Physical Turing Machines and the Formalization of
Physical Cryptography
Ulrich Rithrmair
Department of Electrical Engineering and Information Technology
Technische Universitdt Miinchen

Germany
ruehrmair@in.tum.de

September 18, 2006

(With Revisions in Introduction and Summary, April 2011)

Contents
1 Overview

2 Background and Motivation of Our Model
2.1 The Purpose of Formalizing Cryptography

2.2 The Turing Machine and the Foundations of Cryptography

2.3 Physical Cryptography
2.3.1 Unique Objects
2.3.2 Physical Unclonable Functions

2.4 Summary . . o. ...

3 Physical Turing Machines
3.1 Informal Description
3.2 Definition of Physical Turing machines
3.3 Discussion oo

3.4 Probabilistic and Oracle Physical Turing Machines

3.5 Object Generators and Measuring Devices
4 Physical Security of Standard Cryptography

5 TUnique Objects
5.1 Informal Description of Unique Objects
5.2 Definition of Unique Objects

6 Labeling Schemes
6.1 Definitions oL

6.2 Standard Labeling by Unique Objects and Digital Signatures

6.3 Security Proof for the Standard Labeling Scheme

7 Summary

11
11
12
15
17
19

20

23
23
24

30
30
32
34

43

1 Overview

Physical Cryptography. Physical cryptography (PhC) is a recently emerging form of
cryptography and security. Central to this young field are not the mathematical properties of
certain cryptographic functions (such as non-invertability, pseudo-randomness, etc.). Instead,
PhC tries to exploit the analog properties of unclonable, randomly structured physical systems
for cryptographic and security purposes.

There are two potential advantages that result from this paradigm shift: First of all, it
can enable a better protection of secret keys in cryptographic hardware. Instead of storing
secret keys in vulnerable non-volatile digital memory, the keys are derived from, or hidden
in, the analog characteristics of a randomly structured medium. This makes them harder to
read out, derive, or obtain otherwise for the adversary.

Second, the new paradigm can sometimes avoid the classical, unproven computational
assumptions like the purported hardness of the factoring and discrete logarithm problem.
It can trades these assumptions against hypotheses about the employed, disordered physical
systems, for example their unclonability, their input-output complexity, or the numeric unpre-
dictability of their output. PhC thereby creates an alternative foundation for cryptography
and security, which rests on assumptions that are different from the classical, computational
assumptions of standard cryptography.

These two advantages have led to an ever increasing interest in this novel subfield of
cryptography over the last years.

Our Contributions. We make three contributions in this manuscript. First of all, we
describe an extension of the Turing machine model which we call Physical Turing Machines
(or ¢o-TMs or PhTMs, for short). PhTMs are quite similar to standard Turing machines, but
have the additional capability to process real physical objects as inputs and outputs. They
allow us to model cryptographic parties that use physical mechanisms in one way or the other
in their protocols or in their attacks. We argue that this new formal model could potentially
be used for at least three purposes:

(i) To model the security of classical, mathematical cryptoschemes against computational
attacks that employ physical computationals, such as quantum computers or optical
computing devices, and to lead reductionist security proofs in this model.

(ii) To model the security of cryptographic hardware against physical attacks on all levels,
including invasive, side channel and fault injection attacks, and to lead reductionist
security proofs in this model.

(iii) To formalize physical cryptography, and to lead reductionist security proofs in this area.

Second, we briefly investigate how Physical Turing Machines can be applied to the above
purpose (i), and sketch how the foundations of classical cryptography could be reformulated
by use of Physical Turing Machines. This reformulation allows us to include attacks by
quantum computers, for example. One particular benefit of using Physical Turing Machines
in this reformulation is that they allow us to take the limited state of current technology into
account. Simply substituting standard Turing Machines by Quantum Turing Machines would
overestimate the power of the attacker, and would leave many currently existing schemes
unrightfully insecure. Simply using standard Turing machines excludes any attacks that
employ other computing models. Using PhTMs relative to some given state of technology
takes a medium position here, as we argue in all detail later.

Third, we apply PhTMs to the above item (iii), and we lead a detailed security proof
for a well-known scheme in physical cryptography. This scheme concerns a method for the

secure labeling of valuable goods (such as pharmaceuticals, passports, banknotes, etc.) that
combines a digital signature with a unique, non-clonable physical object. We first formalize
various variants of the notion of a unique, unclonable object, and show relations between
the different notions. We then prove that the said method is secure under the provisions
that the employed object is unique and that the used digital signature scheme is secure. The
proof is carried out by a a reductionist technique, and uses Physical Turing Machines as the
underlying model.

Two benefits of using PhTMs in this context are that they (i) enable us to formally
state the physical non-clonability of physical objects; and (ii) that they allow us to reconcile
the inherently finite nature of a physical object with the inherently asymptotic formalization
of digital signature schemes. These features allow us to lead the aspired formal security proof.

We would like conclude this paragraph by delimiting too excessive expectations of the readers
already at this early point. Our aim in this paper is not to assess the computational power
of physical systems in a strict sense, or to prove unconditional feasibility /infeasibility results
about the (computational) power of arbitrary physical systems or devices. Given the current
state of the complexity theory and the still unresolved P vs. NP question, such a hope would
indeed be unreasonably high. Our main focus rather is to provide a formal foundations and
backbone for reductionist security proofs in physical cryptography and related disciplines. As
it turns out, this goal is complicated enough in itself.

