
Physical Turing Machines and the Formalization of
Physical Cryptography

Ulrich Rührmair
Department of Electrical Engineering and Information Technology

Technische Universität München
Germany

ruehrmair@in.tum.de

September 18, 2006

(With Revisions in Introduction and Summary, April 2011)

1

Contents
1 Overview 3

2 Background and Motivation of Our Model 5
2.1 The Purpose of Formalizing Cryptography . 5
2.2 The Turing Machine and the Foundations of Cryptography 6
2.3 Physical Cryptography . 7

2.3.1 Unique Objects . 7
2.3.2 Physical Unclonable Functions . 9

2.4 Summary . 10

3 Physical Turing Machines 11
3.1 Informal Description . 11
3.2 Definition of Physical Turing machines . 12
3.3 Discussion . 15
3.4 Probabilistic and Oracle Physical Turing Machines 17
3.5 Object Generators and Measuring Devices . 19

4 Physical Security of Standard Cryptography 20

5 Unique Objects 23
5.1 Informal Description of Unique Objects . 23
5.2 Definition of Unique Objects . 24

6 Labeling Schemes 30
6.1 Definitions . 30
6.2 Standard Labeling by Unique Objects and Digital Signatures 32
6.3 Security Proof for the Standard Labeling Scheme 34

7 Summary 43

2

1 Overview
Physical Cryptography. Physical cryptography (PhC) is a recently emerging form of
cryptography and security. Central to this young field are not the mathematical properties of
certain cryptographic functions (such as non-invertability, pseudo-randomness, etc.). Instead,
PhC tries to exploit the analog properties of unclonable, randomly structured physical systems
for cryptographic and security purposes.

There are two potential advantages that result from this paradigm shift: First of all, it
can enable a better protection of secret keys in cryptographic hardware. Instead of storing
secret keys in vulnerable non-volatile digital memory, the keys are derived from, or hidden
in, the analog characteristics of a randomly structured medium. This makes them harder to
read out, derive, or obtain otherwise for the adversary.

Second, the new paradigm can sometimes avoid the classical, unproven computational
assumptions like the purported hardness of the factoring and discrete logarithm problem.
It can trades these assumptions against hypotheses about the employed, disordered physical
systems, for example their unclonability, their input-output complexity, or the numeric unpre-
dictability of their output. PhC thereby creates an alternative foundation for cryptography
and security, which rests on assumptions that are different from the classical, computational
assumptions of standard cryptography.

These two advantages have led to an ever increasing interest in this novel subfield of
cryptography over the last years.

Our Contributions. We make three contributions in this manuscript. First of all, we
describe an extension of the Turing machine model which we call Physical Turing Machines
(or ϕ-TMs or PhTMs, for short). PhTMs are quite similar to standard Turing machines, but
have the additional capability to process real physical objects as inputs and outputs. They
allow us to model cryptographic parties that use physical mechanisms in one way or the other
in their protocols or in their attacks. We argue that this new formal model could potentially
be used for at least three purposes:

(i) To model the security of classical, mathematical cryptoschemes against computational
attacks that employ physical computationals, such as quantum computers or optical
computing devices, and to lead reductionist security proofs in this model.

(ii) To model the security of cryptographic hardware against physical attacks on all levels,
including invasive, side channel and fault injection attacks, and to lead reductionist
security proofs in this model.

(iii) To formalize physical cryptography, and to lead reductionist security proofs in this area.

Second, we briefly investigate how Physical Turing Machines can be applied to the above
purpose (i), and sketch how the foundations of classical cryptography could be reformulated
by use of Physical Turing Machines. This reformulation allows us to include attacks by
quantum computers, for example. One particular benefit of using Physical Turing Machines
in this reformulation is that they allow us to take the limited state of current technology into
account. Simply substituting standard Turing Machines by Quantum Turing Machines would
overestimate the power of the attacker, and would leave many currently existing schemes
unrightfully insecure. Simply using standard Turing machines excludes any attacks that
employ other computing models. Using PhTMs relative to some given state of technology
takes a medium position here, as we argue in all detail later.

Third, we apply PhTMs to the above item (iii), and we lead a detailed security proof
for a well-known scheme in physical cryptography. This scheme concerns a method for the

3

secure labeling of valuable goods (such as pharmaceuticals, passports, banknotes, etc.) that
combines a digital signature with a unique, non-clonable physical object. We first formalize
various variants of the notion of a unique, unclonable object, and show relations between
the different notions. We then prove that the said method is secure under the provisions
that the employed object is unique and that the used digital signature scheme is secure. The
proof is carried out by a a reductionist technique, and uses Physical Turing Machines as the
underlying model.

Two benefits of using PhTMs in this context are that they (i) enable us to formally
state the physical non-clonability of physical objects; and (ii) that they allow us to reconcile
the inherently finite nature of a physical object with the inherently asymptotic formalization
of digital signature schemes. These features allow us to lead the aspired formal security proof.

We would like conclude this paragraph by delimiting too excessive expectations of the readers
already at this early point. Our aim in this paper is not to assess the computational power
of physical systems in a strict sense, or to prove unconditional feasibility/infeasibility results
about the (computational) power of arbitrary physical systems or devices. Given the current
state of the complexity theory and the still unresolved P vs. NP question, such a hope would
indeed be unreasonably high. Our main focus rather is to provide a formal foundations and
backbone for reductionist security proofs in physical cryptography and related disciplines. As
it turns out, this goal is complicated enough in itself.

History of this Manuscript. Physical Turing Machines were discussed in a small working
group at the TU München over the summer 2006. This manuscript with formal definitions
and proofs was subsequently prepared in August/September 2006. To the feeling of the author
at that time, several questions had not been treated with full rigor yet, and it was planned to
add a discussion of syntactics and semantics of Physical Turing Machines before publishing.
This delayed the completion of the work for several years. In 2011, the view prevailed that
the work would also have value without these additional topics. Sections 1 and 2 were revised,
Section 7 was added, and the manuscript was made public. Earlier versions had been passed
on via e-mail to a few colleagues in three waves in 2007, 2008 and 2010.

Organization of this Manuscript. We take some time in Section 2 in order to prepare
the stage for our new machine model and its applications. We review the general purpose
of formalizing cryptographic schemes in Section 2.1, and explain a (slightly provoking) con-
ceptual gap in the current, Turing machine based formalization of cryptography in Section
2.2. Then, we will take a brief look at Physical Cryptography in Section 2.3, which illustrates
our main motivation for the new, extended machine model. We conclude by a summary in
Section 2.4.

The technical contributions of the paper are presented in Sections 3 to 6. In Section 3,
we introduce Physical Turing Machines as a formal “computational” model that allows both
numeric computations and physical actions (measurement, generation, manipulation, etc.) on
physical objects. In Section 4, we discuss the application of PhTMs to the formalization of
classical cryptography. In Section 5, we formalize the concept of Unique Objects (UNOs) in
various ways, and lead a few first proofs in order to get used to our formalism. In Section 6,
we deal with one of the main applications of Unique Objects, which is their use as unforgeable
“labels” (or markers or tags) for security tokens and goods of value. We formalize the notion of
a secure labeling scheme, and prove by a reductionist technique that secure labeling schemes
can be constructed from secure digital signature schemes and unique objects. This technical
proof is one of the main contributions of the paper. Finally, we conclude the paper in Section
7 by a summary.

4

2 Background and Motivation of Our Model

2.1 The Purpose of Formalizing Cryptography
What is the aim of mathematical formalization in cryptography? Obviously, it is to formally
prove the security properties of certain cryptographic schemes. We can distinguish between
three, not totally disjoint steps related to this task:

1. Build a mathematical security model. In this step a mathematical formalism is set up
that models the real-world situation in which a given cryptographic scheme is applied.
The step includes defining the security properties, user behavior and adversarial behav-
ior in that formalism.

2. Conditionally prove the security of cryptographic schemes in the security model. This
step consists of mathematically proving the security properties defined in step 1 under
the premise that some additional, unproven assumptions hold. These assumptions are
expressed in the mathematical formalism provided by step 1, and the proof is led in
that mathematical formalism, too.

3. Uncoditionally prove the security of cryptographic schemes in the security model. The
aim of this step is to prove the security properties expressed in step 1 without making
additional, unproven assumptions. Again, the proof is to be led in the mathematical
formalism provided by step 1.

A couple of non-trivial points need to be made. First of all, note that basically any security
model is itself subject to implicit and unprovable assumptions. Hence, any result proven in
step 2 and 3 is necessarily subject to these assumptions (and, in a strict sense, could never
be called unconditional).

Then, note that it is hard to find a formal criterion that distinguishes the assumptions
made in step 1 and 2. Associating assumptions to one of the steps seems a matter of human
intuition and reasoning, not so much a matter of formal distinguishability. Consider as an
example the familiar formalization of complexity based cryptography. As implicit in the
security definitions, it is assumed there that the adversary cannot execute any other than
polynomially time-bounded Turing computations. This assumption is commonly associated
to step 1. The assumption that the adversary cannot factor numbers quickly, however, is
regarded as part of step 2. This choice is to some extent arbitrary; from a purely formal
perspective, both assumptions could be attributed to the respective other step, too.

Third, it is important to realize that it can be nontrivial to decide whether an uncondi-
tional proof of the security properties of some scheme (i.e. step 3) is possible at all in the
mathematical formalism provided by step 1. There could be formalisms in which we have to
confine ourselves with step 2, because step 3 is generally impossible. Once more, this may
hold in particular for the current complexity-based formalization of cryptography: We do not
know whether the underlying problem of NP vs. P is independent of the axioms of set theory
(ZFC, more specifically); see, for example, [8]. Consequentially we cannot say whether the
formal security of many cryptographic schemes, whose unconditional proof would imply that
NP 6= P , is independent of ZFC. In any case it is obvious that step 3 has currently not been
completed in the standard formalization of complexity based cryptography.

But — is there any value in a framework which currently or forever confines us to steps 1
and 2? Again, it can be observed by the example of present cryptography that there is. As
it stands, the current theory of complexity based cryptography is nothing more than a large
network of reductions. In this network the security of some schemes is reduced to the unproven
security of other schemes or notions, respectively, but no unconditional security proofs are

5

led. Some fundamental points of the network (nodes with high in-degree, if you like) are
considered as “basic assumptions”, and some of them are termed cryptographic primitives;
examples include one-way functions or the assumed intractability of factoring.

The benefit of that method is undisputed within the community: It lies in the fact that
we only have to evaluate and observe the validity of a small number of “basic assumptions” in
order to have a large toolbox of secure cryptographic schemes at hand. Given a new scheme,
the method enables us to judge its security in terms of older and well-established assumptions.

