE protocol, if the ’AKE part’ meets the
Bellare-Rogaway security definition from Section 4.2, and the ’symmetric part’ consists of a suit-
able authenticated symmetric encryption scheme (e.g. secure according to Definition 4).

However, if the purpose of the protocol is the establishment of an authenticated confidential
channel, then it is not necessary that the ’AKE-part’ of the protocol provides full indistinguishability
of session keys. It actually would suffice if encrypted messages are indistinguishable, and cannot be
altered by an adversary. These requirements are strictly weaker than indistinguishability of keys
in the sense of Bellare-Rogaway, and thus are easier to achieve (possibly from weaker hardness
assumptions, or by more efficient protocols). Moreover, the BR-model does not capture many
practical protocols, with TLS being the most prominent example.

24

7 TLS with Ephemeral Diffie-Hellman is a Secure ACCE Protocol

Theorem 2. Assume that the pseudo-random function PRF is (t, εPRF)-secure, the signature scheme
is (t, εSIG)-secure and the DDH-problem is (t, εDDH)-hard in Zq with respect to the definitions in
Section 2. Suppose that the stateful symmetric encryption scheme is (t, εsLHAE)-secure. Then TLS

with ephemeral Diffie-Hellman is a (t′, ε)-secure AKE protocol with t ≈ t′ and ε ≤ d2`2

2λ1−1 + 2 · (` ·
εSIG + 2 · d` · εPRF + ·εDDH) + d`

2µ + d` · εsLHAE in the sense of Definition 7.

We prove Theorem 2 via the following lemmas.

Lemma 3. The TLS protocol meets property 1.) of Definition 7.

The proof of this lemma is almost identical to the proof of Lemma 1, and therefore omitted.

Lemma 4. The TLS protocol meets property 2.) of Definition 7.

Proof. Let break
(3)
τ be the event that the attacker returns a triple (i, s, b′) such that

• A has not made an Encrypt query to πsi that returned C∗, nor to an oracle πtj having a
matching conversation with πsi ,

• A has not made a Reveal query to πsi , nor to an oracle πtj having a matching conversation
with πsi ,

• Party Pi is not corrupted and for any oracle πtj having a matching conversation to πsi , it holds
that party Pj is not corrupted as well,

and b′ equals the bit bsi sampled by oracle πsi in Game τ .

Game 0. This game equals the ACCE security experiment described in Section 4.2.

Game 1. This game equals Game 2 in the proof of Lemma 2. With the same arguments as in
the proof of Lemma 2, we have that no adversary can distinguish between Game 1 and Game 0.
Note that in particular the keys Kmac and Kenc are now chosen uniformly at random.∣∣∣Pr[break

(3)
0]− Pr[break

(3)
1]
∣∣∣ ≤ d2`2

2λ1
+ ` · εSIG + 2 · d` · εPRF + εDDH.

Game 2. Observe that the key K = Kenc||Kmac used in the stateful symmetric encryption scheme
is now chosen uniformly at random for all oracles πsi with Π = dj such that Pi and Pj are not
corrupted.

In this game we construct a simulator B that uses a successful ACCE attacker A to break
the security of the underlying sLHAE secure symmetric encryption scheme (Definition 4). By
assumption, the simulator B is given access to an encryption oracle Encrypt and a decryption oracle
Decrypt. B uniformly random draws i′ ∈ [l]\corrupt and s′ ∈ [d] and embeds the sLHAE experiment
for oracle πi

′
s′ by simply forwarding all Encrypt(πs

′
i′ , ·) queries to Encrypt, and all Decrypt(πtj , ·) queries

to Decrypt, where πtj is an oracle having a matching conversation in pre-accept stage with πs
′
i′ .

Otherwise it proceeds as the challenger in Game 1.

25

Observe that the values generated in this game are exactly distributed as in the previous game.
We have

Pr[break
(3)
1] = Pr[break

(3)
2].