History of this Manuscript. Physical Turing Machines were discussed in a small working
group at the TU Miinchen over the summer 2006. This manuscript with formal definitions
and proofs was subsequently prepared in August/September 2006. To the feeling of the author
at that time, several questions had not been treated with full rigor yet, and it was planned to
add a discussion of syntactics and semantics of Physical Turing Machines before publishing.
This delayed the completion of the work for several years. In 2011, the view prevailed that
the work would also have value without these additional topics. Sections 1 and 2 were revised,
Section 7 was added, and the manuscript was made public. Earlier versions had been passed
on via e-mail to a few colleagues in three waves in 2007, 2008 and 2010.

Organization of this Manuscript. We take some time in Section 2 in order to prepare
the stage for our new machine model and its applications. We review the general purpose
of formalizing cryptographic schemes in Section 2.1, and explain a (slightly provoking) con-
ceptual gap in the current, Turing machine based formalization of cryptography in Section
2.2. Then, we will take a brief look at Physical Cryptography in Section 2.3, which illustrates
our main motivation for the new, extended machine model. We conclude by a summary in
Section 2.4.

The technical contributions of the paper are presented in Sections 3 to 6. In Section 3,
we introduce Physical Turing Machines as a formal “computational” model that allows both
numeric computations and physical actions (measurement, generation, manipulation, etc.) on
physical objects. In Section 4, we discuss the application of PhTMs to the formalization of
classical cryptography. In Section 5, we formalize the concept of Unique Objects (UNOs) in
various ways, and lead a few first proofs in order to get used to our formalism. In Section 6,
we deal with one of the main applications of Unique Objects, which is their use as unforgeable
“labels” (or markers or tags) for security tokens and goods of value. We formalize the notion of
a secure labeling scheme, and prove by a reductionist technique that secure labeling schemes
can be constructed from secure digital signature schemes and unique objects. This technical
proof is one of the main contributions of the paper. Finally, we conclude the paper in Section
7 by a summary.

2 Background and Motivation of Our Model

2.1 The Purpose of Formalizing Cryptography

What is the aim of mathematical formalization in cryptography? Obviously, it is to formally
prove the security properties of certain cryptographic schemes. We can distinguish between
three, not totally disjoint steps related to this task:

1. Build a mathematical security model. In this step a mathematical formalism is set up
that models the real-world situation in which a given cryptographic scheme is applied.
The step includes defining the security properties, user behavior and adversarial behav-
ior in that formalism.

2. Conditionally prove the security of cryptographic schemes in the security model. This
step consists of mathematically proving the security properties defined in step 1 under
the premise that some additional, unproven assumptions hold. These assumptions are
expressed in the mathematical formalism provided by step 1, and the proof is led in
that mathematical formalism, too.

3. Uncoditionally prove the security of cryptographic schemes in the security model. The
aim of this step is to prove the security properties expressed in step 1 without making
additional, unproven assumptions. Again, the proof is to be led in the mathematical
formalism provided by step 1.

A couple of non-trivial points need to be made. First of all, note that basically any security
model is itself subject to implicit and unprovable assumptions. Hence, any result proven in
step 2 and 3 is necessarily subject to these assumptions (and, in a strict sense, could never
be called unconditional).

Then, note that it is hard to find a formal criterion that distinguishes the assumptions
made in step 1 and 2. Associating assumptions to one of the steps seems a matter of human
intuition and reasoning, not so much a matter of formal distinguishability. Consider as an
example the familiar formalization of complexity based cryptography. As implicit in the
security definitions, it is assumed there that the adversary cannot execute any other than
polynomially time-bounded Turing computations. This assumption is commonly associated
to step 1. The assumption that the adversary cannot factor numbers quickly, however, is
regarded as part of step 2. This choice is to some extent arbitrary; from a purely formal
perspective, both assumptions could be attributed to the respective other step, too.

Third, it is important to realize that it can be nontrivial to decide whether an uncondi-
tional proof of the security properties of some scheme (i.e. step 3) is possible at all in the
mathematical formalism provided by step 1. There could be formalisms in which we have to
confine ourselves with step 2, because step 3 is generally impossible. Once more, this may
hold in particular for the current complexity-based formalization of cryptography: We do not
know whether the underlying problem of NP vs. P is independent of the axioms of set theory
(ZFC, more specifically); see, for example, [8]. Consequentially we cannot say whether the
formal security of many cryptographic schemes, whose unconditional proof would imply that
NP # P, is independent of ZFC. In any case it is obvious that step 3 has currently not been
completed in the standard formalization of complexity based cryptography.

But — is there any value in a framework which currently or forever confines us to steps 1
and 2?7 Again, it can be observed by the example of present cryptography that there is. As
it stands, the current theory of complexity based cryptography is nothing more than a large
network of reductions. In this network the security of some schemes is reduced to the unproven
security of other schemes or notions, respectively, but no unconditional security proofs are

led. Some fundamental points of the network (nodes with high in-degree, if you like) are
considered as “basic assumptions”’, and some of them are termed cryptographic primitives;
examples include one-way functions or the assumed intractability of factoring.

