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Abstract. Secure group communication systems become more and more
important in many emerging network applications. For a secure group
communication system, an efficient and robust group key management
approach is essential. In this paper, a new group key management ap-
proach with a group controller GC using the theory of hyper-sphere is
developed, where a hyper-sphere is constructed for the group and each
member in the group corresponds to a point on the hyper-sphere, which
can be called the member’s private point. The GC computes the central
point of the hyper-sphere, whose distance from each member’s private
point is identical. The central point is published and each member can
compute a common group key via the square of the radius. The security
relies on the fact that any illegitimate user cannot calculate this value
without the legitimate vector, therefore cannot derive the group key. This
approach is secure and its backward and forward secrecy can be guar-
anteed. The performance of our approach is analyzed to demonstrate its
advantages in comparison with others, which include: 1) it requires both
small memory and little computations for each group member; 2) it can
handle massive membership change efficiently with only two re-keying
messages, i.e., the central point of the hyper-sphere and a random num-
ber; 3) it is very efficient and very scalable for large size groups. Our
experiments confirm these advantages and the implementation of our
prototype presents very satisfactory performance for large size groups.
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1 Introduction

With the rapid development of Internet technology and the popularization of
multicast, group-oriented applications, such as video conference, network games,
and video on demand, etc., are playing important roles. How to protect the
communication security of these applications are also becoming more and more
significant. Generally speaking, a secure group communication system should not
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only provide data confidentiality, user authentication, and information integrity,
but also own perfect scalability. It is shown that a secure, efficient, and robust
group key management approach is essential to a secure group communication
system.

A new secure group key management approach based on the properties
of N -dimensional hyper-sphere is proposed in this paper. In mathematics, N -
dimensional hyper-sphere or a N -sphere, is a generalization of the surface of
an ordinary sphere to arbitrary dimension. In particular, a 0-sphere is a pair
of points on a line, a 1-sphere is a circle in the plane, and a 2-sphere is an
ordinary sphere in three-dimensional space. Spheres of dimension N > 2 are
sometimes called hyper-spheres. For any natural number N , a N -sphere of ra-
dius R is defined as the set of points in (N + 1)-dimensional Euclidean space
which are at distance R from a central point. Based on the above mathematical
principle, a secure group key management scheme is designed. The advantages
of the proposed approach include the reduction of user storage, user computa-
tion, and the amount of update information while re-keying. The group key is
updated periodically to protect its secrecy. Each key is completely independent
from any previous used and future keys. The backward and forward secrecy can
be guaranteed.

The rest of this paper is organized as follows. Some related schemes on se-
cure group key management are described in Section II. The proposed secure
group key management approach and a toy example is presented in Section III.
Security and performance analysis is discussed in Section IV. Finally, Section V
summarizes the major contributions of this paper.

2 A Brief Survey of Related Work

There are various approaches on the key management of secure group commu-
nication. Rafaeli and Hutchison [1] presented a comprehensive survey on this
area. The schemes can be divided into three different categories: centralized,
distributed, and decentralized schemes.

In a centralized system, there is one entity GC (Group Controller) controlling
the whole group [1]. Some typical schemes in this category include Group Key
Management Protocol (GKMP)[2], [3], Secure Lock (SL)[4], Logical Key Hier-
archy (LKH)[5], etc. The Group Key Management Protocol (GKMP) [2], [3] is
a direct extension from unicast to multicast communication. It is assumed that
there exists a secure channel between the GC and every group member. Initially,
The GC selects a group key K0 and distributes this key to all group members
via the secure channel. Whenever a member joins in the group, the GC selects
a new group key KN and encrypts the new group key with the old group key
yielding K ′ = EKN

(K0) then broadcasts K ′ to the group. Moreover, the GC
sends KN to the joining member via the secure channel between the GC and the
new member. Obviously, the solution is not scalable, and there is no solution for
keeping the forward secrecy property when a member leaves the group except to
recreate an entirely new group without that member [1]. The Secure Lock (SL)
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scheme [4] takes advantage of Chinese Remainder Theorem (CRT) to construct
a secure lock to combine all the re-keying messages into one while the group key
is updated. However, CRT is a time-consuming operation. As mentioned in [4],
the SL scheme is efficient only when the number of users in a group is small, since
the time to compute the lock and the length of the lock (hence the transmission
time) is proportional to the number of users. The Logical Key Hierarchy (LKH)
scheme [5] adopts tree structure to organize keys. The GC maintains a virtual
tree, and the nodes in the tree are assigned keys. The key held by the root of the
tree is the group key. The internal nodes of the tree hold key encryption keys
(KEK). Keys at leaf nodes are possessed by individual members. Every member
is assigned the keys along the path from its leaf to the root. When a member
joins or leaves the group, its parent node’s KEK and all KEKs held by nodes in
the path to the root should be changed. The number of keys which need to be
changed for a joining or leaving is O(log2 n) and the number of encryptions is
O(2× log2 n). If there are a great deal of members join or leave the group, then
the re-keying overhead will increase proportionally to the number of members
changed. There are some other schemes that adopt tree structures, for example,
OFT (One-way Function Tree) [6], OFCT (One-way Function Chain Tree) [7],
Hierarchical α-ary Tree with Clustering [8], Efficient Large-Group Key [9], etc.
They can be regarded as the similarity or improvement of LKH.