Finally A outputs a triple (i, s, b′). If i = i′ and s = s′, then B forwards b′ to the sLHAE challenger.
Otherwise it outputs a random bit. Since the simulator essentially relays all messages it is very
easy to see that an attacker A having success probability 1/2 + ε yields an attacker B against the
sLHAE security of the encryption scheme with success probability at least 1/2 + ε/(`d).

Since by assumption any attacker has at most negligible success probability in breaking the
sLHAE security of the symmetric encryption scheme, we have

Pr[break
(3)
2] ≤ 1/2 + d` · εsLHAE.

Collecting probabilities we get that∣∣∣Pr[break
(3)
0]− Pr[break

(3)
2]
∣∣∣ ≤ 1/2 +

d2`2

2λ1
+ ` · εSIG + 2 · d` · εPRF + εDDH + d` · εsLHAE.

�

8 Conclusion

In this paper we have shown that TLS with ephemeral Diffie-Hellman (DHE) provides a sound
framework for the secure establishment of confidential and authenticated channels. Our result is
somewhat surprising: contrary to what previous analyses might suggest the random oracle model
is not required to show that the composition of cryptographic building blocks in TLS is secure. In
particular, our work shows that TLS can easily be made provably secure without random oracles
(under standard security assumptions) when simply relying on ciphersuites based on DHE and
CBC-mode, and signature schemes that are provably secure in the standard model. Moreover
our result sheds a critical light on the latest revision phase where the mandatory authentication
method was changed from Diffie-Hellman key exchange to encrypted key transport, at least from
a provable-security point-of-view.

The design of the DHE handshake seems to support our proof idea of reducing active adversaries
to passive attackers very naturally. This is not due to the key transport mechanism itself but
rather to the fact that DHE uses signatures computed over all previously exchanged messages to
authenticate the protocol parties. Our proof essentially exploits that this authentication mechanism
at the same time also protects the first phase of the handshake from adversarial modifications.
We cannot identify a similarly straight-forward approach for encrypted key transport, as server
authentication is done rather implicitly when verifying the Finished messages. Likewise, the
static Diffie-Hellman key exchange does not use signatures over the first handshake messages. Thus
our proof technique does not apply.

We have analyzed one particular family of TLS ciphersuites, namely those based on ephemeral
Diffie-Hellman. It would be possible in practice to configure servers such that only these cipher-
suites are used (recall that TLS DHE DSS WITH 3DES EDE CBC SHA is mandatory for TLS 1.0 and
1.1). However, it would also be nice to be able to analyze e.g. the RSA-based ciphersuites, in par-
ticular since the current version 1.2 specifies such a ciphersuite as mandatory. Any standard-model

26

approach we can think of would require IND-CCA security of the cipher used to transport the
premaster secret from the client to the server, as otherwise we cannot simulate protocol executions
while still being able to argue with indistinguishability of premaster secrets. But unfortunately it
is well-known that the RSA-PKCS v1.5 cipher used in TLS is vulnerable to chosen-ciphertext at-
tacks [16]. Other papers on TLS assume RSA-PKCS v2.0 (RSA-OAEP instead), which is however
not used in TLS, and is also only provably secure with random oracles.

The whole TLS protocol suite is very flexible, for instance it allows to negotiate ciphersuites at
the beginning of the handshake, or to resume sessions using an abbreviated handshake. We need to
leave an analysis of these features for future work, since the complexity of the protocol and security
model grows dramatically.

The goal of this work is to analyze TLS-DHE on the protocol layer. As common in cryptographic
protocol analyses, we therefore have ignored implementational issues like error messages, which of
course might also be used to break the security of the protocol. We leave it as an interesting open
question to find an adequate approach for modeling such side-channels in complex scenarios like
AKE involving many parties and parallel, sequential, and concurrent executions.

So clearly the security analysis of TLS is not finished yet, there are still many open questions.
However, we find it interesting that it is possible to get some evidence towards the security of some
TLS ciphersuites without random oracles and other idealizations. We consider this as a strong
indicator for the soundness of the TLS protocol framework. We believe that future revisions of the
TLS standard should be guided to the establishment of an implementation that is provably secure
– ideally in the standard model. This work offers a solid start in this direction.