The benefit of that method is undisputed within the community: It lies in the fact that
we only have to evaluate and observe the validity of a small number of “basic assumptions” in
order to have a large toolbox of secure cryptographic schemes at hand. Given a new scheme,
the method enables us to judge its security in terms of older and well-established assumptions.

This justifies to accept mathematical frameworks which initially merely allow for step 2,
and in which step 3 seems either very remote or even problematic in principle. We will come
back to this conclusion in Section 3 in order to justify our new Turing model; for now, we
turn to one particular aspect of the standard mathematical framework of complexity based

cryptography.

2.2 The Turing Machine and the Foundations of Cryptography

The Turing machine formalism has traditionally been used as the foundation of computability
theory and complexity theory. This makes two implicit assumptions, as pointed out in [5].
First of all, both computability theory and complexity theory often implicitly assume the
validity of the Church-Turing Thesis:

Church-Turing Thesis (CT): Any function on the naturals that is computable
in some intuitively reasonable sense can also be computed in the Turing machine
formalism. In particular, any function that can be computed by some physical
hardware system can be computed by a Turing machine.

Note that this formulation of CT may neither reflect Church’s or Turing’s original belief; in
particular, it makes CT a statement rather about physics than about mathematics. For a
nice discussion on that topic, see also [5].

Second, complexity theory in large parts also assumes the Extended Church-Turing Thesis,
which can be formulated like this:

Extended Church-Turing Thesis (ECT): Any function on the naturals that
is computable efficiently (i.e. in polynomial time) in some intuitively reasonable
sense can also be computed efficiently (i.e. in polynomial time) in the Turing ma-
chine formalism. In particular, any function that can be computed in polynomial
time by some physical hardware system can be computed in polynomial time by
a Turing machine.

As complexity theory and the Turing machine formalism are the main tools in the formal-
ization of complexity based cryptography, CT and in particular ECT are implicit, but often
overlooked assumptions in that area. Quite unfortunately, there is some evidence that ECT
could be false, as factoring can be done in polynomial time on a quantum computer, but,
many suspect, not on a Turing machine. This makes the following future scenario possible:
While we can prove unconditionally that breaking RSA cannot be done in polynomial time on
a Turing machine, we can at the same time factor efficiently in practice by the use of quantum
computers. RSA would then be unconditionally and provably secure in theory according to
our current formalization standards, while it was obviously insecure in practice. This seems
to indicate that the current foundations of cryptography exhibit a conceptual gap when it
comes to computations that are executed by real world physical systems and not by Turing
machines; the attempt to close this gap seems reasonable.

One obvious, very rigid approach would be to substitute quantum Turing machines instead
of ordinary TMs in all definitions and proofs. Unfortunately, not many popular asymmetric
cryptographic schemes are left secure when we make that step, and most proofs break down.
Also, it seems far away from practice, as at the moment quantum computers are just able to
factor low-range two digit numbers.

Do we have other alternatives? It seems that our only option was to ignore the gap,
adopting the position that it is practically irrelevant. However, lack of practicality is an
argument that at times has been used unrightfully against the foundations of cryptography
as a whole; it does not feel appropriate to turn it the other way, and to use it against a correct
objection to the current standards within the foundations of cryptography. We believe that
there is no use in pursuing the foundations of cryptography half-heartedly; if we take the
soundness of cryptography serious, if we really are to “build a long-lasting building and not a
cabin”, then we should include quantum attacks into our model.

Still, this leaves us with the question how this can be done. Ideally we would like to
set up a computational model similar to the Turing formalism, in which we can express and
prove security properties at least conditionally, possibly even unconditionally. This formalism
should include quantum and other physical computations in order to avoid the conceptual
gap described earlier. On the other hand, it must not allow quantum attacks way beyond
current technology, as otherwise many asymmetric cryptographic schemes of interest become
unrealistically insecure in our model. The only way out of this dilemma seems a formalism that
can somehow include the current state of technology, while still enabling (at least conditional)
security proofs.

2.3 Physical Cryptography

Besides the small potential gap in the current formalization of classical cryptography, there
is a second motivation for the introduction of Physical Turing machines. This motivation is
is related to some recent developments in security.

Starting with the well-known schemes of quantum cryptography that date back to the
early eighties and late seventies, the idea to exploit physical phenomena in cryptographic
protocols has become more and more popular. It finally turned out that not only quantum
effects, but also classical physical phenomena can be exploited advantageously.

Presumably the first to discuss this possibility in scientifically documented publications
were D. Bauder and G. J. Simmons in the early 1980s, followed by R. Pappu and others
around the year 2000. Their seminal ideas lead to a large body of subsequent scientific work.
These publications all have in common that they exploit the analog properties of disordered,
randomly structured physical objects, whence we like calling this scientific area “physical
cryptography”. Two examples of useful physical objects which we will discuss in the next
paragraphs are so-called Unique Objects and Physical Unclonable Functions.