This justifies to accept mathematical frameworks which initially merely allow for step 2,
and in which step 3 seems either very remote or even problematic in principle. We will come
back to this conclusion in Section 3 in order to justify our new Turing model; for now, we
turn to one particular aspect of the standard mathematical framework of complexity based
cryptography.

2.2 The Turing Machine and the Foundations of Cryptography
The Turing machine formalism has traditionally been used as the foundation of computability
theory and complexity theory. This makes two implicit assumptions, as pointed out in [5].
First of all, both computability theory and complexity theory often implicitly assume the
validity of the Church-Turing Thesis:

Church-Turing Thesis (CT): Any function on the naturals that is computable
in some intuitively reasonable sense can also be computed in the Turing machine
formalism. In particular, any function that can be computed by some physical
hardware system can be computed by a Turing machine.

Note that this formulation of CT may neither reflect Church’s or Turing’s original belief; in
particular, it makes CT a statement rather about physics than about mathematics. For a
nice discussion on that topic, see also [5].

Second, complexity theory in large parts also assumes the Extended Church-Turing Thesis,
which can be formulated like this:

Extended Church-Turing Thesis (ECT): Any function on the naturals that
is computable efficiently (i.e. in polynomial time) in some intuitively reasonable
sense can also be computed efficiently (i.e. in polynomial time) in the Turing ma-
chine formalism. In particular, any function that can be computed in polynomial
time by some physical hardware system can be computed in polynomial time by
a Turing machine.

As complexity theory and the Turing machine formalism are the main tools in the formal-
ization of complexity based cryptography, CT and in particular ECT are implicit, but often
overlooked assumptions in that area. Quite unfortunately, there is some evidence that ECT
could be false, as factoring can be done in polynomial time on a quantum computer, but,
many suspect, not on a Turing machine. This makes the following future scenario possible:
While we can prove unconditionally that breaking RSA cannot be done in polynomial time on
a Turing machine, we can at the same time factor efficiently in practice by the use of quantum
computers. RSA would then be unconditionally and provably secure in theory according to
our current formalization standards, while it was obviously insecure in practice. This seems
to indicate that the current foundations of cryptography exhibit a conceptual gap when it
comes to computations that are executed by real world physical systems and not by Turing
machines; the attempt to close this gap seems reasonable.

6

One obvious, very rigid approach would be to substitute quantum Turing machines instead
of ordinary TMs in all definitions and proofs. Unfortunately, not many popular asymmetric
cryptographic schemes are left secure when we make that step, and most proofs break down.
Also, it seems far away from practice, as at the moment quantum computers are just able to
factor low-range two digit numbers.

Do we have other alternatives? It seems that our only option was to ignore the gap,
adopting the position that it is practically irrelevant. However, lack of practicality is an
argument that at times has been used unrightfully against the foundations of cryptography
as a whole; it does not feel appropriate to turn it the other way, and to use it against a correct
objection to the current standards within the foundations of cryptography. We believe that
there is no use in pursuing the foundations of cryptography half-heartedly; if we take the
soundness of cryptography serious, if we really are to “build a long-lasting building and not a
cabin”, then we should include quantum attacks into our model.

Still, this leaves us with the question how this can be done. Ideally we would like to
set up a computational model similar to the Turing formalism, in which we can express and
prove security properties at least conditionally, possibly even unconditionally. This formalism
should include quantum and other physical computations in order to avoid the conceptual
gap described earlier. On the other hand, it must not allow quantum attacks way beyond
current technology, as otherwise many asymmetric cryptographic schemes of interest become
unrealistically insecure in our model. The only way out of this dilemma seems a formalism that
can somehow include the current state of technology, while still enabling (at least conditional)
security proofs.

2.3 Physical Cryptography
Besides the small potential gap in the current formalization of classical cryptography, there
is a second motivation for the introduction of Physical Turing machines. This motivation is
is related to some recent developments in security.

Starting with the well-known schemes of quantum cryptography that date back to the
early eighties and late seventies, the idea to exploit physical phenomena in cryptographic
protocols has become more and more popular. It finally turned out that not only quantum
effects, but also classical physical phenomena can be exploited advantageously.

Presumably the first to discuss this possibility in scientifically documented publications
were D. Bauder and G. J. Simmons in the early 1980s, followed by R. Pappu and others
around the year 2000. Their seminal ideas lead to a large body of subsequent scientific work.
These publications all have in common that they exploit the analog properties of disordered,
randomly structured physical objects, whence we like calling this scientific area “physical
cryptography”. Two examples of useful physical objects which we will discuss in the next
paragraphs are so-called Unique Objects and Physical Unclonable Functions.

2.3.1 Unique Objects

Unique Objects are physical systems or objects that exhibit a set of analog properties which
cannot be copied, reproduced or manufactured by intent. These properties should be de-
tectable reliably by some external measurement apparatus, and they should be expressible in
a short binary string of size below 10 kB. Even if the analog properties and the details of the
measurement apparatus are given to an adversary, he shall be unable to fabricate a second
object that exhibits the same properties upon measurement with the apparatus. Under these
circumstances, we also call said properties the unique properties of the Unique Object.

Unique properties often occur due to uncontrollable variations in the manufacturing pro-
cess. One easy conceptual example of a unique system is a random distribution of (possibly

7

only a few) optically active particles such as fibers in a solid-body matrix: Such a distribution
is hard to reproduce or to produce on intent.

Let us now consider one typical application of Unique Objects: The generation of unforge-
able and machine-testable labels (tags/markers) for any products or goods of value.

Application: Labeling of valuable objects. To label products unforgeably is a problem
of high theoretical appeal and also of economic relevance. The World Economic Forum in
Davos estimates that the world-wide economical damage caused by faked brand products
amounts to 400 billion Dollars per year. The basic task can be described as follows: Given a
valuable product, generate a physical token – the label – that can be applied to the product
such that the following conditions are met:

1. The validity of the label can be tested by an automatized device.

2. The label cannot be faked or counterfeited.

Unique systems suggest themselves as unforgeable labels, as they have properties that can-
not be copied or reproduced. However, the propery of being unreproduceable also leads to
problems: All labels that are applied to different specimen of the same product differ and are
subject to random production variations. How shall the testing device distinguish a ‘random’
label that has been produced by the legitimate company from a ‘random’ label produced by a
fraudster? The idea is to use a standard technique from mathematical cryptography, namely
digital signatures, in connection with unique objects. The combined labeling scheme works
as follows:

1. Produce a (random) unique system, and measure its unique properties P1, . . . , Pn.

2. Create a digital signature S def= SigK(P1, . . . , Pn) for these properties by use of some
secret key K.

3. Apply the (numerical) signature, the (numerical) description of the properties P1, . . . , Pn

and the (physical) unique system to the product.

4. All testing devices are equipped with the public verification key P that corresponds to
K. If a labeled product is inserted into some testing device, it executes the following
procedure:

(a) Check if the signature S is a valid signature for the properties P1, . . . , Pn listed on
the product. To that end, use the public verification key P .

(b) Test if the unique physical system contained on the product has the properties
P1, . . . , Pn listed on the product.

If this is the case, the testing device regards the label as valid, otherwise as faked.

Intuitively, this labeling technique seems secure provided that the physical system really is
unique and that the digital signature scheme is secure. But — can we prove that? How could
we set up a formal framework in which such a proof can be conducted?

The difficulty of this task lies in the fact that attacks on the labeling scheme can be ex-
ecuted on two levels: First of all on a binary level by faking the digital signature. Another
possibility, however, is to attack the scheme on a physical level by trying to copy the unique
physical system. Therefore modelling the attacker as a standard Turing machine will not
suffice. Instead, we should use a machine model which combines the ability for Turing com-
putation with the capability to process physical objects; this model could have some ‘Turing

8

part’ and some ‘physical part’. Again, the capabilities of the physical part should realisti-
cally operate only within the limits of current technology, which is a condition that we have
encountered before (Section 2.2), but do not know how to meet yet.

2.3.2 Physical Unclonable Functions

A Physical Unclonable Function (PUF) is a physical system S which possesses a certain level of
disorder or randomness in its micro- or nanoscale structure. S can be excited with so-called
external stimuli or challenges Ci, upon which it reacts with corresponding responses RCi

.
These must be a function of the applied challenge and of the structural disorder that is present
in the PUF. The responses are supposed to be stable over time and multiple measurement,
and the tuples (Ci, RCi

) are commonly called the challenge-response pairs (CRPs) of the
PUF.

It is usually assumed that a PUF cannot be cloned or reproduced exactly, not even by
its original manufacturer. This well established assumption is not based on a fundamental
physical theorem, such as the no cloning theorem in quantum mechanics. Instead, it is viable
in practice due to the inherent limitations of current nanofabrication techniques. These are
unable to position molecules or atoms with arbitrary precision in three dimensions [2, 1],
and hence cannot reproduce the small-scale disorder and structural randomness of the PUF
exactly.

So-called Strong PUFs have a second important property: They allow a very large number
of applicable challenges and possess a complex, inimitable challenge-response behavior. It is
assumed that their responses cannot be predicted numerically, but can only be obtained by
a physical measurement on the unique and unclonable PUF itself. This must hold even if
an adversary had access to the PUF at earlier points in time, could freely apply challenges
to the PUFs, and could measure the corresponding responses. In other words, even if a
large number of challenge-response pairs of a Strong PUF are known, the challenge-response
behavior cannot be machine learned or modelled well enough to allow the certain numerical
prediction of the responses to new, randomly chosen challenges. This property could be
referred to as the unpredictability or non-learnability of a Strong PUF.

In a nutshell, the difference between Unique Objects and Strong PUFs lies in the large
number of CRPs a Strong PUF allows, and in the fact that the measurement signal of a
Unique Object is analog and determined by an external apparatus, while the CRPs of a
Strong PUF may be digital and may be determined by an integrated measurement apparatus.
Furthermore, a Unique Objects must remain secure even if its the unique properties are given
to the adversary. More details can be found in some recent publications on the foundations
of PUFs and physical cryptography.

Application: Secret Key Exchange by Physical Unclonable Functions (PUFs).
(Strong) PUFs are a very powerful cryptographic tool: They allow identification, key ex-
change, oblivious transfer and other applications. In the following, we describe a key ex-
change protocol on the basis of Strong PUFs. We assume that (i) Alice holds a Strong PUF
S at the beginning of the protocol, and that (ii) Alice and Bob have an authenticated (but
non-confidential) binary channel and a fully insecure physical channel at hand.

1. Alice chooses random challenges C1, . . . , C2k. She measures the PUF S in order to
determine the responses RC1 , . . . , RC2k

.

2. Alice sends the Strong PUF S over the physical channel to Bob.

3. Bob receives an object S′, which is not necessarily equal to S (recall that it could have
been exchanged by the adversary, since the physica channel is insecure).