References

[1] Boaz Barak, Yehuda Lindell, and Tal Rabin. Protocol initialization for the framework of
universal composability. Cryptology ePrint Archive, Report 2004/006, 2004. http://eprint.
iacr.org/.

[2] Gregory V. Bard. The vulnerability of ssl to chosen plaintext attack. Cryptology ePrint
Archive, Report 2004/111, 2004. http://eprint.iacr.org/.

[3] Gregory V. Bard. A challenging but feasible blockwise-adaptive chosen-plaintext attack on
ssl. In Manu Malek, Eduardo Fernández-Medina, and Javier Hernando, editors, SECRYPT,
pages 99–109. INSTICC Press, 2006.

[4] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in a multi-user
setting: Security proofs and improvements. In Bart Preneel, editor, Advances in Cryptology
– EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 259–274.
Springer, May 2000.

[5] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Authenticated encryption in
SSH: Provably fixing the SSH binary packet protocol. In Vijayalakshmi Atluri, editor, ACM
CCS 02: 9th Conference on Computer and Communications Security, pages 1–11. ACM Press,
November 2002.

27

[6] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Breaking and provably repair-
ing the ssh authenticated encryption scheme: A case study of the encode-then-encrypt-and-mac
paradigm. ACM Trans. Inf. Syst. Secur., 7:206–241, May 2004.

[7] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. In Tatsuaki Okamoto, editor, Advances
in Cryptology – ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages
531–545. Springer, December 2000.

[8] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. Journal of Cryptology, 21(4):469–491,
October 2008.

[9] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange se-
cure against dictionary attacks. In Bart Preneel, editor, Advances in Cryptology – EURO-
CRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 139–155. Springer,
May 2000.

[10] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In V. Ashby, editor, ACM CCS 93: 1st Conference on Computer and
Communications Security, pages 62–73. ACM Press, November 1993.

[11] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Douglas R.
Stinson, editor, Advances in Cryptology – CRYPTO’93, volume 773 of Lecture Notes in Com-
puter Science, pages 232–249. Springer, August 1994.

[12] Mihir Bellare and Phillip Rogaway. Provably secure session key distribution: The three party
case. In 27th Annual ACM Symposium on Theory of Computing, pages 57–66. ACM Press,
May / June 1995.

[13] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In Serge Vaudenay, editor, Advances in Cryptology – EURO-
CRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 409–426. Springer,
May / June 2006.

[14] Karthikeyan Bhargavan, Cédric Fournet, Ricardo Corin, and Eugen Zalinescu. Cryptograph-
ically verified implementations for TLS. In Peng Ning, Paul F. Syverson, and Somesh Jha,
editors, ACM CCS 08: 15th Conference on Computer and Communications Security, pages
459–468. ACM Press, October 2008.

[15] Simon Blake-Wilson, Don Johnson, and Alfred Menezes. Key agreement protocols and their
security analysis. In Michael Darnell, editor, 6th IMA International Conference on Cryptog-
raphy and Coding, volume 1355 of Lecture Notes in Computer Science, pages 30–45. Springer,
December 1997.

[16] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA encryp-
tion standard PKCS #1. In Hugo Krawczyk, editor, Advances in Cryptology – CRYPTO’98,
volume 1462 of Lecture Notes in Computer Science, pages 1–12. Springer, August 1998.

28

[17] Dan Boneh and Xavier Boyen. Short signatures without random oracles and the SDH assump-
tion in bilinear groups. Journal of Cryptology, 21(2):149–177, April 2008.

[18] Colin Boyd and Anish Mathuria. Protocols for Authentication and Key Establishment. Infor-
mation Security and Cryptography. Springer-Veriag, Berlin,Germany, 2003.

[19] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd Annual Symposium on Foundations of Computer Science, pages 136–145. IEEE Computer
Society Press, October 2001.