2.3.1 Unique Objects

Unique Objects are physical systems or objects that exhibit a set of analog properties which
cannot be copied, reproduced or manufactured by intent. These properties should be de-
tectable reliably by some external measurement apparatus, and they should be expressible in
a short binary string of size below 10 kB. Even if the analog properties and the details of the
measurement apparatus are given to an adversary, he shall be unable to fabricate a second
object that exhibits the same properties upon measurement with the apparatus. Under these
circumstances, we also call said properties the unique properties of the Unique Object.
Unique properties often occur due to uncontrollable variations in the manufacturing pro-
cess. One easy conceptual example of a unique system is a random distribution of (possibly

only a few) optically active particles such as fibers in a solid-body matrix: Such a distribution
is hard to reproduce or to produce on intent.

Let us now consider one typical application of Unique Objects: The generation of unforge-
able and machine-testable labels (tags/markers) for any products or goods of value.

Application: Labeling of valuable objects. To label products unforgeably is a problem
of high theoretical appeal and also of economic relevance. The World Economic Forum in
Davos estimates that the world-wide economical damage caused by faked brand products
amounts to 400 billion Dollars per year. The basic task can be described as follows: Given a
valuable product, generate a physical token — the label — that can be applied to the product
such that the following conditions are met:

1. The validity of the label can be tested by an automatized device.

2. The label cannot be faked or counterfeited.

Unique systems suggest themselves as unforgeable labels, as they have properties that can-
not be copied or reproduced. However, the propery of being unreproduceable also leads to
problems: All labels that are applied to different specimen of the same product differ and are
subject to random production variations. How shall the testing device distinguish a ‘random’
label that has been produced by the legitimate company from a ‘random’ label produced by a
fraudster? The idea is to use a standard technique from mathematical cryptography, namely
digital signatures, in connection with unique objects. The combined labeling scheme works
as follows:

1. Produce a (random) unique system, and measure its unique properties Py, ..., P,.

2. Create a digital signature S = Sigk (P, ..., P,) for these properties by use of some
secret key K.

3. Apply the (numerical) signature, the (numerical) description of the properties Py, ..., P,
and the (physical) unique system to the product.

4. All testing devices are equipped with the public verification key P that corresponds to
K. If a labeled product is inserted into some testing device, it executes the following
procedure:

(a) Check if the signature S is a valid signature for the properties P, ..., P, listed on
the product. To that end, use the public verification key P.

(b) Test if the unique physical system contained on the product has the properties
Py, ..., P, listed on the product.

If this is the case, the testing device regards the label as valid, otherwise as faked.

Intuitively, this labeling technique seems secure provided that the physical system really is
unique and that the digital signature scheme is secure. But — can we prove that? How could
we set up a formal framework in which such a proof can be conducted?

The difficulty of this task lies in the fact that attacks on the labeling scheme can be ex-
ecuted on two levels: First of all on a binary level by faking the digital signature. Another
possibility, however, is to attack the scheme on a physical level by trying to copy the unique
physical system. Therefore modelling the attacker as a standard Turing machine will not
suffice. Instead, we should use a machine model which combines the ability for Turing com-
putation with the capability to process physical objects; this model could have some ‘Turing

part’ and some ‘physical part’. Again, the capabilities of the physical part should realisti-
cally operate only within the limits of current technology, which is a condition that we have
encountered before (Section 2.2), but do not know how to meet yet.

2.3.2 Physical Unclonable Functions

A Physical Unclonable Function (PUF) is a physical system S which possesses a certain level of
disorder or randomness in its micro- or nanoscale structure. S can be excited with so-called
external stimuli or challenges C;, upon which it reacts with corresponding responses Rc;.
These must be a function of the applied challenge and of the structural disorder that is present
in the PUF. The responses are supposed to be stable over time and multiple measurement,
and the tuples (C;, R¢,) are commonly called the challenge-response pairs (CRPs) of the
PUF.

It is usually assumed that a PUF cannot be cloned or reproduced exactly, not even by
its original manufacturer. This well established assumption is not based on a fundamental
physical theorem, such as the no cloning theorem in quantum mechanics. Instead, it is viable
in practice due to the inherent limitations of current nanofabrication techniques. These are
unable to position molecules or atoms with arbitrary precision in three dimensions [2, 1],
and hence cannot reproduce the small-scale disorder and structural randomness of the PUF
exactly.

So-called Strong PUFs have a second important property: They allow a very large number
of applicable challenges and possess a complex, inimitable challenge-response behavior. It is
assumed that their responses cannot be predicted numerically, but can only be obtained by
a physical measurement on the unique and unclonable PUF itself. This must hold even if
an adversary had access to the PUF at earlier points in time, could freely apply challenges
to the PUFs, and could measure the corresponding responses. In other words, even if a
large number of challenge-response pairs of a Strong PUF are known, the challenge-response
behavior cannot be machine learned or modelled well enough to allow the certain numerical
prediction of the responses to new, randomly chosen challenges. This property could be
referred to as the unpredictability or non-learnability of a Strong PUF.

In a nutshell, the difference between Unique Objects and Strong PUFs lies in the large
number of CRPs a Strong PUF allows, and in the fact that the measurement signal of a
Unique Object is analog and determined by an external apparatus, while the CRPs of a
Strong PUF may be digital and may be determined by an integrated measurement apparatus.
Furthermore, a Unique Objects must remain secure even if its the unique properties are given
to the adversary. More details can be found in some recent publications on the foundations
of PUFs and physical cryptography.