9

4. Bob sends the message “I got an object!” over the authenticated binary channel to Alice.

5. Alice and Bob check that S is equal to S′. That is, they check that Bob received the
object that was sent away by Alice, and that the object has not been exchanged or
manipulated while it was sent. To that aim, they execute the following subprotocol:

(a) Alice sends the values C1, . . . , Ck to Bob.
(b) Bob measures the object S′ with the parameters C1, . . . , Ck and receives the values

V1, . . . , Vk, which he sends to Alice.
(c) Alice checks if the values she got from Bob match the values she measured herself

in step 1. That is, she checks if Vi = RCi
for i = 1, . . . , k. If this is the case, she

sends the message “Ok.” over the binary channel to Bob. Otherwise, she sends
“Stop!” over the binary channel, and Alice and Bob abort the protocol.

6. Alice sends the values Ck+1, . . . , C2k over the binary channel to Bob.

7. Bob determines the values RCk+1 , . . . , RC2k
by measurement on the PUF.

8. Alice and Bob extract their secret binary key from the values RCk+1 , . . . , RC2k
, which

is known to both of them.

Why is the above scheme secure? We can argue informally in favor of its security as follows.
By the properties of the (Strong) PUF, an adversary Eve who might have access to the PUF
while it is delivered physically from Alice to Bob cannot fully read out all CRPs, cannot clone
the PUF, and cannot build a numerical simulation model of the PUF. Hence, the probability
that Eve by chance reads out a piece of information of the system that is later used to build
the secret key is very small; using privacy amplification techniques when extracting the key
from the bit sequence RCk+1 , . . . , RC2k

can make it arbitrarily small.
Again this leaves us with the question how can we prove the security properties in a formal

way. Apparently, an adversarial model designed for that purpose once more has to include
both capabilities for binary information processing and for physical attacks. These physical
attacks may include attempts to copy, photograph, scan, imprint the PUF into a suitable
material to form a negative copy of it, or to otherwise physically process the PUF. Therefore
a standard Turing machine again will not suffice as a model for the attacker. Also an oracle
Turing machine which models the PUF by an oracle that can be presented with a challenge
C and returns the value RC will not do. It cannot model general physical attacks such as
those listed above.

Hence, just as in the case of the labeling scheme, the model for formalizing PUFs must
include capabilities for Turing computation as well as for the general processing of physical
objects. In any realistic model those physical capabilities must be subject to the state of
technology, an expression beginning to sound familiar.

2.4 Summary
We have covered a range of topics in the introduction that spans from the purpose of formal-
izing cryptography to new approaches in cryptography. The following conclusions, which will
be relevant in the upcoming parts, can be drawn from the presented material:

1. The purpose of formalization in cryptography does not only lie in enabling uncondi-
tional security proofs. Reductions among cryptographic notions and conditional secu-
rity proofs are other, sufficient goals that can motivate the introduction of a formal
security model. Hence, models which do not allow for unconditional proofs now or in
principle should not be discarded for that fact.

10

2. We discussed a conceptual gap in the current foundations of cryptography that should
ideally be closed. This could only be done by introducing a machine model which
combines the capabilities for Turing and for physical computation. Further, we observed
that it seemed reasonable to limit the physical computations in that model by the state
of current technology, but we did not know how to do that yet.

3. We presented some new developments in cryptography, which we subsumed under the
name “physical cryptography”. They use the analog physical properties of disordered
physical systems for cryptographic purposes. A strict formalization of this area would
make it necessary to add the ability to process physical objects to the capabilities of
standard Turing machines.

The above conclusions motivate the following tasks of research: First, introduce a new machine
model that includes the potential for physical actions on physical objects, and a way to
formalize the notion of “current technology”. Second, reformulate the security properties
of standard binary cryptoschemes and also the corresponding security proofs in that new
model, thereby addressing the potential gap in the current formalization of cryptography.
Third, define the security-relevant properties of physical systems that are applied in physical
cryptography in the new model. Fourth, conditionally prove the security properties of schemes
of physical cryptography in the new security model. The aim of this paper is to cover some
aspects of this line of research.

3 Physical Turing Machines

3.1 Informal Description
This section is devoted to an informal description of the physical Turing machine model; a
more formal presentation will be given in section 3.2. Put in one sentence, the aim of physical
Turing machines is to model computations that are executed by human beings with the help
of physical systems. We imagine the situation as follows:

The human being holds paper and pencil in order to make some private notes or private com-
putations. He has a finite number of finite physical systems or machines S1, . . . , Sn under his
control, which he can let perform computational tasks for him. These computational tasks
can take numbers and/or physical objects as input, and produce numbers and/or physical
objects as output. In order to enable information exchange between the systems and the hu-
man being, we envision that the each system has got a digital interface, into which the human
being can type information, and through which the human being can receive information.

Whenever the human being wants one physical system to perform a certain numerical
computation, he types the numerical input of that computation into the interface. After
some computation time, he gets the numerical result of that computation, communicated
over the interface.

Whenever the human being wants one physical system to perform some action on one or
more given physical objects, we imagine that the human being presents the objects to the
system by placing them in some specific position relative to the system. These positions also
impose an order on the input objects. Then, the human being uses the interface in order
to provide the physical system with some accompanying numerical input. That input can,
for example, describe how the system should process the object, but is not limited to that
purpose. After some computation time, the human being gets in return one numerical string
communicated by the interface, and possibly one or more processed objects, which are placed

11

in some specific positions relative to the system. Again, positioning places an order on the
returned objects.

We assume that a human equipped as described can perform certain tasks that we sub-
sume under the term computation. The tasks to be performed are presented to him in the
form of an input, consisting of a binary number and/or a finite number of physical objects.
The solution to the task is presented by the human being as a certain output, again consisting
of a binary number and/or a finite number of physical objects. Hence, the actions of the
human being can be seen as the computation of a function F , whose domain and range are
the set of finite tuples that consist of a finite binary string and a finite number of physical
objects. As computation time we can naturally regard the time interval experienced by the
human being between the two events of being presented with the input and presenting the
output.

That rough model seems generally fine, but one aspect needs further consideration. As the
physical systems S1, . . . , Sn employed by the human being during a computation are finite,
they can in general only deal with a finite range of inputs and outputs. We would, however,
like to be able to compute infinite functions in our formalism. Hence, the physical systems
S1, . . . , Sn in general should be able to deal with an unrestricted input and output range.
This is a contradiction and raises a problem.

In the informal setting just described, our (idealized) human being could practically encounter
this problem by building the physical systems that support his computation bigger and bigger,
adjusting to the growing size of the input. We will model this behavior as follows: Each of the
above ‘machines’ S1, . . . , Sn is represented in our model by an infinite sequence of machines,

Si = S1
i , S

2
i , S

3
i , . . . , for i = 1, . . . , n.

There, each single machine Sj
i is required to have finite mass, but within any sequence Si the

masses of the single machines may grow beyond any threshhold to adjust to more complex
inputs.

In any one given physical Turing machine computation, then, the physical Turing machine
is allowed to use precisely one machine from each infinite sequence Si. These n machines must
be selected deterministically by a previously specified choice function, which may only depend
on the length of the binary input and the weigth of the physical input. This mechanism is
reminiscent of the choice mechanism in the computational model of polynomial size circuits.
It can be formalised conveniently as specified in Definition 3.5, after a norm on mixed numer-
ical/physical inputs has been introduced.

In any case, the described choice mechanism forces the physical Turing machine to merely
use a finite number of computing machines (and not the whole infinite sequences Si) in each
computation, which is desirable.

3.2 Definition of Physical Turing machines
The informal discussion of the previous section gives rise to the following sequence of formal
definitions, which eventually lead to the notion of a physical Turing machine. We start by
defining the physical stage on which physical Turing machines live, which we call a ‘universe’.

Definition 3.1 (Deterministic Universes). A (deterministic) universe U is a 4-tuple U =
(O,D,B,m) with the following properties:

1. O is an arbitrary set called the set of possible objects.

2. M is an arbitrary subset of O called the set of possible machines.

12

3. m : O → N is a mapping called the mass.

4. F : M −→ Func
(
{0, 1}∗ ×O∗ → {0, 1}∗ ×O∗ × N

)
is a mapping called the behavior

function ofM.

5. Both O and M contain a distinguished object λO called the emtpy object, for which it
holds that m(λO) = 0.

Definition 3.2 (Notational Conventions for Universes). We make the following notational
conventions:

1. The set O∗ denotes the set of finite tupels of elements of O. Whenever we refer to
an element X of some set S × O∗, we often write X = (s,O1, . . . , On) instead of
X = (s, (O1, . . . , On)).

2. For every M ∈ M, F(M) is a mapping, which we often denote by FM . That mapping
can be split up in three components FM = (F1

M ,F2
M ,F3

M), where F i
M

def= Πi(FM) with
Πi denoting the projection onto the i-th coordinate.

Before we finally define physical Turing machines, we have to sort out two more formal details.

Definition 3.3 (Physical and Binary Tapes and Their Content). Let U = (O,D,B,m) be
a universe. A physical tape (in U) is a half-sided infinite tape whose cells can contain any
object from the set O. A physical tape is said to be empty if all cells contain the empty object.
Further, its cells are labeled by natural numbers in increasing order, starting with the number
‘one’ at the end of the tape. The content of a physical tape is a (finite or infinite) sequence
O1, O2, . . . where the objects Oi of the sequence are the objects contained in the cells of the
tape, in increasing order of the labels of the cells, omitting all empty objects contained in the
cells. If the content is a finite sequence, we can write it as tuple (O1, . . . , Ok).
A binary tape (in U) is a standard, half-sided binary Turing tape, whose cells can contain the
symbols zero and one and the symbol ‘blank’. The tape is empty when all its cells contain the
blank symbol. The content of a binary tape is the finite or infite sequence of bits contained in
the cells, omitting blanks. If that sequence is finite, we can write it as a finite binary string
x.

As the input and output of a ϕ-TM are a mixture of numbers and physical objects, we should
define a norm on such inputs.

Definition 3.4 (Input and Output Norm). Let U = (O,D,B,m) be a universe. We define a
norm ‖·‖ on all elements X = (x, (O1, . . . , On)) of the set {0, 1}∗ ×O∗ by

‖X‖ def= max{length(x),Σk
i=1m(Oi)}

where length(·) denotes the length of a binary string.

Now we are in a position to define physical Turing machines.