[20] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for building
secure channels. In Birgit Pfitzmann, editor, Advances in Cryptology – EUROCRYPT 2001,
volume 2045 of Lecture Notes in Computer Science, pages 453–474. Springer, May 2001.

[21] Ran Canetti and Hugo Krawczyk. Security analysis of IKE’s signature-based key-exchange
protocol. In Moti Yung, editor, Advances in Cryptology – CRYPTO 2002, volume 2442 of
Lecture Notes in Computer Science, pages 143–161. Springer, August 2002. http://eprint.

iacr.org/2002/120/.

[22] S. Chaki and A. Datta. Aspier: An automated framework for verifying security protocol
implementations. In Computer Security Foundations Symposium, 2009. CSF ’09. 22nd IEEE,
pages 172 –185, july 2009.

[23] Kim-Kwang Raymond Choo, Colin Boyd, and Yvonne Hitchcock. Examining
indistinguishability-based proof models for key establishment protocols. In Bimal K. Roy,
editor, Advances in Cryptology – ASIACRYPT 2005, volume 3788 of Lecture Notes in Com-
puter Science, pages 585–604. Springer, December 2005.

[24] Jean-Sébastien Coron, Marc Joye, David Naccache, and Pascal Paillier. New attacks on
PKCS#1 v1.5 encryption. In Bart Preneel, editor, Advances in Cryptology – EURO-
CRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 369–381. Springer,
May 2000.

[25] Cas J. F. Cremers. Session-state reveal is stronger than ephemeral key reveal: Attacking
the NAXOS authenticated key exchange protocol. In Michel Abdalla, David Pointcheval,
Pierre-Alain Fouque, and Damien Vergnaud, editors, ACNS 09: 7th International Conference
on Applied Cryptography and Network Security, volume 5536 of Lecture Notes in Computer
Science, pages 20–33. Springer, June 2009.

[26] T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246 (Proposed Standard),
January 1999. Obsoleted by RFC 4346, updated by RFCs 3546, 5746.

[27] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.1. RFC
4346 (Proposed Standard), April 2006. Obsoleted by RFC 5246, updated by RFCs 4366, 4680,
4681, 5746.

[28] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. RFC
5246 (Proposed Standard), August 2008. Updated by RFCs 5746, 5878.

29

[29] Danny Dolev and Andrew Chi-Chih Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–207, 1983.

[30] D. Eastlake 3rd and T. Hansen. US Secure Hash Algorithms (SHA and HMAC-SHA). RFC
4634 (Informational), July 2006.

[31] D. Eastlake 3rd and P. Jones. US Secure Hash Algorithm 1 (SHA1). RFC 3174 (Informational),
September 2001. Updated by RFC 4634.

[32] Marc Fischlin. The Cramer-Shoup strong-RSA signature scheme revisited. In Yvo Desmedt,
editor, PKC 2003: 6th International Workshop on Theory and Practice in Public Key Cryptog-
raphy, volume 2567 of Lecture Notes in Computer Science, pages 116–129. Springer, January
2003.

[33] Pierre-Alain Fouque, David Pointcheval, and Sébastien Zimmer. HMAC is a randomness
extractor and applications to TLS. In Masayuki Abe and Virgil Gligor, editors, ASIACCS 08:
3rd Conference on Computer and Communications Security, pages 21–32. ACM Press, March
2008.

[34] Sebastian Gajek, Mark Manulis, Olivier Pereira, Ahmad-Reza Sadeghi, and Jörg Schwenk.
Universally Composable Security Analysis of TLS. In Joonsang Baek, Feng Bao, Kefei Chen,
and Xuejia Lai, editors, ProvSec, volume 5324 of Lecture Notes in Computer Science, pages
313–327. Springer, 2008.

[35] Don Johnson, Alfred Menezes, and Scott Vanstone. The Elliptic Curve Digital Signature
Algorithm (ECDSA). International Journal of Information Security, 1(1):36–63, August 2001.