Application: Secret Key Exchange by Physical Unclonable Functions (PUFs).
(Strong) PUFs are a very powerful cryptographic tool: They allow identification, key ex-
change, oblivious transfer and other applications. In the following, we describe a key ex-
change protocol on the basis of Strong PUFs. We assume that (i) Alice holds a Strong PUF
S at the beginning of the protocol, and that (ii) Alice and Bob have an authenticated (but
non-confidential) binary channel and a fully insecure physical channel at hand.

1. Alice chooses random challenges C,...,C5;. She measures the PUF S in order to
determine the responses R¢,, ..., Rc,, -

2. Alice sends the Strong PUF S over the physical channel to Bob.

3. Bob receives an object S’, which is not necessarily equal to S (recall that it could have
been exchanged by the adversary, since the physica channel is insecure).

4. Bob sends the message “I got an object!” over the authenticated binary channel to Alice.

5. Alice and Bob check that S is equal to S’. That is, they check that Bob received the
object that was sent away by Alice, and that the object has not been exchanged or
manipulated while it was sent. To that aim, they execute the following subprotocol:

(a) Alice sends the values Cj, ..., Ck to Bob.

(b) Bob measures the object S’ with the parameters C, ..., C} and receives the values
Vi,..., Vs, which he sends to Alice.

(c) Alice checks if the values she got from Bob match the values she measured herself
in step 1. That is, she checks if V; = R¢, for ¢ = 1,...,k. If this is the case, she
sends the message “Ok.” over the binary channel to Bob. Otherwise, she sends
“Stop!” over the binary channel, and Alice and Bob abort the protocol.

6. Alice sends the values Cj41,...,Co over the binary channel to Bob.
7. Bob determines the values R¢,,,, ..., Rc,, by measurement on the PUF.

8. Alice and Bob extract their secret binary key from the values R¢, ., ..., Rc,,, which
is known to both of them.

Why is the above scheme secure? We can argue informally in favor of its security as follows.
By the properties of the (Strong) PUF, an adversary Eve who might have access to the PUF
while it is delivered physically from Alice to Bob cannot fully read out all CRPs, cannot clone
the PUF, and cannot build a numerical simulation model of the PUF. Hence, the probability
that Eve by chance reads out a piece of information of the system that is later used to build
the secret key is very small; using privacy amplification techniques when extracting the key
from the bit sequence R¢, _,,. .., Rc,, can make it arbitrarily small.

Again this leaves us with the question how can we prove the security properties in a formal
way. Apparently, an adversarial model designed for that purpose once more has to include
both capabilities for binary information processing and for physical attacks. These physical
attacks may include attempts to copy, photograph, scan, imprint the PUF into a suitable
material to form a negative copy of it, or to otherwise physically process the PUF. Therefore
a standard Turing machine again will not suffice as a model for the attacker. Also an oracle
Turing machine which models the PUF by an oracle that can be presented with a challenge
C and returns the value R¢ will not do. It cannot model general physical attacks such as
those listed above.

Hence, just as in the case of the labeling scheme, the model for formalizing PUFs must
include capabilities for Turing computation as well as for the general processing of physical
objects. In any realistic model those physical capabilities must be subject to the state of
technology, an expression beginning to sound familiar.

2.4 Summary

We have covered a range of topics in the introduction that spans from the purpose of formal-
izing cryptography to new approaches in cryptography. The following conclusions, which will
be relevant in the upcoming parts, can be drawn from the presented material:

1. The purpose of formalization in cryptography does not only lie in enabling uncondi-
tional security proofs. Reductions among cryptographic notions and conditional secu-
rity proofs are other, sufficient goals that can motivate the introduction of a formal
security model. Hence, models which do not allow for unconditional proofs now or in
principle should not be discarded for that fact.

10

2. We discussed a conceptual gap in the current foundations of cryptography that should
ideally be closed. This could only be done by introducing a machine model which
combines the capabilities for Turing and for physical computation. Further, we observed
that it seemed reasonable to limit the physical computations in that model by the state
of current technology, but we did not know how to do that yet.

3. We presented some new developments in cryptography, which we subsumed under the
name “physical cryptography”. They use the analog physical properties of disordered
physical systems for cryptographic purposes. A strict formalization of this area would
make it necessary to add the ability to process physical objects to the capabilities of
standard Turing machines.

The above conclusions motivate the following tasks of research: First, introduce a new machine
model that includes the potential for physical actions on physical objects, and a way to
formalize the notion of “current technology”. Second, reformulate the security properties
of standard binary cryptoschemes and also the corresponding security proofs in that new
model, thereby addressing the potential gap in the current formalization of cryptography.
Third, define the security-relevant properties of physical systems that are applied in physical
cryptography in the new model. Fourth, conditionally prove the security properties of schemes
of physical cryptography in the new security model. The aim of this paper is to cover some
aspects of this line of research.

3 Physical Turing Machines

3.1 Informal Description

This section is devoted to an informal description of the physical Turing machine model; a
more formal presentation will be given in section 3.2. Put in one sentence, the aim of physical
Turing machines is to model computations that are executed by human beings with the help
of physical systems. We imagine the situation as follows:

The human being holds paper and pencil in order to make some private notes or private com-
putations. He has a finite number of finite physical systems or machines 51, ..., .S, under his
control, which he can let perform computational tasks for him. These computational tasks
can take numbers and/or physical objects as input, and produce numbers and/or physical
objects as output. In order to enable information exchange between the systems and the hu-
man being, we envision that the each system has got a digital interface, into which the human
being can type information, and through which the human being can receive information.