Definition 3.5 (Physical Turing Machines). Let U = (O,D,B,m) be a universe. A physical
Turing machine or ϕ-Turing machine M in U consists of a Turing programm P together
with n infinite sequences M1, . . . ,Mn of machines in U , where Mi = (M0

i ,M
1
i ,M

2
i , . . .) for

i = 1, . . . , n.
M has got five tapes: Two internal tapes, two external tapes, and one switching tape. One
of the internal tapes is a binary and the other one is a physical tape; the same holds for the
external tapes; the switching tape is binary. Further, a ϕ-TM has got a counter, which cannot
be accessed or deliberately altered by the ϕ-TM during computation. The counter shows the

13

value 0 at the beginning of each computation.
The internal tapes and the switching tape are initially empty. The content x of the bi-
nary external tape and the content (O1, . . . , On) of the physical external tape at the begin-
ning of the computation are called the binary respectively physical input of M ; the string
X

def= (x,O1, . . . , On) is the (overall) input of M .
M further has got n + 1 distinguished states termed the calling states Call 1, Call 2, ...,

Call n and the swapping state. Suppose that when M switches into a calling state Call i, the
overall input of the computation was X, and that at the time of switching the content of the
binary external tape was x and the content of the physical external tape was (O1, . . . , Ok).
Then, the following happens within one Turing step:

1. The content of the binary external tape is erased and replaced by

F1

M
‖X‖
i

(x,O1, . . . , Ok).

2. The content of the physical external tape is erased and replaced by

F2

M
‖X‖
i

(x,O1, . . . , Ok).

3. The counter of the ϕ-TM is increased by the value

F3

M
‖X‖
i

(x,O1, . . . , Ok).

Likewise, we describe what happens when the physical Turing machine switches into the swap-
ping state. We distinguish between two cases:

1. When M switches into the swapping state, the content of the swapping tape is of the
form (x, y), where x and y are natural numbers (assuming a previously specified encoding
scheme). Then, the content of cell x of the external physical tape is exchanged with the
content of cell y of the internal physical tape, and the swapping tape is erased. This
takes one Turing step.

2. The content of the swapping tape is not of that form. Then nothing happens. Again,
this takes one Turing step.

The output of a Turing machine is the content of the external tapes when it switches into an
end state, with the numerical output being the content of the binary tape, and the physical
output being the content of the physical tape. The computation time of a Turing machine is
the number of Turing steps plus the content of the counter of the Turing machine when the
Turing machine switches into an end state.

Before we can briefly discuss the definition of a ϕ-TM in the next subsection, there are a few
more things that need to be said. First of all, we will introduce a formal notation for the
output of a ϕ-TM.

Notation 3.6 (Output of physical Turing machines). LetM be a ϕ-TM and X ∈ {0, 1}∗×O∗.
The output of M on input X is denoted by OutM (X). Unless otherwise stated, we often write
M(X) instead of OutM (X).

The next definition states what it means for a ϕ-TM to be ressource efficient; as usual,
ressource efficiency is taken as being polynomially bounded in some way.

14

Definition 3.7 (Polynomial ϕ-TMs). Let U be a universe, and let M = (P,M1, . . . ,Mn) be
a ϕ-TM of U . The we define the following notions:

1. M is called a polynomial time ϕ-TM if there exists a polynomial p such that for any
X ∈ {0, 1}∗ ×O∗, the computation time of M on input X is less or equal to p(‖X‖).

2. M is called a polynomial mass ϕ-TM is there exists a polynomial p such that m(Mk
i) ≤

p(k) for all natural numbers k and 1 ≤ i ≤ n.

3. M is called a polynomial ϕ-TM if is both a polynomial time and a polynomial mass
ϕ-TM.

Finally, a computation executed by a ϕ-TM M is called a polynomial time or polynomial
mass or polynomial computation if M is a polynomial time or polynomial mass or polynomial
ϕ-TM, respectively.

Now we can state an important feature of ϕ-TMs, namely that they can be customized with
respect to a certain ‘state of knowledge’ or ‘state of technology’ in a universe. Intuitively, a
state of technology should be given by the machines that can (in practice, not in principle)
be built in a certain universe; hence it is suggestive to consider a state of technology to be a
subset of the set of all possible machines. This motivates the next definition.

Definition 3.8 (State of Technology). Let U = (O,D,B,m) be a universe. Any set T that
is a subset of M is called a state of technology (in U); whenever the universe is clear from
the context, we drop it. If a machine M is contained in T , we also say that M is a machine
of T .

We can now say what it means that a ϕ-TM respects a state of technology.

Definition 3.9 (ϕ-TMs Respecting a State of Technology). Let U be a universe, and T be a
state of technology in U . Let M = (P,M1, ...,Mn) be a ϕ-TM in U . We say that M respects
T , or that M is a ϕ-TM in T , if all elements of the sequences Mi are machines of T .

This, for the moment, completes the definition of the concepts that we had been asking for:
We have formally defined what a physical Turing machine is, we have found a way to express
the informal phrase ‘state of technology’, and we have defined how a state of technology may
influence the power of a Turing machine. Our definitions will be discussed briefly in the next
subsection.

3.3 Discussion of Physical Turing Machines
There is one obvious objection that can be raised against physical Turing machines: Their
definition does not specify which machines respectively which functions can be employed to
support the standard Turing machine computation. Hence, their precise computational power
remains unclear and seems basically undefined. There are various ways to encounter this ob-
jection.

First of all, we remark that ϕ-TMs were introduced in order to reformulate complexity
based cryptography and to provide a formal basis for ϕ-cryptography, among other reasons.
As discussed at length in section 2.1, it suffices for that purpose if ϕ-TMs can be used for
the following purposes: First, to relate the security of different cryptographic schemes and
primitives to each other; second, to lead conditional security proofs. To that aim no precise
definition of the power of the computational model is necessary, as we will see in detail in the
upcoming sections 6.3. Rather, a framework with the following properties is needed: First,

15

it can be used to express certain assumptions about the security of cryptographic schemes;
second, it is general enough to capture all conceivable attacks; finally, it has enough inter-
nal structure to allow reductions between different cryptographic objects. These properties
are met by ϕ-TMs, and, when it comes to the second aspect, even more than by standard TMs.

Second, there is no reason why in principle and in practice it should not be possible to
fully determine the set of physical systems and corresponding functions that can be employed
in a ϕ-TM computation. It is well conceivable that as the state of knowledge in theoretical
physics progresses, the notion of a physical system can be formalized well enough in order to
fully determine the behavior of physical systems. Together with specifying a decent input -
output formalism, this might lead to a full characterization of the finite functions that can
be computed by finite physical systems according to the currently most advanced physical
theory. More precisely, it is conceivable to apply the most advanced physical theory (which
today would be quantum or string theory) to the physical parts of any ϕ-TM in order to
restrict

(A) the set of possible objects and possible machines in the universe U , from which a ϕ-TM
might draw its physical parts.

(B) the technology T from which a ϕ-TM might draw its physical parts.

That means that there is some good reason to assume that at least potentially and in prin-
ciple we can fully determine the computational power of ϕ-TMs, or of polynomial ϕ-TMs, as
our state of knowledge progresses. Please note that nothing more can be said, in fact, about
the status of classical TM or classical polynomial-time TM computations. Deciding whether
a function is Turing computable is not Turing computable; further, we do not know how to
resolve the NP vs P question, left alone that we cannot say whether this question can in
principle be decided in ZFC. This is not held against the Turing formalism, and we feel it
should also not be held against our formalism.

One other important aspect follows: Had we applied one specific physical theory in the
definition of ϕ-TMs, then this theory might be subject to change or even replacement over
time. The general formalism provided by ϕ-TMs, however, can persist independent of such
change: We simply determine the universes U in which the ϕ-TMs operate, or the technologies
T they respect, by application of the new physical theory instead of the old one. This seems
to further stress the generality of our approach to physical computation: ϕ-TM can persist
while physical theories change.

Fourth, one interesting historical reference ought to be made in this context. When he in-
troduced the Turing machine (respectively LCM, as called then), Turing’s aim was obviously
not to introduce a complete computational model that covers any computation executable
by a physical machine. Rather, he intended to formalize any ‘mechanical’ procedure that
could be carried out by a human being. This approach was motivated by his goal to apply
the Turing machine to Hilbert’s Entscheidungsproblem, which asked for a humanly executable
procedure of a certain, ‘mechanical’ sort, where ‘mechanical’ has some specific meaning that
deviates from our everyday language. Turing was to show that there was no such procedure
in the case of predicate logic, and the Turing machine was tailored for just this case. Indeed,
Turing often spoke of the Turing machine as of a “human computer”, or stated that “a man
provided with paper, pencil and rubber, and subject to strict discipline, is in effect a universal
Turing machine”. Perhaps even more strikingly to the point, Wittgenstein wrote: “Turing’s
‘Machines’. These machines are humans who calculate.” The approach we took seems to fit

16

well with these statements: First of all, they confirm that it seems necessary to specifically
introduce physical systems if we want to go beyond the human-oriented power of the Turing
machine. Second, given Turing’s and Wittgenstein’s views, it seems suggestive to model a
human being utilizing physical systems for computation as a Turing machine with access to
physical systems, just as we did.

Fifth, we would like to comment briefly on the related notion of oracle Turing machines.
Our physical Turing machines can be seen as similar to oracle Turing machines that draw
their oracles from a predetermined set of functions. There are some differences, however: First
of all, standard oracle machines do not operate on physical objects. Second, standard oracle
machines have their oracle fixed for all inputs and do not choose the computational power
of the oracle in dependence of the input length. This property of physical Turing machines
rather is reminiscent of computational circuits. Third, there is no additional component in
the answer of a standard oracle that could be taken as a counterpart to the physical compu-
tation time that is added on the counter of a ϕ-TM. Obviously, these differences could have
been overcome by adapting the oracle machine framework, but we felt that this might have
overstretched this concept a little. Nevertheless, similarities remain, and – another historical
remark – there is some resemblence also between our approach and Turing’s O-machines,
introduced in chapter four of his PhD-Thesis.

Finally, we would like to conclude by once more stressing the necessity to include physical
aspects in any computational model that claims to be complete in some sense. One purely
mathematically motivated definition alone cannot do, as computation in the end is something
physical, not mathematical. In particular, any model used as a fundament in cryptogra-
phy should be able to include any efficient physical computations, which is what our model
attempts to perform.

3.4 Probabilistic and Oracle Physical Turing Machines
We will introduce two variants of ϕ-TMs in this subsection: Probabilistic physical Turing ma-
chines and oracle physical Turing machines. Both will be important for formulating concepts
in cryptography and physical cryptography; in fact, probabilistic physical Turing machines
will be more important for that purpose than (standard) physical Turing machines. Oracle
physical Turing machines are probabilistic ϕ-TMs equipped with an oracle; they will, for
example, play a role in definition of the physical security of digital signature schemes.

Formulating the concept of probabilistic physical Turing machines makes it necessary to
quickly review some concepts from probability theory, and to introduce the concept of a
probabilistic universe.

Definition 3.10 (σ -Algebras). Let Ω be an arbitrary set. A family A of subsets of Ω is
called a σ-Algebra in Ω, if the following holds:

1. Ω ∈ A.