In the distributed architectures, there is no explicit GC and the key genera-
tion can be either contributory or done by one of the members [1]. Some typical
schemes include: Burmester and Desmedt Protocol[12], Group Diffie-Hellman
key exchange[13], Octopus Protocol[14], Conference Key Agreement[15], Dis-
tributed Logical Key Hierarchy[16], Distributed One-way Function Tree[17], Diffie-
Hellman Logical Key Hierarchy[18], [10], Distributed Flat Table [19], etc. Re-
cent references paid more attentions to contributory and collaborative group
key agreement, for example: [20], [21], [22], [23], [24], [25], etc.

In the decentralized architectures, the large group is split into small sub-
groups. Different controllers are used to manage each subgroup[1]. Some typ-
ical schemes include: Scalable Multicast Key Distribution[26], Iolus[27], Dual-
Encryption Protocol[28], MARKS[29], Cipher Sequences[30], Kronos[31], Intra-
Domain Group Key Management[32], Hydra[33], etc.

The secure group key management approaches can be applied to a lot of
application areas. For example: wireless/mobile network[34], [35], [37], [38], [39],
[40], wireless sensor network[36], storage area networks[41], etc.

3 Proposed Scheme Based on Hyper-Sphere

3.1 Background Knowledge

In mathematics, a N -sphere of radius R is defined as the set of points in (N+1)-
dimensional Euclidean space which are at distance R from a central point. Any
point X(x0, x1, . . . , xN ) on the hyper-sphere can be represented by the equation

(x0 − c0)2 + (x1 − c1)2 + . . .+ (xN − cN )2 = R2, (1)
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where C(c0, c1, . . . , cN ) is the central point, and R is the radius.
Any given (N+2) points Ai(ai,0, ai,1, . . . , ai,N ) in (N+1)-dimensional space,

where i = 0, 1, . . . , N + 1, can uniquely determine a hyper-sphere as long as cer-
tain conditions are satisfied, which will be presented at the end of this subsection.
By applying the coordinates of the points A0, A1, . . . , AN+1 to (1), we can obtain
a system of (N + 2) equations


(a0,0 − c0)2 + (a0,1 − c1)2 + . . .+ (a0,N − cN )2 = R2

(a1,0 − c0)2 + (a1,1 − c1)2 + . . .+ (a1,N − cN )2 = R2

. . . . . .
(aN+1,0 − c0)2 + (aN+1,1 − c1)2 + . . . + (aN+1,N − cN )2 = R2

(2)

By subtracting the j-th equation from the (j + 1)-th equation, where j =
1, 2, . . . , N + 1, we can get a system of linear equations with N + 1 unknowns
c0, c1, . . . , cN :


2(a0,0 − a1,0)c0 + . . .+ 2(a0,N − a1,N )cN =

N∑
j=0

a20,j −
N∑
j=0

a21,j

. . . . . .

2(aN,0 − aN+1,0)c0 + . . .+ 2(aN,N − aN+1,N )cN =
N∑
j=0

a2N,j −
N∑
j=0

a2N+1,j

(3)
If and if only the determinant of the coefficients in (3) is non-zero, this system

of linear equations can have unique solution c0, c1, . . . , cN . By applying the values
of c0, c1, . . . , cN to one of the equations in (2), we can obtain R2.

3.2 Notation

The following notations are used throughout the remainder of this paper:
GC is the group controller, who controls the whole group and manages the

group initialization, membership change operations.
p is a public large prime number chosen by the GC.
GF (p) is the finite field of order p.
n is the number of members in the group.
h is a cryptographic hash function over GF (p).
It is supposed that all the computations hereafter are over the finite field

GF (p), and p, n and h are public.

3.3 The Proposed Approach

Based on the mathematical principle that any point on the hyper-sphere is at
the same distance R from the central point, a new secure group key management
scheme is proposed. As illustrated in Fig. 1, a hyper-sphere is constructed for
the group, and each member in the group corresponds to a point on the hyper-
sphere and the point can be called the member’s private point. The GC computes
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the central point C(c0, c1, . . . , cN ) of the hyper-sphere and publishes it to the
public. Then each member can calculate the square of the radius R2 via (1). The

value of ‖C‖2 = ((c20 + c21 + . . . + c2N ) mod p) and ((R2 − ‖C‖2) mod p) can

also be computed by each member. Therefore, K = ((R2 − ‖C‖2) mod p) can
be assigned as the secret group key. Any illegitimate user cannot calculate this
value without the knowledge of the legitimate private point, therefore cannot
derive the group key.

Similar to other group key management scheme, our approach include some
phases like initialization, adding members, removing members, massive adding
and removing members simultaneously, and periodically group key update.

C

O

Y

X

V0
V1

ViVN+1

R

Fig. 1. Each member corresponds to a point Vi on the hyper-sphere.

Initialization The GC lets first user U1 join the group at the initialization
phase, including the following steps.

Step 1) The GC selects two different 2-dimensional private points S0(s00, s01)
and S1(s10, s11), and keeps them secret. A large prime number p and a secure
hash function h are also chosen and published to the public by the GC.

Step 2) After authenticating U1, the GC chooses a 2-dimensional private
point A1(a10, a11) for the user U1, where a10 6= 0, a11 6= 0 and a10 6= a11. The
GC stores the point A1(a10, a11) securely and transmits A1 to the user U1 via a
secure channel.