Whenever the human being wants one physical system to perform a certain numerical
computation, he types the numerical input of that computation into the interface. After
some computation time, he gets the numerical result of that computation, communicated
over the interface.

Whenever the human being wants one physical system to perform some action on one or
more given physical objects, we imagine that the human being presents the objects to the
system by placing them in some specific position relative to the system. These positions also
impose an order on the input objects. Then, the human being uses the interface in order
to provide the physical system with some accompanying numerical input. That input can,
for example, describe how the system should process the object, but is not limited to that
purpose. After some computation time, the human being gets in return one numerical string
communicated by the interface, and possibly one or more processed objects, which are placed

11

in some specific positions relative to the system. Again, positioning places an order on the
returned objects.

We assume that a human equipped as described can perform certain tasks that we sub-
sume under the term computation. The tasks to be performed are presented to him in the
form of an input, consisting of a binary number and/or a finite number of physical objects.
The solution to the task is presented by the human being as a certain output, again consisting
of a binary number and/or a finite number of physical objects. Hence, the actions of the
human being can be seen as the computation of a function F', whose domain and range are
the set of finite tuples that consist of a finite binary string and a finite number of physical
objects. As computation time we can naturally regard the time interval experienced by the
human being between the two events of being presented with the input and presenting the
output.

That rough model seems generally fine, but one aspect needs further consideration. As the
physical systems S1,...,.5, employed by the human being during a computation are finite,
they can in general only deal with a finite range of inputs and outputs. We would, however,
like to be able to compute infinite functions in our formalism. Hence, the physical systems
S1,...,5, in general should be able to deal with an unrestricted input and output range.
This is a contradiction and raises a problem.

In the informal setting just described, our (idealized) human being could practically encounter
this problem by building the physical systems that support his computation bigger and bigger,
adjusting to the growing size of the input. We will model this behavior as follows: Each of the
above ‘machines’ Sy, ...,S, is represented in our model by an infinite sequence of machines,

S;=5},82,8 ..., fori=1,...,n.

There, each single machine Sf is required to have finite mass, but within any sequence .S; the
masses of the single machines may grow beyond any threshhold to adjust to more complex
inputs.

In any one given physical Turing machine computation, then, the physical Turing machine
is allowed to use precisely one machine from each infinite sequence S;. These n machines must
be selected deterministically by a previously specified choice function, which may only depend
on the length of the binary input and the weigth of the physical input. This mechanism is
reminiscent of the choice mechanism in the computational model of polynomial size circuits.
It can be formalised conveniently as specified in Definition 3.5, after a norm on mixed numer-
ical /physical inputs has been introduced.

In any case, the described choice mechanism forces the physical Turing machine to merely
use a finite number of computing machines (and not the whole infinite sequences S;) in each
computation, which is desirable.

3.2 Definition of Physical Turing machines

The informal discussion of the previous section gives rise to the following sequence of formal
definitions, which eventually lead to the notion of a physical Turing machine. We start by
defining the physical stage on which physical Turing machines live, which we call a ‘universe’.

Definition 3.1 (Deterministic Universes). A (deterministic) universe U is a 4-tuple U =
(O, D, B, m) with the following properties:

1. O is an arbitrary set called the set of possible objects.

2. M is an arbitrary subset of O called the set of possible machines.

12

8. m: O — N is a mapping called the mass.

4. F: M — Func({0,1}* x O* — {0,1}* x O* x N) is a mapping called the behavior
function of M.

5. Both O and M contain o distinguished object Ao called the emtpy object, for which it
holds that m(A\o) = 0.

Definition 3.2 (Notational Conventions for Universes). We make the following notational
conventions:

1. The set O* denotes the set of finite tupels of elements of O. Whenever we refer to
an element X of some set S x O, we often write X = (s,01,...,0,) instead of
X =(5,(01,...,0y)).

2. For every M € M, F(M) is a mapping, which we often denote by Fpr. That mapping
def

can be split up in three components Fay = (Fap, Fap, Fap), where Fi, = I (Fyr) with
IT* denoting the projection onto the i-th coordinate.

Before we finally define physical Turing machines, we have to sort out two more formal details.

Definition 3.3 (Physical and Binary Tapes and Their Content). Let U = (O, D, B, m) be
a universe. A physical tape (in U) is a half-sided infinite tape whose cells can contain any
object from the set O. A physical tape is said to be empty if all cells contain the empty object.
Further, its cells are labeled by natural numbers in increasing order, starting with the number
‘one’ at the end of the tape. The content of a physical tape is a (finite or infinite) sequence
01,04, ... where the objects O; of the sequence are the objects contained in the cells of the
tape, in increasing order of the labels of the cells, omitting all empty objects contained in the
cells. If the content is a finite sequence, we can write it as tuple (O1,...,0Of).

A binary tape (inU) is a standard, half-sided binary Turing tape, whose cells can contain the
symbols zero and one and the symbol ‘blank’. The tape is empty when all its cells contain the
blank symbol. The content of a binary tape is the finite or infite sequence of bits contained in
the cells, omitting blanks. If that sequence is finite, we can write it as a finite binary string
x.