[36] Jakob Jonsson and Burton S. Kaliski Jr. On the security of RSA encryption in TLS. In
Moti Yung, editor, Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes in
Computer Science, pages 127–142. Springer, August 2002.

[37] B. Kaliski. PKCS #1: RSA Encryption Version 1.5. RFC 2313 (Informational), March 1998.
Obsoleted by RFC 2437.

[38] Eike Kiltz, Adam O’Neill, and Adam Smith. Instantiability of RSA-OAEP under chosen-
plaintext attack. In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume 6223
of Lecture Notes in Computer Science, pages 295–313. Springer, August 2010.

[39] Eike Kiltz and Krzysztof Pietrzak. On the security of padding-based encryption schemes - or -
why we cannot prove OAEP secure in the standard model. In Antoine Joux, editor, Advances
in Cryptology – EUROCRYPT 2009, volume 5479 of Lecture Notes in Computer Science, pages
389–406. Springer, April 2009.

[40] Hugo Krawczyk. The order of encryption and authentication for protecting communications
(or: How secure is SSL?). In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001,
volume 2139 of Lecture Notes in Computer Science, pages 310–331. Springer, August 2001.

[41] Hugo Krawczyk. HMQV: A high-performance secure diffie-hellman protocol. In Victor Shoup,
editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in Computer
Science, pages 546–566. Springer, August 2005.

30

[42] Ralf Kuesters and Max Tuengerthal. Composition theorems without pre-established session
identifiers. ACM CCS 2011, 2011.

[43] Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of authenticated
key exchange. In ProvSec, pages 1–16, 2007.

[44] Gary Locke and Patrick Gallagher. FIPS PUB 186-3 FEDERAL INFORMATION PROCESS-
ING STANDARDS PUBLICATION Digital Signature Standard (DSS), 2009.

[45] Ueli Maurer and Björn Tackmann. On the soundness of authenticate-then-encrypt: formalizing
the malleability of symmetric encryption. In Ehab Al-Shaer, Angelos D. Keromytis, and
Vitaly Shmatikov, editors, ACM CCS 10: 17th Conference on Computer and Communications
Security, pages 505–515. ACM Press, October 2010.

[46] John C. Mitchell. Finite-state analysis of security protocols. In CAV, pages 71–76, 1998.

[47] Paul Morrissey, Nigel P. Smart, and Bogdan Warinschi. A modular security analysis of the TLS
handshake protocol. In Josef Pieprzyk, editor, Advances in Cryptology – ASIACRYPT 2008,
volume 5350 of Lecture Notes in Computer Science, pages 55–73. Springer, December 2008.

[48] Paul Morrissey, Nigel P. Smart, and Bogdan Warinschi. The TLS handshake protocol: A
modular analysis. Journal of Cryptology, 23(2):187–223, April 2010.

[49] Kazuhiro Ogata and Kokichi Futatsugi. Equational Approach to Formal Analysis of TLS. In
ICDCS, pages 795–804. IEEE Computer Society, 2005.

[50] Kenneth G. Paterson, Thomas Ristenpart, and Thomas Shrimpton. Tag size does matter:
Attacks and proofs for the TLS record protocol. In The 17th Annual International Conference
on the Theory and Application of Cryptology and Information Security, ASIACRYPT 2011,
LNCS. Springer Verlag, December 2011.

[51] Lawrence C. Paulson. Inductive Analysis of the Internet Protocol TLS. ACM Trans. Inf. Syst.
Secur., 2(3):332–351, 1999.

[52] David Pointcheval and Serge Vaudenay. On Provable Security for Digital Signature Algorithms.
Technical report, Ecole Normale Superieure, 1996.

[53] R. Rivest. The MD5 Message-Digest Algorithm. RFC 1321 (Informational), April 1992.

[54] Victor Shoup. On formal models for secure key exchange. Cryptology ePrint Archive, Report
1999/012, 1999. http://eprint.iacr.org/.

[55] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology
ePrint Archive, Report 2004/332, Nov 2004.