A1 is the private information of U1, and should be kept secret by both the
member U1 and the GC.

Step 3) The GC selects a random number u and computes:

b00 = h(h(s00)⊕ u),

b01 = h(h(s01)⊕ u),

b10 = h(h(s10)⊕ u),

b11 = h(h(s11)⊕ u),
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b20 = h(h(a10)⊕ u),

b21 = h(h(a11)⊕ u).

Then the GC constructs new points B0, B1, and B2:

B0 = (b00, b01),

B1 = (b10, b11),

B2 = (b20, b21).

If

2(b00 − b10) · 2(b11 − b21)− 2(b10 − b20) · 2(b01 − b11) 6= 0, (4)

go to Step 4; otherwise, the GC repeats Step 3.

Note that the condition in (4) can guarantee that the points B0, B1, and B2

can uniquely determine a circle in 2-dimensional space.

Step 4) The GC establishes a hyper-sphere, herein a circle, in 2-dimensional
space using the above points B0, B1, and B2. Suppose the central point of the
hyper-sphere is C(c0, c1), and the square of the radius is R2. The GC constructs
the following system of equations: (b00 − c0)2 + (b01 − c1)2 = R2

(b10 − c0)2 + (b11 − c1)2 = R2

(b20 − c0)2 + (b21 − c1)2 = R2
(5)

By subtracting the first equation from the second one, and subtracting the
second equation from the third one, we can get a system of linear equations with
two unknowns c0 and c1:{

2(b00 − b10)c0 + 2(b01 − b11)c1 = b200 + b201 − b210 − b211
2(b10 − b20)c0 + 2(b11 − b21)c1 = b210 + b211 − b220 − b221

(6)

The condition in (4) guarantees that (6) has one and only one solution (c0, c1).
Then the central point C(c0, c1) of the hyper-sphere is determined. Fig. 2 illus-
trates the hyper-sphere established by the GC.

Step 5) The GC delivers C(c0, c1) and u to the member U1 via open channel.

Step 6) The member U1 can calculate the group key by using its private point
A1(a10, a11) along with the public information C(c0, c1) and u:

K = R2 − ‖C‖2 = b220 + b221 − 2b20c0 − 2b21c1
= (h(h(a10)⊕ u))2 + (h(h(a11)⊕ u))2

−2h(h(a10)⊕ u)c0 − 2h(h(a11)⊕ u)c1,
(7)

where R2 is the square of the radius, C is the central point of the hyper-sphere,
and ‖C‖2 = c20 + c21.
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Fig. 2. A hyper-sphere established by the GC.

Adding Members Suppose there are n − m members in the group, where
n > 2 and n > m ≥ 0, and there are m new members want to join the group.
After new members are admitted, there will be n members in the group, and
suppose that the set of members in the group is {Ui1 , Ui2 , · · · , Uin}. The steps
are as follows.

Step 1) After the new user Ux is authenticated, the GC selects unique 2-
dimensional private point Ax(ax0, ax1) for each new member Ux, where ax0 6= 0,
ax1 6= 0, ax0 6= ax1, and x = (n−m) + 1, (n−m) + 2, · · · , n.

The points Ax should satisfy Ai 6= Aj if i 6= j, where 1 ≤ i, j ≤ n.
Step 2) The GC sends the point Ax to the user Ux via a secure channel.
The point Ax is the private information of Ux, and should be kept secret by

both the member Ux and the GC.
Step 3) The GC selects a random number u, and computes

b00 = h(h(s00)⊕ u),

b01 = h(h(s01)⊕ u),

b10 = h(h(s10)⊕ u),

b11 = h(h(s11)⊕ u).

For j = 2, 3, · · · , n+ 1, the GC computes

bj0 = h(h(aij−1,0)⊕ u),

bj1 = h(h(aij−1,0)⊕ u).

Then the GC constructs new points B0, B1, · · · , Bn+1:

B0 = (b00, b01),

B1 = (b10, b11),

B2 = (b20, b21),

· · · · · ·



8 S. Tang, J. Ding, Z. Yang

Bn+1 = (bn+1,0, bn+1,1).

If the condition

(2(b00 − b10) · 2(b11 − b21)− 2(b10 − b20) · 2(b01 − b11))×
n+1∏
t=3

(−2bt1) 6= 0 (8)

satisfies, go to Step 4; otherwise, the GC repeats Step 3.
Step 4) The GC expands each Bj to become a (n + 1)-dimensional point

Vj . Then the GC constructs a n-dimensional hyper-sphere based on the set
of points V0, V1, · · · , Vn+1. Suppose the central point of the hyper-sphere is
C(c0, c1, · · · , cn), and the square of the radius is R2.

Step 4.1) The GC expands each Bj to become a (n + 1)-dimensional point
Vj .

For j = 0, 1, and 2, the point Bj is supplemented (n − 1) zeros to become
Vj , i.e.,

V0 = (b00, b01, 0, · · · , 0),

V1 = (b10, b11, 0, · · · , 0),

V2 = (b20, b21, 0, · · · , 0).