As the input and output of a -TM are a mixture of numbers and physical objects, we should
define a norm on such inputs.

Definition 3.4 (Input and Output Norm). Let U = (O, D, B, m) be a universe. We define a
norm ||-|| on all elements X = (x,(01,...,0,)) of the set {0,1}* x O* by

1X]| = max{length(z), S{_ym(0,)}
where length(-) denotes the length of a binary string.

Now we are in a position to define physical Turing machines.

Definition 3.5 (Physical Turing Machines). Let U = (O, D, B, m) be a universe. A physical
Turing machine or p-Turing machine M in U consists of a Turing programm P together
with n infinite sequences My, ..., M, of machines in U, where M; = (M2, M}, M?,...) for
t=1,...,n.

M has got five tapes: Two internal tapes, two external tapes, and one switching tape. One
of the internal tapes is a binary and the other one is a physical tape; the same holds for the
external tapes; the switching tape is binary. Further, a o-TM has got a counter, which cannot
be accessed or deliberately altered by the w-TM during computation. The counter shows the

13

value 0 at the beginning of each computation.

The internal tapes and the switching tape are initially empty. The content x of the bi-
nary external tape and the content (O1,...,0y) of the physical external tape at the begin-
ning of the computation are called the binary respectively physical input of M; the string
X = (2,04,...,0y) is the (overall) input of M.

M further has got n + 1 distinguished states termed the calling states Call 1, Call 2, ...,
Call n and the swapping state. Suppose that when M switches into a calling state Call i, the
overall input of the computation was X, and that at the time of switching the content of the
binary external tape was x and the content of the physical external tape was (Oq,...,0).
Then, the following happens within one Turing step:

1. The content of the binary external tape is erased and replaced by

‘FiJ_HXH (I’,Ol, .. .,Ok).

2. The content of the physical external tape is erased and replaced by

flz\/[.HXH (1‘701,...,0k).

3. The counter of the ¢-TM is increased by the value

‘7:]:\5/[1.“)(“ (.’IJ,Ol,...,O}C).

Likewise, we describe what happens when the physical Turing machine switches into the swap-
ping state. We distinguish between two cases:

1. When M switches into the swapping state, the content of the swapping tape is of the
form (x,y), where x and y are natural numbers (assuming a previously specified encoding
scheme). Then, the content of cell x of the external physical tape is exchanged with the
content of cell y of the internal physical tape, and the swapping tape is erased. This
takes one Turing step.

2. The content of the swapping tape is not of that form. Then nothing happens. Again,
this takes one Turing step.

The output of a Turing machine is the content of the external tapes when it switches into an
end state, with the numerical output being the content of the binary tape, and the physical
output being the content of the physical tape. The computation time of a Turing machine is
the number of Turing steps plus the content of the counter of the Turing machine when the
Turing machine switches into an end state.

Before we can briefly discuss the definition of a ¢p-TM in the next subsection, there are a few
more things that need to be said. First of all, we will introduce a formal notation for the
output of a p-TM.

Notation 3.6 (Output of physical Turing machines). Let M be a o-TM and X € {0,1}* x O*.
The output of M on input X is denoted by Outpr(X). Unless otherwise stated, we often write
M(X) instead of Outpr(X).

The next definition states what it means for a o-TM to be ressource efficient; as usual,
ressource efficiency is taken as being polynomially bounded in some way.

14

Definition 3.7 (Polynomial o-TMs). Let U be a universe, and let M = (P, My,...,M,) be
a p-TM of U. The we define the following notions:

1. M is called a polynomial time o-TM if there exists a polynomial p such that for any
X € {0,1}* x O, the computation time of M on input X is less or equal to p(|| X||).

2. M is called a polynomial mass p-TM is there exists a polynomial p such that m(MF) <
p(k) for all natural numbers k and 1 <1i < n.

3. M s called a polynomial p-TM if is both a polynomial time and a polynomial mass
p-TM.

Finally, a computation executed by a o-TM M is called a polynomial time or polynomial
mass or polynomial computation if M is a polynomial time or polynomial mass or polynomial
p-TM, respectively.

Now we can state an important feature of o-TMs, namely that they can be customized with
respect to a certain ‘state of knowledge’ or ‘state of technology’ in a universe. Intuitively, a
state of technology should be given by the machines that can (in practice, not in principle)
be built in a certain universe; hence it is suggestive to consider a state of technology to be a
subset of the set of all possible machines. This motivates the next definition.

Definition 3.8 (State of Technology). Let U = (O, D, B, m) be a universe. Any set T that
is a subset of M s called a state of technology (in U); whenever the universe is clear from
the context, we drop it. If a machine M is contained in T, we also say that M is a machine

of T.
We can now say what it means that a ¢-TM respects a state of technology.

Definition 3.9 (¢-TMs Respecting a State of Technology). Let U be a universe, and T be a
state of technology in U. Let M = (P, My, ..., M) be a o-TM in U. We say that M respects
T, or that M is a o-TM in T, if all elements of the sequences M; are machines of T .

This, for the moment, completes the definition of the concepts that we had been asking for:
We have formally defined what a physical Turing machine is, we have found a way to express
the informal phrase ‘state of technology’, and we have defined how a state of technology may
influence the power of a Turing machine. Our definitions will be discussed briefly in the next
subsection.