2. If A ∈ A, then Ac ∈ A.

3. If A1, A2, A3, . . . ∈ A, then
⋃∞

i=1Ai ∈ A.

Notation 3.11. It can be shown that for any given subset S of Ω there is a smallest σ-algebra
in Ω which contains S. This σ-algebra will be denoted by A(S) in the sequel.

Definition 3.12 (Probability Spaces). A probability space P is a triple P = (Ω,A, P) con-
sisting of a non-empty set Ω, a σ-algebra A in Ω and a mapping P : A → [0, 1] called the
probability measure. P has the following properties:

17

1. P (A) ≥ 0 for all A ∈ A.

2. P (Ω) = 1.

3. For all disjoint A1, A2, . . . ∈ A it holds that

P

(∞⋃
i=1

Ai

)
=
∞∑

i=1

P (Ai).

Definition 3.13 (Random Variables in Probability Spaces). Let P = (Ω,A, P) be a proba-
bility space, and let P ′ = (Ω′,A′) be a tuple consisting of an arbitrary set Ω′ and a σ-algebra
A′ in Ω′ (such a tuple is commonly referred to as ‘measurable space’). A mapping f : Ω→ Ω′

is called a random variable if

f−1(A′) ∈ A for all A′ ∈ A′.

Please note that the corresponding definitions for discrete probability spaces and random
variables are much simpler; however, we cannot assume that the object set on which the
ϕ-TMs operate is countable. This enforces the more general treatment.

We can now ‘randomize’ our universes, allowing physical processes to be probabilistic. This
change will be reflected through altering the behavior function: It will no more map physical
systems M to a function fM , but to a probability space (Ω,A, PM). These probability space
have in common that the sets Ω and the σ-algebras A are the same for any two physical system
M1 and M2 inM. Only the probability measure PM : A → [0, 1] varies in dependance of M .

Definition 3.14 (Probabilistic Universes). A probabilistic universe U is a 4-tuple U =
(O,D,B,m) with the following properties: O is an arbitrary set called the set of possible
objects, M is an arbitrary subset of O called the set of possible machines and m : O → N is
a mapping called the mass. Further, F is a mapping called the behavior function, which has
the following property:

F :M−→

 (Ω,A, PM)

∣∣∣∣∣∣∣
Ω = {0, 1}∗ ×O∗ × {0, 1}∗ ×O∗ × N
A = A

(
{F | F is a finite subset of Ω}

)
(Ω,A, PM) is a probability space


Notation 3.15. The probability space that is associated with a machine M ∈ M is often
termed PM instead of F(M). Further, as already implicit in the above definition, the probility
measure of that probability space will be referred to as PM .

We can now use the probability space PM in order to define the output and the computation
time of M as random variables on that probability space. In a similar manner, probabilistic
Physical Turing Machines and their output distribution can be defined. We leave this as an
exercise to the reader.

We will conclude this subsection by a definition of probabilistic physical oracle Turing ma-
chines, or ϕ-POTMs.

Definition 3.16 (Probabilistic Physical Oracle Turing Machines). Let f : {0, 1}∗ → {0, 1}∗
be a function. An probabilistic physical oracle Turing machine or ϕ-POTM M with an oracle
for f is a ϕ-PTM with an additional binary tape, the oracle tape, and one additional state,
the oracle state. Let x be the content of the oracle tape when M switches ino the oracle state.
Then, the following happens within one Turing step: The content of the binary oracle tape is
erased and replaced with the value f(x). The function f is also called the oracle function.

18

The definition of oracles for ϕ-PTM is basically as the same as for standard TMs. The familiar
terms ‘oracle call’ and ‘number of oracle calls’ can be used for ϕ-POTMs in the straightforward
way.

3.5 Object Generators and Measuring Devices
We will introduce two special types of ϕ-TMs in this section, which are called object gener-
ators (or simply generators) and measuring devices. We will also specify some notation in
connection with these devices that is going to make life easier in the upcoming sections.

Intuitively, an object generator should be a ϕ-TM which ‘generates’ an object: It should
take as input a binary string and produce as output one physical object, optionally plus a
binary string.

Likewise, the natural purpose of a measuring device is to ‘measure’ objects: That means it
should take as input one physical object, optionally plus a string, and output a binary string
plus the unchanged object. We do not allow a measuring device to indicate a possible failure
by a special output, though. It is sufficient for our further considerations if the measuring
device simply outputs a default value together with the unchanged object in that case.

Definition 3.17 (Object Generators). Let U be a probabilistic universe, and T be a technology
in U . A probabilistic ϕ-TM OG in T is called an object generator in T , if

FOG : {0, 1}∗ → {0, 1}∗ ×O.

Definition 3.18 (Measuring Devices). Let U be a probabilistic universe, and T be a technology
in U . A deterministic ϕ-TM M in T is called a measuring device in T , if

FM : DM → {0, 1}∗ ×O, with DM ⊆ {0, 1}∗ ×O,

and for all (p,O) ∈ DM :
Π2(OutM (p,O)) = O.

Definition 3.19 (Measurement Parameters and Results). Let M be a measuring device with
domain DM ⊆ {0, 1}∗ ×O. Then, the set Π1(DM) ⊆ {0, 1}∗ is called the set of measurement
parameters or measurement vectors of M , and is often denoted by D1

M . The elements of
Π1(DM) are called measurement parameters or measurement vectors of M , and are mostly
denoted by the terms p or pi. For any (p,O) ∈ DM the value Π1(OutM (p,O)) is called the
measurement result of the measurement on O that is executed by M and characterized by p,
or simply the measurement result.

Please note that the expression Πi denotes the projection of a tuple or a cartesian product
set onto its i-th coordinate. Therefore the second condition in definition 3.18 says that the
object O is left identical respectively unaltered through the measuring process. This implies
that the measurement can be repeated to obtain the same result, which is a key property for
later applications.

Obviously this assumption presupposes that only stable classical properties are measured,
and that these properties are unchanged through measurement. This is certainly an approx-
imation, but one that seems justified in the realm of our considerations. Further, it excludes
quantum measurements. As the systems we consider are non-quantum, this does not harm
our framework, though.

Before we proceed to the next section, we will introduce a compact notation for expressions
related to measuring devices and measurement results. This notation will make life much
easier in the upcoming sections.

19

Notation 3.20 (Notational Conventions for Measuring Devices). Let M be a measuring
device and p1, . . . , pn be measurement parameters of M . For notational ease, we introduce the
following abbreviations:

M(p,O) def= Π1(OutM (p,O)) (∗)

p
def= (p1, . . . , pn)

pi
def= (p(i,1), . . . , p(i,ni))

M(p,O) def= (M(p1, O), . . . ,M(pn, O))

M(pi, O) def= (M(p(i,1), O), . . . ,M(p(i,ni), O))

P (O) def= (p,M(p,O)

P i(O) def= (pi,M(pi, O)
= (p(i,1), . . . , p(i,ni),M(p(i,1), O), . . . ,M(p(i,ni), O))

Two comments are in order. First, please recall that in Notation 3.6 we introduced a short form
M(X) for the notation OutM (x), saying that this short form would apply “unless otherwise
stated”. Equation (∗) is the only notable case in which we deviate from the general habit and
do state otherwise. This is reasonable as we are only interested in the numerical outcome of
a measurement, not in the physical part of the output. The introduction of a physical output
of the measuring device was mainly a technical condition used to assure that the measured
object is not changed through measurement.

Second, please note that the introduced abbreviations in fact “hide” some of the parameters
they depend upon. For example, the notational term p does not formally exhibit the parameter
n any more, in relation to which it is defined. In the same sense, the notational term P (O),
which depends on the parameter n, the set of measuring vectors p and the measuring device
M , does not contain any of these terms. This obviously achieves notational compactness,
but might appear slightly confusing or even formally incorrect at first glance. We stress,
however, that the introduced notation is not to be taken in the sense of a formal definition,
but as an abbreviation and simplification. It is to be understood quite mechanical in the
sense that any appearance of P (O), for example, must in principle be replaced by the longer
terms p, M(p,O) or even (p1, . . . , pn,M(p1, O), . . . ,M(pn, O)).

We will illustrate the intended replacement character of our abbreviations by two ex-
amples. If the terms P (O1) and P (O2) are used in one mathematical expression, then
they refer to the same set of measuring vectors p and the same measuring device M . The
terms P 1(O1) and P 2(O4), however, refer to the possibly different sets of measuring vectors
p1 = (p(1,1), . . . , p(1,n1)) and p2 = (p(2,1), . . . , p(2,n2)), the possibly different objects O1 and
O4, but still the same measuring device M . Similar considerations apply to the use of the
abbreviations p, pi and pj .

4 Physical Security of Standard Cryptography
We will now try to formulate the security of standard digital signature schemes on the basis
of physical Turing machines. The resulting security notion will be called ϕ-security. The
advantage of ϕ-security obviously is that it includes physical attacks in its security model. One
necessary consequence, as discussed at length in the introuction, is that we have to include
the current state of technology in our framework. This makes the ϕ-security of any given
cryptographic signature scheme subject to this state of technology. That fact seems unusual
at first glance, but indeed reflects the state of affairs for most cryptographic algorithms:

20

They could, in principle, be attacked by quantum algorithms; what saves their security is the
current state of technology, not a formal mathematical or Turing-machine based argument.

We will start by repeating some facts from binary cryptography.

Definition 4.1 (Signature Schemes). A digital signature scheme is a triple (G,Sig, Ver) of
probabilistic polynomial-time (Turing) algorithms satisfying the following two conditions:

1. On input 1n, algorithm G (called the key generator) outputs a pair of bit strings.

2. For every pair (s,v) in the range of G(1n), and for every α ∈ {0, 1}∗, algorithms Sig
(signing) and Ver (verification) satisfy

Pr [Ver(v, α, Sig(s, α)) = 1] = 1,

where the probability is taken over all the internal coin tosses of algorithms Sig and Ver.

The definition does not tell us anything about the security of digital signatures. The attack
scenario commonly associated with digital signatures is that of an adaptive chosen message
attack. This is a certain attack scenario the adversary is placed in, together with a definition
what a successful attack of the adversary in that scenario is. A digital signature scheme which
does not allow successful attacks in the scenario is consequently regarded as secure.

The adaptive chosen message attack scenario can be described as follows: Given a signature
scheme (G,Sig, Ver), the key generator is run with input 1n to produce a private key s and a
public key v. Then, the attacker is allowed to ask for polynomially many signatures Sig(s, αi)
for polynomially many binary strings αi, i = 1, . . . , p(n), which he may choose adaptively.
After he has received all the asked signatures, he must try to output a valid signature for a
new string α 6= αi, i = 1, . . . , p(n). If he can do so, that is, if he can output a pair (α, S) such
that Ver(v, α, S) = 1 and α 6= αi for all i = 1, . . . , p(n), then he is said to have broken the
signature scheme.