For j = 3, 4, · · · , n+ 1, let

V3 = (b30, 0, b31, 0, · · · , 0),

· · · · · ·
Vj = (bj0, 0, · · · , 0, bj1, 0, · · · , 0),

· · · · · ·
Vn+1 = (bn+1,0, 0, · · · , 0, bn+1,1),

where the number of 0 between bj0 and bj1 is (j − 2) , and there are (n+ 1− j)
zeros supplemented after bj1.

Step 4.2) The GC constructs the system of equations about the hyper-sphere
by applying the set of points V0, V1, · · · , Vn+1 to (1):



(b00 − c0)2 + (b01 − c1)2 + (0− c2)2 + · · ·+ (0− cn)2 = R2

(b10 − c0)2 + (b11 − c1)2 + (0− c2)2 + · · ·+ (0− cn)2 = R2

(b20 − c0)2 + (b21 − c1)2 + (0− c2)2 + · · ·+ (0− cn)2 = R2

(b30 − c0)2 + (0− c1)2 + (b31 − c2)2 + · · ·+ (0− cn)2 = R2

· · · · · ·
(bn+1,0 − c0)2 + (0− c1)2 + (0− c2)2 + · · ·+ (bn+1,1 − cn)2 = R2

(9)

Let matrix

Y =


2(b00 − b10) 2(b01 − b11) 0 ... 0
2(b10 − b20) 2(b11 − b21) 0 ... 0
2(b20 − b30) 2b21 −2b31 ... 0

...... ...
2(bn0 − bn+1,0) 0 ... ... −2bn+1,1





Secure Group Key Management Approach Based upon Hyper-sphere 9

and vectors

X =


c0
c1
c2
...
cn

 , Z =


b200 + b201 − b210 − b211
b210 + b211 − b220 − b221
b220 + b221 − b230 − b231

...
b2n0 + b2n1 − b2n+1,0 − b2n+1,1


By subtracting the j-th equation from the (j + 1)-th equation in (9), where

j = 1, 2, · · · , n, we can get a system of linear equations with (n + 1) unknowns
using the matrix and vector expression

Y ×X = Z (10)

The condition in (8) guarantees that (10) has one and only one solution
(c0, c1, · · · , cn) . Then the central point C(c0, c1, · · · , cn) of the hyper-sphere is
determined.

Step 5) The GC multicasts C(c0, c1, · · · , cn) and u to all the group members
Ui1 , Ui2 , · · · , Uin via open channel.

Step 6) Each group member Ux can calculate the group key by using its
private point Ax(ax0, ax1) along with the public information C(c0, c1, · · · , cn)
and u :

K = R2 − ‖C‖2 = b2x+1,0 + b2x+1,1 − 2bx+1,0c0 − 2bx+1,1cix
= (h(h(aix,0)⊕ u))2 + (h(h(aix,1)⊕ u))2

−2h(h(aix,0)⊕ u)c0 − 2h(h(aix,1)⊕ u)cix ,
(11)

where R2 is the square of the radius, C is the central point of the hyper-sphere,
and ‖C‖2 = c20 + c21 + · · ·+ c2n.

Removing Members Suppose that there are (n + f) members in the group,
where n > 2 and f ≥ 0, and there are f members want to leave the group, then
there will be n members in the group after f users leave. Suppose the set of
remaining members in the group is {Ui1 , Ui2 , · · · , Uin} after members leave. The
steps are as follows.

Step 1) The GC deletes the leaving members’ private 2-dimensional points.

Step 2) The GC’s private 2-dimensional points S0 and S1, and the remaining
members’ private points Ai1 , Ai2 , · · · , Ain should be stored securely by the GC.

The following steps are the same as Steps 3 - 6 in the “Adding Members”
phase, i.e., the GC re-selects a new random number u and constructs new points
B0, B1, · · · , Bn+1 in Step 3. Then the GC constructs a new hyper-sphere in Step
4, and publishes u and the central point of the hyper-sphere in Step 5. Finally,
each group member can calculate the group key by using it private point in Step
6.
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Massive Adding and Removing Members This subsection manipulates the
situation that a lot of members join and other members leave the group at the
same time in batch mode. Suppose that there are n + w − v members in the
group, where n > 2 and w ≥ 0, n + w > v ≥ 0. There are w members want
to leave, and v new members want to join the group simultaneously. After the
membership changes, there will be n members in the group. The steps are as
follows.

Step 1) The GC deletes the leaving members’ private 2-dimensional points,
and let new users join in at the same time. After new user Ux is authenticated,
the value of x is assigned as the identifier of the new joining members, where
x = (n− v) + 1, (n− v) + 2, · · · , n.

The GC selects unique 2-dimensional point Ax(ax0, ax1) as Ux’s private in-
formation, where ax0 6= 0, ax1 6= 0 , and ax0 6= ax1. The private points Ax should
satisfy Ai 6= Aj if i 6= j, where 1 ≤ i, j ≤ n.

Step 2) The GC sends the private point Ax to the user Ux via a secure
channel.

The point Ax is the private information of Ux, and should be kept secret by
both the member Ux and the GC.

Other steps are for w members to leave the group, which are the same as
Steps 3 - 6 described in the “Adding Members” phase. By executing Step 3 to
Step 6, the GC re-selects a new random number u, constructs a new hyper-
sphere, and publishes u and the central point of the hyper-sphere. Then each
group member can calculate the group key.