3.3 Discussion of Physical Turing Machines

There is one obvious objection that can be raised against physical Turing machines: Their
definition does not specify which machines respectively which functions can be employed to
support the standard Turing machine computation. Hence, their precise computational power
remains unclear and seems basically undefined. There are various ways to encounter this ob-
jection.

First of all, we remark that ¢-TMs were introduced in order to reformulate complexity
based cryptography and to provide a formal basis for p-cryptography, among other reasons.
As discussed at length in section 2.1, it suffices for that purpose if p-TMs can be used for
the following purposes: First, to relate the security of different cryptographic schemes and
primitives to each other; second, to lead conditional security proofs. To that aim no precise
definition of the power of the computational model is necessary, as we will see in detail in the
upcoming sections 6.3. Rather, a framework with the following properties is needed: First,

15

it can be used to express certain assumptions about the security of cryptographic schemes;
second, it is general enough to capture all conceivable attacks; finally, it has enough inter-
nal structure to allow reductions between different cryptographic objects. These properties
are met by ¢-TMs, and, when it comes to the second aspect, even more than by standard TMs.

Second, there is no reason why in principle and in practice it should not be possible to
fully determine the set of physical systems and corresponding functions that can be employed
in a o-TM computation. It is well conceivable that as the state of knowledge in theoretical
physics progresses, the notion of a physical system can be formalized well enough in order to
fully determine the behavior of physical systems. Together with specifying a decent input -
output formalism, this might lead to a full characterization of the finite functions that can
be computed by finite physical systems according to the currently most advanced physical
theory. More precisely, it is conceivable to apply the most advanced physical theory (which
today would be quantum or string theory) to the physical parts of any ¢-TM in order to
restrict

(A) the set of possible objects and possible machines in the universe U, from which a p-TM
might draw its physical parts.

(B) the technology 7 from which a ¢-TM might draw its physical parts.

That means that there is some good reason to assume that at least potentially and in prin-
ciple we can fully determine the computational power of ¢-TMs, or of polynomial ¢-TMs, as
our state of knowledge progresses. Please note that nothing more can be said, in fact, about
the status of classical TM or classical polynomial-time TM computations. Deciding whether
a function is Turing computable is not Turing computable; further, we do not know how to
resolve the NP vs P question, left alone that we cannot say whether this question can in
principle be decided in ZFC. This is not held against the Turing formalism, and we feel it
should also not be held against our formalism.

One other important aspect follows: Had we applied one specific physical theory in the
definition of ¢-TMs, then this theory might be subject to change or even replacement over
time. The general formalism provided by ¢-TMs, however, can persist independent of such
change: We simply determine the universes I/ in which the ¢-TMs operate, or the technologies
7 they respect, by application of the new physical theory instead of the old one. This seems
to further stress the generality of our approach to physical computation: ¢-TM can persist
while physical theories change.

Fourth, one interesting historical reference ought to be made in this context. When he in-
troduced the Turing machine (respectively LCM, as called then), Turing’s aim was obviously
not to introduce a complete computational model that covers any computation executable
by a physical machine. Rather, he intended to formalize any ‘mechanical’ procedure that
could be carried out by a human being. This approach was motivated by his goal to apply
the Turing machine to Hilbert’s Entscheidungsproblem, which asked for a humanly ezecutable
procedure of a certain, ‘mechanical’ sort, where ‘mechanical’ has some specific meaning that
deviates from our everyday language. Turing was to show that there was no such procedure
in the case of predicate logic, and the Turing machine was tailored for just this case. Indeed,
Turing often spoke of the Turing machine as of a “human computer”, or stated that “a man
provided with paper, pencil and rubber, and subject to strict discipline, is in effect a universal
Turing machine”. Perhaps even more strikingly to the point, Wittgenstein wrote: “Turing’s
‘Machines’. These machines are humans who calculate.” The approach we took seems to fit

16

well with these statements: First of all, they confirm that it seems necessary to specifically
introduce physical systems if we want to go beyond the human-oriented power of the Turing
machine. Second, given Turing’s and Wittgenstein’s views, it seems suggestive to model a
human being utilizing physical systems for computation as a Turing machine with access to
physical systems, just as we did.

Fifth, we would like to comment briefly on the related notion of oracle Turing machines.
Our physical Turing machines can be seen as similar to oracle Turing machines that draw
their oracles from a predetermined set of functions. There are some differences, however: First
of all, standard oracle machines do not operate on physical objects. Second, standard oracle
machines have their oracle fixed for all inputs and do not choose the computational power
of the oracle in dependence of the input length. This property of physical Turing machines
rather is reminiscent of computational circuits. Third, there is no additional component in
the answer of a standard oracle that could be taken as a counterpart to the physical compu-
tation time that is added on the counter of a o-TM. Obviously, these differences could have
been overcome by adapting the oracle machine framework, but we felt that this might have
overstretched this concept a little. Nevertheless, similarities remain, and — another historical
remark — there is some resemblence also between our approach and Turing’s O-machines,
introduced in chapter four of his PhD-Thesis.

Finally, we would like to conclude by once more stressing the necessity to include physical
aspects in any computational model