The following standard definition models this scenario by using oracle Turing machines.
The attacker is modeled as a polynomial time oracle Turing machine with an oracle for the
function Sig(s, ·). Thereby the following notation is used: Ss denotes the (random) oracle for
the function Sig(s, ·), and QSs

M denotes the set of queries made by machine M to the oracle
Ss.

Definition 4.2 (Secure Signature Schemes). A public key signature scheme is secure if for
every probabilistic polynomial time oracle machine M , every polynomial p and all sufficiently
large n, it holds that

Pr
[
Ver(v, α, β) = 1 and α /∈ QSs

M (v),
where (s, v)← G(1n) and (α, β)←MSs(v)

]
< p(n),

where the probability is taken over the coin toses of algorithms G, M and Veras well as over
the coin tosses of machine M.

It is well known that secure signature schemes can be constructed under the assumption that
factoring large integers is hard. More precisely, the following holds.

Definition 4.3 (Intractability Assumption for Factoring (IAF)). Let

Hk
def= {n = p · q | |p| = |q| = k, p ≡ 3 mod 8, q ≡ 7 mod 8}.

21

Then, the following statement ist called the intractability assumption for factoring: For all
probabilistic polynomial Turing machines M there is a negligible function ν such that for all
sufficiently large k,

Pr
[
M(n) outputs a nontrivial

divisor of n
n is sampled uniformly at
random from the set Hk

]
< ν(k).

Now we can state the following theorem by [GoldwasserMicaliRivest].

Theorem 4.4 (Secure Signatures from the IAF). If the IAF holds, then there is a secure
signature scheme.

Adopting the view discussed in the introduction (section 2.1), we can state that the last
theorem makes a conditional statement about the existence of secure signature schemes in the
standard security model of complexity based cryptography, whose relevant parts were briefly
reviewed preceeding the theorem. This framework, however, does not include computations
executed by physical systems. As announced in the introduction, our aim is therefore to
transfer Theorem 4.4 into a corresponding statement that involves physical Turing machines.
We will not fully complete all steps that are necessary to do so, in particular we skip the
corresponding proof of the ϕ-equivalent of Theorem 4.4. However, we sketch the basic outline
by giving the required definitions and theorems, which will provide the reader with a general
idea of the direction we are trying pursue.

We start by extending the definition of the security of a (standard) signature scheme
through allowing physical oracle Turing machines instead of standard oracle Turing machines
in the definition. The resulating notion of security is called ϕ-security. This approach has
the advantage of taking attacks by physical computation machines into account; at the same
time it makes necessary to introduce universes and technologies into the picture, relative to
which our new notion of security is defined, as discussed in the introduction and section 3.3.

Definition 4.5 (ϕ-Secure Signature Schemes). Let U = (O,D,B,m) be a probabilistic uni-
verse, and let T be a technology in that universe. A signature scheme is called ϕ-secure in T
if for every probabilistic polynomial physical oracle machine M in T , every polynomial p and
all sufficiently large n, it holds that

Pr
[
Ver(v, α, β) = 1 and α /∈ QSs

M (v),
where (s, v)← G(1n) and (α, β)←MSs(v)

]
< p(n),

where the probability is taken over the random variables G, M and Ver.

If we are to transfer Theorem 4.4 to the realm of ϕ-security, then we have to reformulate the
IAF in the context of ϕ-TMs.

Definition 4.6 (ϕ-Intractability Assumption for Factoring (ϕ-IAF)). Let U = (O,D,B,m)
be a probabilistic universe, and let T be a technology in that universe. Let further

Hk
def= {n = p · q | |p| = |q| = k, p ≡ 3 mod 8, q ≡ 7 mod 8}.

Then, the following statement ist called the ϕ-intractability assumption for factoring in T :
For all probabilistic polynomial physical Turing machines M in T there is a negligible function
ν such that for all sufficiently large k,

Pr
[
M(n) outputs a nontrivial

divisor of n
n is sampled uniformly at
random from the set Hk

]
< ν(k)

where the probability is taken over the uniform choice of n and the random variable M(n).

22

Now we can also transfer Theorem 4.4.

Theorem 4.7 (ϕ-Secure Signatures from the ϕ-IAF). Let U = (O,D,B,m) be a probabilistic
universe, and let T be a technology in that universe. If the ϕ-IAF holds in T , then then there
is a ϕ-secure signature scheme in T .

Indeed, the author conjectures that the proof of the theorem in the standard setting carries
over basically immediately to the ϕ-setting, but the proof has not been led yet.

This sequence of definitions and theorems illustrates one aim of ϕ-TMs that we already em-
phasized in the introduction: To reformulate the security of standard cryptographic schemes
with respect to physical computations. Please note that the introdunction of technologies
and universes does not much delimit the relevance of our statements: Provided that both the
security assumptions and the security statement are formulated according to the same uni-
verse and technology, which is very reasonable in practice, the assumptions basically ‘cancel
out’. We arrive at statements of the following type: Provided that you live in a world with a
state of technology that does not allow you to break the ϕ-IAF, then there are ϕ-secure sig-
nature schemes in your world. This seems a reasonable class of statements, whose generality
is certainly not decreased through reference to the notion of a ‘technology’. We hope that
this can give a first impression of the application of ϕ-TMs to standard cryptography. We
will proceed with the application of ϕ-TMs to physical cryptography, where the property of
ϕ-TMs to process physical objects becomes important.

5 Unique Objects

5.1 Informal Description of Unique Objects
In the current section we will introduce the notions of unique objects and verifiably unique
objects by giving an informal description; formal definitions will follow in the next section.

Intuitively it seems suggestive to call an object unique if it exists only once. Or, more pre-
cisely, if the object possesses some unique properties which at a certain timepoint of reference
are shared by no other existing object. If unique objects shall be relevant for cryptographic
purposes, however, then their uniqueness should not only hold for the moment, but should
prevail for some foreseeable time in the future. This should hold even if a unique object
and its properties become known to the general public and are subject to active refabrica-
tion attempts by fraudsters. That implies that the unique properties of the object should be
impossible to refabricate by means of current technology, while, at the same time, it should
obviously be possible to produce unique objects by means of current technology. This seems
contradictory.

The contradiction can be resolved by emplyoing random processes in the production of
unique objects. These processes each time exert a different influence on the produce, making
each object unique. Suitable random processes may, for example, be given by the fabrication
variations that inevitably and uncontrollably occur in many nanoscale manufacturing pro-
cesses.

In the sequel, we will find it convenient to formally distinguish between two different types of
unique objects: Standard unique objects and verifiably unique objects.

Standard unique objects (or simply: unique objects) are designed for a situation in which
the honest parties have control over the manufacturing process of the object, and compete
with an external adversary who attempts to copy it. This situation occurs, for example,
if unique objects are used as unforgeable labels for banknotes or other valuable goods. In

23

situations of the like, the focus obviously lies on the uncopyability of the object after its
production.

Verifiably unique objects, in turn, are utilized in more complex situations, where the
honest party does not have control over the manufacturing process of the object, and the
manufacturer is regarded as potentially malicious, too. Under such circumstances it does
not suffice, roughly speaking, that unique objects are uncopyable for external fraudsters. It
becomes also relevant whether the manufacturer himself could have produced more than one
specimen of a given object, for example by applying a novel, unexpected trick during the
production. In situations of the llike, the focus lies on the unreproducibility of the object
uring and after the production process. To the honest user who receives the readily produced
objects form the possibly dishonest manufacturer, the desired conclusion for uncopyability is
an ex post conclusion taking place after the object has been generated.

The feature of verifiability becomes relevant, for example, when we present a novel method
to distribute copy protected digital content over online connections.

5.2 Definition of Unique Objects
In a formal definition of the notions of unique objects and verifiably unique objects, the
details will be more involved than the introductory characterisations presented in section 5.1.
The bottleneck will be the formalisation of vague expressions such as the terms “cannot be
reproduced”, “properties” or “identical properties”. Further, we will have to define our two
notions in some probabilistic framework, as the above statements only make sense if small
error probabilities are allowed; for example, we have to take the possibility into account that
a fraudster produces a copy of some unique object by an extreme amount of sheer luck.

This formalisation will make it necessary to rely on some established asymptotic concepts
from complexity theory, such as the distinction between polynomial and super-polynomial
time. Therefore, our definitions of unique objects and their variants further have to be
asymptotic, too.

This can be achieved by considering so-called unique object systems instead of single
unique objects. These are systems which can generate and measure infinitely many “unique
objects” in relation to a growing input paramters 1k.

We start by defining the underlying general notion of an object system.

Definition 5.1 (Object Systems). Let U be a universe, and let T be a technology in U . Let
OG be a polynomial object generator in T , and let M be a polynomial measuring device in T .
The tuple (OG,M) is called an object system in T if there is a function L ∈ O(n) such that

OG :
{

1k
∣∣∣k ∈ N

}
−→

{
(P (O), O)

∣∣∣ O ∈ O and
∣∣P (O)

∣∣ ≤ L(k)
}
.

We will make a few comments on Definition 5.1. First of all, please note that the definition
makes use of the abbreviations introduced in Notation 3.20. In particular, it relies on the
replacement character of the abbreviations, as clarified in the discussion following Notation
3.20. As elaborated there, the abbreviation P (O) is to be understood as being equal to
p,M(p,O), which clarifies the dependence of any object system on the measuring device M .
If further explanation on the used abbrevations is required, the reader is referred again to
Notation 3.20.

Then, please note that the definition uses the notion of a measuring device precisely
as introduced in Definition 3.18, but employs the notion of object generators in an altered
fashion, requiring that they have to meet the described constraints on their domain and range.
In particular, we required that the object generators employed in an object system output

24

a set of properties P (O) together with the object O, such that P (O) is of linear size in the
input parameter k. This is demanded with an eye on future applications, where the unique
properties of the generated object should be compact and not too long for practicality reasons.

Third, note that any object system can produce infinitely many objects, and is parametrised
by a parameter k which is presented to the object generator in unary notation.

The definition of object systems states nothing about any security aspects, however. These
will be dealt with in the upconing definitions, where we specify the notion of a unique object
system and, eventually, of a verifiably unique object system.

Definition 5.2 (Unique Object Systems). Let U be a probabilistic universe, and let T be
a technology in that universe. Let (OG,M) be an object system in T . (OG,M) is called a
unique object system in T if the following uncloneability condition holds: For any polynomial
ϕ-TM CLONE in T with

CLONE :
{

(1k, P (O), O)
∣∣∣ O ∈ O and p ∈ (DP

M)∗
}
−→ O2,

for any polynomial p and for any sufficiently large k,

Pr

 P (O) = P (O1) = P (O2)

where (O1, O2)← CLONE (P (O), O)
and (P (O), O)← OG(1k)

 ≤ 1/p(k)

where the probability is taken over the random outputs of CLONE and OG.