Periodically Update If the group key is not updated within a period of
time, the GC will start periodically update procedure to renew the group key
to safeguard the secrecy of group communication. The GC needs to re-select a
new random number u, then construct a new hyper-sphere, and publish u and
the central point of the hyper-sphere. These steps are the same as Steps 3 - 6 in
“Adding Members” phase.

3.4 A Toy Example

A toy example is given to illustrate the procedure of massive membership change.
Suppose the set of members in the current group is {U1, U2, U3, U4}. The mem-
bers U2 and U4 want to leave the group, and new users U5 and U6 want to
join the group. The following steps can support massive adding and removing of
members.

Step 1) The GC deletes the private points A2(a20, a21) and A4(a40, a41) of
the leaving members.

After the new users U5 and U6 are authenticated, the GC assigns ID=5 and
ID=6 to the new members U5 and U6 respectively.

The GC selects unique 2-dimensional points A5(a50, a51) and A6(a60, a61) as
the private information of U5 and U6 respectively.



Secure Group Key Management Approach Based upon Hyper-sphere 11

Now the set of private points of the group members is {A1, A3, A5, A6}, and
the subscripts of the private points are: i1 = 1, i2 = 3, i3 = 5, and i4 = 6. The
points Ax should also satisfy Ay 6= Az if y 6= z, where y, z ∈ {1, 3, 5, 6}.

Step 2) The GC sends the point Ax to the member Ux via a secure channel,
where x ∈ {5, 6} .

Step 3) The GC chooses a random number u, and computes:

b00 = h(h(s00)⊕ u),

b01 = h(h(s01)⊕ u),

b10 = h(h(s10)⊕ u),

b11 = h(h(s11)⊕ u),

b20 = h(h(ai1,0)⊕ u) = h(h(a10)⊕ u),

b21 = h(h(ai1,1)⊕ u) = h(h(a11)⊕ u),

b30 = h(h(ai2,0)⊕ u) = h(h(a30)⊕ u),

b31 = h(h(ai2,1)⊕ u) = h(h(a31)⊕ u),

b40 = h(h(ai3,0)⊕ u) = h(h(a50)⊕ u),

b41 = h(h(ai3,1)⊕ u) = h(h(a51)⊕ u),

b50 = h(h(ai4,0)⊕ u) = h(h(a60)⊕ u),

b51 = h(h(ai4,1)⊕ u) = h(h(a61)⊕ u).

The GC then constructs points B0, B1, · · · , B5:

B0 = (b00, b01),

B1 = (b10, b11),

B2 = (b20, b21),

B3 = (b30, b31),

B4 = (b40, b41),

B5 = (b50, b51).

If the condition

(2(b00 − b10) · 2(b11 − b21)− 2(b10 − b20) · 2(b01 − b11))×
5∏

t=3

(−2bt1) 6= 0 (12)

satisfies, go to Step 4; otherwise, the GC repeats Step 3;
Step 4) The GC expands B0, B1, B2, B3, B4, and B5 to become 5-dimensional

points:

V0 = (b00, b01, 0, 0, 0),
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V1 = (b10, b11, 0, 0, 0),

V2 = (b20, b21, 0, 0, 0),

V3 = (b30, 0, b31, 0, 0),

V4 = (b40, 0, 0, b41, 0),

V5 = (b50, 0, 0, 0, b51).

The GC is now going to establishe a 4-dimensional hyper-sphere based on the
set of points V0, V1, · · · , V5. Suppose the central point of the hyper-sphere is C,
and the square of the radius is R2. The GC then constructs the set of equations
about the hyper-sphere:



(b00 − c0)2 + (b01 − c1)2 + (0− c2)2 + (0− c3)2 + (0− c4)2 = R2

(b10 − c0)2 + (b11 − c1)2 + (0− c2)2 + (0− c3)2 + (0− c4)2 = R2

(b20 − c0)2 + (b21 − c1)2 + (0− c2)2 + (0− c3)2 + (0− c4)2 = R2

(b30 − c0)2 + (0− c1)2 + (b31 − c2)2 + (0− c3)2 + (0− c4)2 = R2

(b40 − c0)2 + (0− c1)2 + (0− c2)2 + (b41 − c3)2 + (0− c4)2 = R2

(b50 − c0)2 + (0− c1)2 + (0− c2)2 + (0− c3)2 + (b51 − c4)2 = R2

(13)

Let matrix

Y =


2(b00 − b10) 2(b01 − b11) 0 0 0
2(b10 − b20) 2(b11 − b21) 0 0 0
2(b20 − b30) 2b21 −2b31 0 0
2(b30 − b40) 0 2b31 −2b41 0
2(b40 − b50) 0 0 2b41 −2b51


and vectors

X =


c0
c1
c2
c3
c4

 , Z =


b200 + b201 − b210 − b211
b210 + b211 − b220 − b221
b220 + b221 − b230 − b231
b230 + b231 − b240 − b241
b240 + b241 − b250 − b251

 .
By subtracting the j-th equation from the (j+ 1)-th equation in (13), where

j = 1, 2, · · · , 5, we can get a system of linear equations with 5 unknowns
c0, c1, · · · , c4, which can be expressed in the matrix and vector form

Y ×X = Z . (14)

The condition in (12) in Step 3 guarantees that (14) has one and only one
solution (c0, c1, · · · , c4) . Then the central point C(c0, c1, · · · , c4) of the hyper-
sphere is solved.