[56] Qixiang Sun, Daniel R. Simon, Yi-Min Wang, Wilf Russell, Venkata N. Padmanabhan, and
Lili Qiu. Statistical identification of encrypted web browsing traffic. In IEEE Symposium on
Security and Privacy, pages 19–30, 2002.

[57] Serge Vaudenay. The Security of DSA and ECDSA. In Public Key Cryptography - PKC 2003,
6th International Workshop on Theory and Practice in Public Key Cryptography, volume 2567
of Lecture Notes in Computer Science, pages 309–323, 2003.

31

[58] David Wagner and Bruce Schneier. Analysis of the SSL 3.0 protocol. In In Proceedings of
the Second USENIX Workshop on Electronic Commerce, pages 29–40. USENIX Association,
1996.

[59] Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald
Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes
in Computer Science, pages 114–127. Springer, May 2005.

[60] Charles V. Wright, Lucas Ballard, Scott E. Coull, Fabian Monrose, and Gerald M. Masson.
Spot me if you can: Uncovering spoken phrases in encrypted voip conversations. In IEEE
Symposium on Security and Privacy, pages 35–49. IEEE Computer Society, 2008.

[61] William Zeller and Edward W. Felten. Cross-site request forgeries: Ex-
ploitation and prevention. Technical report, October 2008. Available at
http://from.bz/public/documents/publications/csrf.pdf.

A Choosing the Right Model

Authenticated key agreement (AKE) is a basic building block in modern cryptography. Many secure
protocols for two-party and group key agreement have been proposed, including generic compilers
that transform simple key agreement protocols into authenticated key agreement protocols, with
many additional security properties. However, since many different formal models for different
purposes exist, choice of the right model is not an easy task, and must be considered carefully.

The main guideline for this choice is the fact that we cannot modify any detail of the TLS
protocol, nor of the network protocols preceding it.

First, we need a model were entity authentication is addressed as a security goal. This goal
is often omitted in newer models, in order to make them suitable for two-party authenticated
key agreement protocols [41]. However, explicit authentication is an important security goal for
TLS, since in many practical applications authentication is more important than encryption. For
example, in a Single Sign-On scenario, an encrypted security token may be passed from the identity
provider through the browser to a relying party. Since the security token itself is encrypted,
confidentiality is not an issue, but moreover the authenticity of the channel through which this
token was received.

Second, there is no way to modularize the security proof of TLS in the sense of [20], since several
protocol messages of TLS come without authenticator. Thus we cannot use the authenticated link
model (AM).

Third, we have chosen not to use a Universal Composability (UC) [19] approach. We think that
a formalization in the UC model first requires a thorough analysis in the standard model, otherwise
the modeling of the ideal functionalities will either be wrong, or miss important security aspects
of TLS. However, since the exchange of nonces rC and rS in the first two messages of the TLS
handshake can be regarded as an instantiation of the Barak compiler [1], it is in principle possible
to model TLS within the UC framework.

On the other hand, we have to make a choice about the enhanced adversarial capabilities newer
models offer. We allow for RevealKey queries, but do not take into account RevealState queries. The
reason for this omittance is that in TLS there are several successive internal states: Computation
of the premaster secret, computation of the master secret, computation of the session keys. After

32

transition from one state to another, internal data is erased. So to be precise, we would have to
specify several different RevealState queries, which would have rendered the paper unreadable.

Remark: Please note that our proof remains valid even if different types of RevealState queries
are allowed, only the simulation of the Diffie-Hellman game becomes less efficient. Thus it should
be straightforward to adapt our proof to models like [20] or [25], where we could however not
formulate the security goal of entity authentication.

Thus we have chosen in essence the first model of Bellare and Rogaway [11] and the ability of
the adversary to perform adaptive queries. Essentially equivalent variants of this model have been
used by [15, 20], and especially by [47].

It is future work to adapt the adversarial capabilities to real attacks on browser based protocols,
e.g. Cross Site Request Forgeries (CSRF) [61] enable an attacker to send Encrypt queries.

33