Again, some comments follow. Definition 5.2 is obviously an asymptotic definition in the
sense that the ϕ-TMs OG, M and CLONE operate on infinite domains. Like in Definition
5.1, this asymptiticity is achieved by a unary parameter k, which parametrizes the output of
OG and is provided to both OG and CLONE as input.

This asymptotic construction is necessary for a number of reasons: First of all and most
obviously, because we want to apply the asymptotic concepts of polynomial time and poly-
nomial mass.

There is a more subtle, second reason, too: If OG would operate on a finite domain and
hence a finite range, only, then there could be a finite machine CLONE respecting T which
had ‘on hold’ or ‘on store’ all finitely many possible outputs of OG. This machine would be
suitable as cloning machine: On input (P (O), O) it would simply search for an object O′ with
P (O′) = P (O) among the objects it has ‘on hold’, and output this object. Provided that the
objects are ordered according to their properties, this search could presumably be carried out
quickly. Hence, we need to restrict the size of the physical systems that are employed ϕ-TM
CLONE , so that they can only have some suppesedly small fraction of all possible outcomes
of OG ‘on hold’. A proper choice for that restriction of size is the notion of polynomial mass.
Again, this presumes an asymptotic treatement, and also implicitely assumes that OG(1k)
can produce super-polynomially (in k) many different objects.

Finally, please note that Definition 5.2 perhaps surprisingly says nothing about the ‘unique-
ness’ of the generated objects, but only states some ‘uncloneability condition’. The next
propositition shows, however, that some sort of uniqueness property is already implicit in the
uncloneability condition.

Proposition 5.3. Let U be a universe, T be a technology, and OS = (OG,M) be a unique
object system in T . Let further p and q be polynomials, and let OG1, . . . , OGp(k) be object
generators in T . Then, the following holds:

25

1. For all polynomials r and for all sufficiently large k,

Pr

[
∃ i 6= 1 : P 1(O1) = P i(Oi)

where
(
P i(Oi), Oi

)
← OG(1k) for i = 1, . . . , q(k)

]
≤ 1/r(k).

2. For all polynomials r and for all sufficiently large k,

Pr

 ∃ i, j, l : P i(Oi) = P (j,l)(O(j,l))

where
(
P (j,l)(O(j,l)), O(j,l)

)
← OGj(1k)

for j = 1, . . . , p(k) and l = 1, . . . , q(k).

 ≤ 1/r(k).

Proof. We will only show the first statement; the proof of the second statement is similar.
For the sake of contradiction, we make the following assumption:

Contradiction Assumption: OS is a unique object system, but for some polynomial r
and for infinitely many k it holds that

Pr

[
∃ i 6= 1 : P 1(O1) = P i(Oi)

where
(
P i(Oi), Oi

)
← OG(1k) for i = 1, . . . , q(k)

]
> 1/r(k).

Then, we construct a ϕ-PTM CLONE as follows:

Machine CLONE :

Input
(
1k, P (O), O

)
Set

(
P i(Oi), Oi

)
← OG(1k) for i = 1, . . . , q(k)

If @ i : P i(Oi) = P (O)

then output “failure” and abort.

Output
(
P (O1), O1, P (O2), O2

)

By the construction of CLONE and statement 1 it is clear that for any polynomial p and for
any sufficiently large k,

Pr

 P (O) = P (O1) = P (O2)

where (O1, O2)← CLONE (P (O), O)
and (P (O), O)← OG(1k)

 ≤ ν(n)

where the probability is taken over the random outputs of CLONE and OG.

We will now turn to the definition of verifiably unique object systems, and start by a thorough
demarcation to the notion of unique object systems.

The definition of unique object systems asserts that there is no external machine which
clones the objects after they have been produced, and it also asserts by Proposition 5.3 that
the very object generator OG of the unique object system (OG,M) produces two identical
objects with negligibly small probability only. Further, Proposition 5.3 asserts that any other

26

object generator, too, has got a very small probability to reproduce by chance an object that
has earlier been produced by OG. Definition 5.2 does not guarantee, however, that there
might not be another object generator OG′ different from OG which can produce objects
of similar type as OG, but which is capable of generating more than one specimen of each
produced object! Any such specimen produced by OG′ would by itself look like a unique
object to an external observer, while, in fact, the manufacturer holds possession of a “twin”
with identical properties.

Let us further clarify the difference between our hypothetical machine OG and the attacker
CLONE as specified in the uncloneability condition of Definition 5.2: The machine CLONE
arbitrary object produced by someone else, namely the object generator OG, and attempts
to copy it. Our hypothetical machine OG′, however, generates the objects by itself, and tries
to design the production process in such a way that two or more identical objects result, each
of which on its own looks like a unique object. Hence, Definition 5.2 forbids the existence
of a succesful attacker CLONE , but does not rule out the existence of the described object
generator OG′.

It is important to state that this problem is far from trivial or merely theoretical. It appears
in any application where the user of some unique object does not trust the manufacturer of
the object, and wants to be sure that no other person, including the manufacturer, can possess
or produce an identical object. The definition of unique object systems cannot be used to
account for these cases, as it merely provides security guarantees against external fraudsters.
We need a new notion, which we call verifiably unique object systems, and a new definition.

If that new definition is to make sense, it has to include a mechanism by which the honest
user can actually check that a given, supposedly unique object really is unique. We hence
have to select a form that this check is supposed to take. There are two suggestive choices:
The honest user could try to check the uniqueness by some physical actions, like inspection of
the object. Or, alternatively, by merely elaborating on the numerical properties of the object,
without physical inspection. The latter choice is more convenient, as it allows the practically
advantageous possibility that the numerical properties of the object are measured by another
party instead of the honest user.

The following definition formally expresses the properties of verifiably unique object systems
as discussed.

Definition 5.4 (Verifiably Unique Object Systems). Let U be a probabilistic universe, and
let T be a technology in that universe. Let (OG,M) be an object system in T . (OG,M) is
called a verifiably unique object system in T if the following two conditions are met:

1. Manufacturer Resistancy Condition: For any polynomial ϕ-TM TWIN in T with

TWIN :
{

1k
∣∣ k ∈ N

}
−→

{ (
P (O1), O1, P (O2), O2

) ∣∣ O1, O2 ∈ O, p ∈ (DP
M)∗

}
,

for any polynomial p and for all sufficiently large k, it holds that

Pr

 P (O1) = P (O2) and(
P (O1), O1

)
,
(
P (O2), O2

)
∈ Range(OG) \ {(λ, λO)}

where
(
P (O1), O1, P (O2), O2

)
← TWIN (1k)

 ≤ 1/p(k)

where the probability is taken over the random output of TWIN .

2. Verifiability Condition: There is a polynomial time probabilistic Turing machine OV ,
called the object verifier, which decides membership in

Π1(Range(OG)) \
{

(λ, λO)
}
.

27

That is, given a string x ∈ {0, 1}∗, OV decides in probabilistic polynomial time whether
there is an object O ∈ O such that

(x,O) ∈ Range(OG) \
{

(λ, λO)
}
.

Once more, some comments follow. We will start with some formalities: First, note again
that again that the abbreviations introduced in Notation 3.20 are used extensively in the
definition. If anything is doubtful, we refer again to Notation 3.20.

Then, it is obvious that the definition just like the previous definitions is asymptotic, and
that the behavior of OG is asymptotically parametrised throughthe security parameter k.
This parameter is also presented to the adversarial machine TWIN .

Turing to more substantial issues, we would like to reemphasize the two different parts of
Definition 5.4, which relate to the two basic properties of verifiably unique object systems.
Part one expresses the manufacturer resistancy condition, which states the requirement that
there is no alternative production process that generates the same objects as OG, but which
is capable of manufacturing two or more identical specimen of each produced object. In part
two, the verifiability condition asserts that the manifacturer resistancy can be efficiently ver-
ified by a user by merely juding the numerical properties of the produced objects.

It is interesting to state in this context that the formal expression of the property of manufac-
turer resistancy as in Definition 5.4 answers an issue left open in [Gassend] and the subsequent
publications [...], [...], where the property of manufacturer resistancy is introduced informally
and used subsequently without a formal definition.

We would like to remark in this context, however, that we feel that the practical rele-
vance of the notion of manufacturer resistancy is significantly decreased if it used without a
corresponding verifiability condition as in Definition 5.4. Any user distrusting the manufac-
turer must be able to verify by himself that a given object was produced in a manufacturer
resistant way, as he apparently will not be willing to trust the manufacturer’s assertion that
this was the case. This, then, requires some verification mechanism. If, on the other hand,
the manufacturer is trusted by the user, no manufacturer resistancy property is needed in the
first place.

We suggest therefore contrary to [Gassend], that the notion of manufacturer resistancy
should in general only be used in connection with a corresponding verifiability condition, and
did not define manufacturer resistancy or manufacturer resistant object systems, as indepen-
dent notions of their own.

There is another issue about the manufacturer resistancy condition that is worth discussing:
Why do we exclude the output (λ, λO) from the range of OG?

The reason lies in the probabilistic nature of the production process executed by OG.
Recall that the aim of OG is to produce an object which is unique and cannot be reproduced.
By sheer bad luck, however, it could be the case that the manufactured object happens to
be trivial and easy to reproduce. In that case, a natural response of OG would simply be
to repeat the production process. However, there again is a small probability that the result
is unsatisfactory, and with very small probability, OG could even be unable to generate a
satisfactory object within the prespecified polynomial time bound.

In that case, OG simply generates the failure output (λ, λO), that is, it halts with its
binary and its physical tape being empty. This output then certainly is trivial to reproduce
and has to be excluded from the allowed outputs of TWIN in order not to spoil the definition.
If it was not excluded, then TWIN could on any input 1k produce the output (λ, λO, λ, λO),
thereby breaking any verifiably unique object system.

28

Likewise, if we do not allow OG to produce a failure output that is excluded from the
allowed range of TWIN , then there might be easy-to-reproduce objects in the range of OG,
and TWIN could confine itself to generating two copies of one of these easy-to-reproduce
objects. Thereby it could break the supposedly verifiably unique object system (OG,M).

The notion of being a verifiably unique object system seems stronger than being a unique
object system. Intuitively one would assume that the former implied the latter in some sense;
this is stated more precisely and proved in the upcoming proposition.

Proposition 5.5 (Verifiably Unique Object Systems are Unique Object Systems). Let U be
a universe, and let T be a technology. Let (OG,M) be a verifiably unique object system in T .
Then (OG,M) is also a unique object system in T .

Proof (Sketch). We argue by contradiction, assuming the following:

Contradiction Assumption: (OG,M) is a verifiably unique object system in T , but not
a unique object system in T .