Step 5) The GC multicasts C(c0, c1, · · · , c4) and u to all group members
U1, U3, U5, and U6 via open channel.

Step 6) Each group member can calculate the new group key.
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The member U1 can calculate the group key by using its private point
A1(a10, a11) along with the public information C(c0, c1, · · · , c4) and u, and the
third equation in (13):

K = R2 − ‖C‖2 = b220 + b221 − 2b20c0 − 2b21c1

= (h(h(a10)⊕ u))2 + (h(h(a11)⊕ u))2

−2h(h(a10)⊕ u)c0 − 2h(h(a11)⊕ u)c1

Similarly, the member U3 can calculate the group key by using its private
point A3(a30, a31) along with the public information C(c0, c1, · · · , c4) and u, and
the forth equation in (13):

K = R2 − ‖C‖2 = b230 + b231 − 2b30c0 − 2b31c2

= (h(h(a30)⊕ u))2 + (h(h(a31)⊕ u))2

−2h(h(a30)⊕ u)c0 − 2h(h(a31)⊕ u)c2

For users U5 and U6, the computation procedures are similar to that of mem-
bers U1 and U3. Finally, all the group members can re-construct the same hyper-
sphere and calculate the same group key K = R2 − ‖C‖2 .

4 Security and Performance Analysis

4.1 Security Analysis

1) Any illegitimate user who is not the group member cannot derive the group
key. The group key K is calculated via (11), which invokes the private point
Ax(ax0, ax1) of the member Ux. Any illegitimate user, who is not the group
member, cannot calculate K without the knowledge of legitimate private point
Ax(ax0, ax1) .

2) Forward and backward secrecy is provided. The points that determine the
hyper-sphere are computed by invoking the random number u and hash function
h. According to the properties of random number and hash function, the central
point C and the square of the radius R2 that the GC calculates each time are
different and independent, and then the group key K = R2 − ||C||2 is different
each time when group members join or leave. Even though the group key was
exposed at one time, the outsider would not know the group key at another
time due to the group key update mechanism and independency of group keys.
Therefore, forward and backward secrecy can be guaranteed.

3) It is extremely difficult for attackers to derive the GC’s secrets S0 and S1.
The attacker might be a legitimate member or an illegitimate user. The scheme
can be attacked by a single attacker, or by a lot of attackers who collude and
attempt to get more information.

Suppose the attacker is a legitimate member who can have the knowledge of
R2 and C(c0, c1, · · · , cn) , and suppose the attacker wishes to calculate one of
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the GC’s secret S0. The attacker might firstly attempt to solve b00 and b01 from
the equation

(b00 − c0)2 + (b01 − c1)2 + (0− c2)2 + ...+ (0− cn)2 = R2, (15)

where R2 and C(c0, c1, · · · , cn) are known to the attacker, and then attempt
to derive s00 and s01 from b00 and b01. The attacker has to solve two difficult
problems at the same time: 1) can two unknowns b00 and b01 be solved from
(15)? 2) can the values of s00 and s01 be derived from b00 and b01 ?

For the first problem, it is very difficult to uniquely solve two unknowns b00
and b01 from only one equation (15) if R2 6= 0.

For the second problem, since b00 = h(h(s00)⊕u) and b00 = h(h(s01)⊕u), the
properties of cryptographic hash function guarantee that it is computationally
infeasible to derive s00 and s01 by knowing b00, b01 and u.

Similarly, to derive the GC’s another secret S1 is as difficult as to derive S0 .
Even though a lot of attackers collude, what the attackers can get about the

GC’s secrets S0 and S1 are two equations from (9):

(b00 − c0)2 + (b01 − c1)2 + (0− c2)2 + ...+ (0− cn)2 = R2 (16)

and

(b10 − c0)2 + (b11 − c1)2 + (0− c2)2 + ...+ (0− cn)2 = R2, (17)

where

b00 = h(h(s00)⊕ u),

b01 = h(h(s01)⊕ u),

b10 = h(h(s10)⊕ u),

b11 = h(h(s11)⊕ u).

The situation is similar to that of single attacker. First, it is unable to solve
four unknowns b00, b01, b10, and b11 from the above two equations (16) and (17)
if R2 6= 0. Second, the properties of cryptographic hash function guarantee
that it is computationally infeasible to derive s00, s01, s10, and s11 from b00 =
h(h(s00)⊕ u), b01 = h(h(s01)⊕ u), b10 = h(h(s10)⊕ u), and b11 = h(h(s11)⊕ u)
by knowing b00, b01, b10, b11 and u.

If the attacker isn’t a group member, since any illegitimate user will know
less information than legitimate member, for example, the illegitimate user will
not be able to compute R2 , then it will be more difficult to derive the GC’s
secrets S0 = (s00, s01) and S1 = (s10, s11) in the above cases.

Therefore, it is extremely difficult for attackers to derive the GC’s secrets
S0(s00, s01) and S1(s10, s11) .

4) It is extremely difficult for attackers to derive the member’s private point
Ax. Similar to the situation of attacking the GC’ secrets, suppose the attacker
is a legitimate member and wishes to calculate the member’s private point
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Ax(ax0, ax1) . Let us take x = 1 as an example. The attacker might attempt
to solve b20 and b21 from the equation

(b20 − c0)2 + (b21 − c1)2 + (0− c2)2 + ...+ (0− cn)2 = R2, (18)

where R2 and C(c0, c1, · · · , cn) are known to the attacker, then attempt to derive
a10 and a11 from b20 and b21. Obviously, to solve two unknowns b20 and b21 from
one equation (18) is difficult if R2 6= 0; it is computationally infeasible to derive
a10 and a11 by knowing b20, b21 and u, because the cryptographic hash function
h is invoked.

Even though a lot of attackers collude, the attackers cannot get more infor-
mation than (18) about the member’s private point Ax(ax0, ax1) .

If the attacker isn’t a group member, since any illegitimate user will know
less information than legitimate member, then it will be more difficult to derive
the member’s private point in the above cases.

Therefore, it is extremely difficult for attackers to derive the member’s private
point Ax(ax0, ax1).

5) Exhausting attack is extremely difficult. All the computations in our
scheme are over the finite field GF (p), as long as the number of elements in
the field is larger than a certain constant, e.g., 2128 , then it will be very difficult
to explore the group key by brute force attack.

4.2 Performance Analysis

Suppose the length of the prime p is L bits.
Storage. Each member needs only to store its 2-dimensional private point.

The GC should store all members’ 2-dimensional private points. Then the storage
for each member is 2×L bits, and the storage for the GC is 2× (n+ 2)×L bits.

Computation. The major computation by each member is to calculate the
group key via (11), which includes two h hash functions, four modular multipli-
cations and five modular additions over finite field. The computation for the GC
is to solve a system of linear equations. Since the coefficient matrix in (10) can
easily be converted to a lower triangular matrix, the computation complexity of
solving (c0, c1, · · · , cn) from (10) is O(n).

Number and Size of Re-keying Message. The total number of re-keying
messages is two, including the central point of the hyper-sphere and the random
number u. The size of re-keying messages is (n+ 2)× L bits.

Batch Processing. If there are a lot of users join and leave the group
simultaneously, only one batch processing is needed.

Table 1 shows the performance requirements by both the GC and each mem-
ber.

4.3 Experiments

Our experimental test bed for the GC is a 2.33GHz Intel Xeon quad-core dual-
processor PC server with 4GB memory and running Linux, and the platform for
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Table 1. Performance Requirements by the GC and each Member

Storage Computation Re-keying Messages
(bits) Number Size(bits)

GC 2× (n + 2)× L O(n) 2 (n + 2)× L

Member 2× L 4H + 4M + 5A 0 0

Notation for Table 1:
n : number of members in the group
L : the length of the prime p in bits
H : average time required by a h hash function
M : average time required by a modular multiplication
A : average time required by a modular addition

the member is a HP XW4600 Workstation with 2.33GHz Intel dual-processor
and 2GB memory and running Linux. C/C++ programming language is adopted
to compose the software to simulate the behavior of the GC and members.
We choose L = 128 bits, and compute the average cost of the GC and each
member. The time was averaged over 20 distinct runs of the experiments, and
the difference among the same experiments is less than 2%. The summary of the
experimental results are presented in Table 2 and 3.

In Table 2, the first column represents the size of the group; the second, the
storage for the computation, and the third and fourth, the computation time.
For a large group n = 100000, the GC takes 85.2 ms = 0.0852 seconds processing
member adding or removing. We can observe from this experimental data that
the GC can manage a large group efficiently.

Table 3 shows that the storage and the computation cost does not increase
at all for each group member even when the group size increases, which is very
desirable.

Our experimental results confirm that our scheme is very scalable and very
efficient for large group.

Table 2. Storage and Computation Required by the GC

Size of Storage Computation (ms)
group (bytes) Adding Members Removing Members

10 384 0.06 0.06

100 3,264 0.4 0.4

1,000 32,064 0.7 0.7

10,000 320,064 7.7 7.7

100,000 3,200,064 85.2 85.2
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Table 3. Storage and Computation Required by each Member

Size of Storage Computation (ms)
group (bytes) Adding Members Removing Members

10 32 0.00564 0.00564

100 32 0.00564 0.00564

1,000 32 0.00564 0.00564

10,000 32 0.00564 0.00564

100,000 32 0.00564 0.00564

5 Comparison with Related Work

A summary of the comparison results are presented in Table 4 and 5.
GKMP (Group Key Management Protocol) is a simple extension from unicast

to multicast, but not scalable and very inefficient, which also requires strong sym-
metric encryption and decryption functions. The major disadvantage of GKMP
is its lack of the forward secrecy property [1]. Table 4 clearly shows that our
scheme overwhelms GKMP with respect to both secrecy and performance.

The LKH (Logical Key Hierarchy) scheme can be considered to be the rep-
resentative of tree-based schemes, including OFT [6], OFCT [7], Hierarchical
α-ary Tree with Clustering [8], Efficient Large-Group Key [9], etc. Hence, we
only compare our scheme with LKH, but the results are similar to other tree-
based schemes.

The LKH scheme also requires strong symmetric encryption and decryption
functions. The advantages of our scheme overwhelming the LKH are as follows:
1) our scheme requires no strong encryption function, except the secure channel
when new users register to join in the group for the first time; 2) our scheme is
scalable for massive membership change; 3) the number of re-keying messages is
O(1) in our scheme, but is O(log2 n) in LKH; 4) the computation complexity of
each member is O(1) in our scheme, but is O(log2 n) in LKH.

The major differences between our scheme and LKH are that: 1) the princi-
ples behind are different: hyper-sphere is adopted in our scheme, but tree struc-
ture is adopted in LKH; 2) The computation complexity by the GC in our scheme
is O(n) simple operations, but the one in LKH is O(2 log2 n) encryptions. In av-
erage conditions, the computation of simple operations can be much faster than
encryptions.

Note that tree structure can also be adopted by our scheme to divide the
members into different sub-trees and to further speed up our scheme. We will
explore this direction in our future research.

The SL (Secure Lock) is based on Chinese Remainder Theorem (CRT), which
is a time-consuming operation. Hence, the SL scheme is applicable only for small
groups [4].

There are some similarities between the SL and our scheme: 1) both schemes
can be regarded as flat structure, that is, no hierarchical structures such as tree
structures are adopted; 2) the numbers of re-keying messages in both schemes
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Table 4. Feature and Computation Complexity Comparison among Schemes

GKMP LKH Secure Lock This Paper

Major principle adopted Encryption Tree structure Chinese Remainder Theorem Hyper-sphere

Secrecy No Yes Yes Yes

Strong encryption needed Yes Yes Yes No

Efficient for very large group No Yes No Yes

Scalable to massive adding and No No Yes Yes
removing members

Number of re-keying messages n O(log2 n) O(1) O(1)

Member computation complexity O(1) O(log2 n) O(1) O(1)
decryptions decryptions decryptions and modular operations simple operations

GC computation complexity O(n) O(log2 n) O(n) O(n)
encryptions encryptions encryptions and modular operations simple operations

Table 5. GC’s Computation Comparison between Secure Lock and our Scheme

Secure Lock This Paper

Computation complexity E · O(n) + M · O(2n) + A · O(n) + R · O(2n) H · O(2n) + M · O(2n) + A · O(4n) + R · O(n)

Difference between schemes E · O(n) + R · O(n) 2H · O(n) + 3A · O(n)

Notation for Table 5:
n : number of members in the group E : average time required by a symmetric encryption
M : average time required by a modular multiplication H : average time required by a h hash function

over GF (p) R : average time required by a multiplication
A : average time required by a modular addition over GF (p) reverse over GF (p)

are O(1); 3) the computation complexity by each member in both schemes are
also O(1); 4) the computation complexity by the GC in both schemes are O(n).

Table 5 compares the computation complexity by the GC in the SL and our
scheme. The one in the SL is based on an optimized CRT [4]. The first row
presents the computation complexity. And the second row shows the difference
of computation complexity of two schemes by omitting the identical items in
the first row. The complexity differences are: E · O(n) + R · O(n) in the SL,
and 2H · O(n) + 3A · O(n) in our scheme, where n is the number of members in
the group, E,R,H and A are the average time required by encryption, modu-
lar multiplication reverse, h hash function, and modular addition, respectively.
The hash function h can be computed very fast, so E > 2H. Modular reverse
operation over finite field is a time-consuming computation, thus R� 3A , and
then

E · O(n) +R · O(n)� 2H · O(n) + 3A · O(n),

or

E · O(n) +M · O(2n) +A · O(n) +R · O(2n)

� H · O(2n) +M · O(2n) +A · O(4n) +R · O(n)

Hence, the computation of our scheme is much faster than that of SL.
Therefore, the advantages of our scheme overwhelming the ones of the SL

include: 1) our scheme requires no strong encryption function, except the secure
channel when new users register to join in the group for the first time; 2) our
scheme is efficient for very large group; 3) the performance by each member and
the GC in our scheme is much better than the ones in SL.
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6 Conclusions

In this paper, we study the problem of group key management from a very
different angle than before. A new secure group key management schemes based
on hyper-sphere is constructed, where each member in the group corresponds
to a private point on the hyper-sphere and the group controller (GC) computes
the central point of the hyper-sphere, whose distance between every member’s
private point is identical. The central point is published and each member can
compute a common group key via the square of the radius of the hyper-sphere.

We demonstrate that our new approach is secure, and its backward and
forward secrecy can be guaranteed. The security of our approach relies on the fact
that any illegitimate user cannot compute the group key without the legitimate
private point.

The advantages of our scheme include: 1) it is not necessary to invoke strong
encryption algorithm except the secure channel for one time, the re-keying mes-
sages can be broadcasted or multicasted via open channel, and the secure channel
is required once only when new users register to join in the group; 2) it is very
efficient and scalable for large size groups, and can handle massive membership
change efficiently with only two re-keying messages, i.e., the central point of the
hyper-sphere and a random number; 3) the storage and the computation over-
head of each member are both small, which will not increase as the group size
grows; 4) the GC’s storage and computation cost is also low, where the storage
and computation overhead are increased only linearly with the growth of the
group size.

The performance estimates are confirmed by our experiments. For example,
in the case of a group of size n=100000, the storage for each member’s private
information is 32 bytes, and the time for each member to compute the group
key is 0.000564 ms or 5.64× 10−7 seconds, and the time for the GC to process
membership change is 85.2 ms or 8.52× 10−4 seconds on a 2.33 GHz Intel Xeon
quad-core dual-processor PC server.
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