By the definition of a unique object system, the latter part of the contradiction assumption
implies the following:

Statement 1: There is a polynomial ϕ-PTM CLONE such that for infinitely many k and
a fixed polynomial p∗ it holds that

Pr

 P (O) = P (O1) = P (O2)

where (O1, O2)← CLONE (P (O), O)
and (P (O), O)← OG(1k)

 > 1/p∗(k),

where the probability is taken over the random outputs of CLONE and OG.

The machine CLONE can then be used in order to build a ϕ-PTM TWIN which violates
the property that (OG,M) is a unique object system. We define TWIN as follows:

Machine TWIN :

Input 1k

Set
(
P (O), O

)
← OG(1k)

Set (O1, O2)← CLONE
(
1k, P (O), O

)
Output

(
P (O1), O1, P (O2), O2

)

It is obvious from the definition of TWIN that if CLONE , OGandM are polynomial ϕ-PTM
in T , then so is TWIN . Further, one can see that due to the properties of CLONE and OG
one can derive from statement 1 thatit holds for infinitely many k and the polynomial P ∗
from statement 1 that

Pr

[
P (O1) = P (O2)

where
(
P (O1), O1, P (O2), O2

)
← TWIN (1k)

]
> 1/p∗(k).

This implies that (OG,M) violates the manufacturer resistancy condition and hence is no ver-
ifiably unique object system. This is at odds with the contradiction hypothesis and completes
the proof.

29

An obvious question to ask is whether the converse of Proposition 5.5 also holds. This question
is not straightforward to answer.

Intuitively, one would (probably) regard verifiably unique object systems a stronger notion
than unique object systems, suspecting that there are unique object systems which are not
verifiably unique object systems. However, it seems very hard with current techniques to
prove this assumption uncoditionally, because this would imply an unconditional proof that
some system is a unique object system in the first place. Such proofs – like proofs that a
given function is a one-way function – seem to be beyond the current knowledge in theoretical
computer science, if led unconditionally and without restricting the universes or technologies
artificially.

Still, one can (without proof) imagine some unique object systems which are likely not to
meet the manufacturer resistancy condition of verifiably unique object systems. This backs
the assumption that the two notions are different. As an example, take as OG a machine which
produces on input 1k a unique, random mask. Further, imagine that OG subsequently uses
that mask in order to manufacture one physical object in such a way that its properties are
a deterministic and repeatable outcome of the mask structure. Examples might include the
printing masks used for banknotes, which are unique in their microstructure, or lithographic
masks in semiconductor technology. To complete the object system, take as measuring device
M some ϕ-TM which measures the properties of the manufactured systems.

Then, it is obvious under these premises that we could just as well build an object generator
OG′ which works as OG, but uses the mask to produce two or even more objects with identical
properties. Hence, (OG,M) does not meet the manufacturer resistancy condition and is no
verifiably unique object system.

Further, note that given one object produced by either OG or OG′, it is impossible to tell
by whether it was produced by OG or OG′, whence necessarily also the verifiability condition
is violated.

Another, quite convincing example arises in the context of chemistry. Consider a very complex
chemical or biochemical solution, for example a complex, randomly produced DNA-solution.
By stirring this solution carefully in order to achieve an isotropic distribution of the con-
stituents, and by subsequently extracting equal parts of the volume, one gets ‘little identical
copies’ of the big solution. These ‘little copies’ share the same relative distribution of con-
stituents as the original solution. Hence, on seeing a randomly looking DNA-solution, there
is no way to tell whether this volume was once part of a larger solution with an identical
constituent distribution, or whether this volume is already the whole original and randomly
produced solution.

Therefore an object system producing such random DNA-solution is a convincing candi-
date for a unique object system which is no verifiably unique object system. Its practical
implementation seems quite realistic, as the relative concentrations of the constituents can be
tested reliably by established biochemical techniques, for example by use of DNA-chips.

The example of complex DNA-solutions can hence be used to maintain that the notions
of uniqueness and verifiably uniqueness as defined earlier are different, and that using two
different definitions is well justified also from a practical point of view.

6 Labeling Schemes

6.1 Definitions
In the sequel, we will deal with one of the main applications of unique object systems, which
is the unforgeable labeling of valuable goods. We imagine that this task is executed by two

30

machines with the following subtasks:

Machine 1, which is capable of producing physical tokens, the labels.

Machine 2, which is capable of deciding whether a given physical token is a valid label
produced by Machine 1, or not.

Further, we can imagine that a third machine plays a role, which produces a secret key by
which the other two machines can be configured or personalised.

Machine 3, which can produce some binary information by which Machine 1 and Machine 2
can be configured or personalised, respectively, for different users.

This leads to the following definition:

Definition 6.1 (Labeling Schemes). Let U be a probabilistic universe and T a technology in
U . A labeling scheme in T is a triple (C,LG, T) of probabilistic polynomial mass ϕ-TMs in
T with the following properties:

1. C, called the configurator, runs in polynomial time. It produces on input 1k a pair of
binary strings (p, t) as output. Thereby p is the configurating information that is later
provided to the producer, and t is the configurating information provided to the tester.

2. LG, called the label generator, runs in polynomial time. It produces on input (1k, p) an
output (x,O) ∈ {0, 1}∗ × O. The output (x,O) is called a label, and often denoted by
the letter L.

3. T is called the tester and runs in polynomial time. It takes as input a triple (t, x,O)
from the set {0, 1}∗ × O and produces a binary output with the property that for every
k and for every pair (p, t) in the range of C(1k),

Pr [T (t, LG(1k, p)) = 1] = 1,

where the probability is taken over the random output of LG and T .

Note that this definition for the first time uses the capability of ϕ-TMs to process physical
objects as input and output. It says nothing about the security properties of labeling schemes,
though; these are dealt with in the next definition. The security model formulated there is
reminiscent of the security of digital signatures under known message attack: We assume that
the attacker gets a polynomial number of t valid labels L1, . . . , Lt as input, and is asked to
produce t+ 1 valid labels L′1, . . . , L′t+1 as output. Put differently, he has to produce one more
label than he was presented with, and the new labels can differ from the old ones, as long as
they are recognized by the tester as valid. The following definition says this more formally.

Definition 6.2 (Secure Labeling Schemes). Let U be a universe and T be a technology in U ,
and let (C,LG, T) be a labeling scheme in T . (C,LG, T) is called a secure labeling scheme in
T if for any probabilistic polynomial ϕ-TM FAKE in T and for any polynomial p there is a
negligible function ν such that

Pr

 T (t, L′i) = 1 for i = 1, . . . , p(k) + 1
where (L′1, . . . , L

′
p(k)+1)← FAKE (L1, . . . , Lp(k)),

L1 ← LG(1k, p), . . . , Lp(k) ← LG(1k, p) and (p, t)← C(1k)

 < ν(k).

The probability is taken over the random outputs of C, LG, T and FAKE .

After we have presented the necessary definitions of labeling schemes and secure labeling
schemes, we will show how a labeling scheme can be based on unique object systems and
digital signatures.

31

6.2 Standard Labeling by Unique Objects and Digital Signatures
It seems suggestive to use unique objects as unforgeable labels, as they fulfill the uncloneability
condition of Definition 5.2. Nevertheless, there is a problem with this approach: All objects
produced by a UOS are different and ‘random’ in some way; how shall the tester make a
difference between a random object produced by a fraudster and a random object generated
by the legitimate manufacturer?

This question can be resolved by combining a standard approach from mathematical cryp-
tography with our new notion of unique objects; such hybrid techniques are rather typical
for ϕ-cryptography. The idea is as follows: The legitimate manufacturer is given a secure
signature scheme (G,Sig, Ver) and a unique object system (OG,M). He uses OG to produce
a unique object together with some measuring vectors p1, . . . , pn, and obtains some corre-
sponding measuring results M(O, p1), . . . ,M(O, pn). Then, he uses his secret signature key
to sign the properties of the unique object, which proves that this very object originated from
him, not from the fraudster. The details are as follows.

Construction 6.3 Labeling Schemes from Signature Schemes and Object Systems

Let DSS = (G,Sig, Ver) be a signature scheme, and OS = (OG,M) be an object system. We
construct a labeling system LS = (C,LG, T) from DSS and OS as follows:

Configurator C: We take as configurator C the key generator G of the signature scheme.
Hence, C(1k) = (p, t) def= G(1k) = (s, v) for all k ∈ N.

Label Generator P : The Label Generator LG is constructed from the object generator
OG of the object system and the measuring apparatusM of the object system in the fol-
lowing way: LG takes as input p (the partial output of the configurator). Then, it runs
OG(1k). This produces an output (P (O), O). Then, the Label Generator produces a dig-
ital signature string S = Sig(s, P (O)). It outputs the label L = (x,O) def= (P (O), S,O).

Tester T : The tester is constructed from the measuring deviceM of the object system and
the verifier V from the signature scheme. Given a label L of the form L = (P (O)′, S′, O′),
where P (O)′ is of the form P (O)′ = p ′,M(p,O)′, it proceeds as follows:

(a) It checks whether Ver(t, P (O)′, S′) = 1.

(b) It examines by use of M whether M(p,O)′ = M(p ′, O′).

If conditions (a) and (b) are met, then the tester regards the label as valid and outputs
“1”, otherwise it outputs “0”.

As the above construction will be used often, we give an own name to it.

Definition 6.4. Let OS be an object system, and DSS be a signature scheme. Then we
denote the labeling scheme LS constructed from OS and DSS as described in the previous
construction 6.3 as SL(OS,DSS), and call it the standard labeling scheme (constructed) from
OS and DSS.

Before we turn to the proof of security of the standard labeling scheme, we will describe how
the scheme is used in practice. This protocol will say nothing new compared to construction
6.3, but it will bring some practical aspects of the standard labeling scheme illustratively to
the point.

32

Protocol 6.5: Offline Labeling via Unique Objects

Prerequisites and Situation:

1. There is an institution CA (the ‘Central Authority’) which issues the labels.

2. The CA holds a presumed unique object system (OG,M), and a presumed secure sig-
nature scheme (G,Sig, Ver).

3. The CA is capable of storing digital information on a physical object, for example by
using a barcode-like encoding technique or by an RFID-chip.

4. There are a number of testing devices T1, . . . , Tn, whose purpose is to decide whether
a given label is genuine. Each of these devices contains a measuring device Mi, which
is “equivalent” to the measuring apparatus M : It can execute the same measurements
and will obtain the same results as M .

5. Each of the testing devices is equipped with machinery to read out information that
was stored on a physical object by the CA.

6. The CA has chosen security parameters l and m by which it runs the unique object
system and the signature scheme.

7. The CA has run the key generator G of the signature algorithm in order to produce a
key pair (s, v) ← G(1l). The key s is secret and only known to the CA; the key v is
public and has been distributed to all testing devices.

Scheme for Labeling a Product P :

1. The CA runs the machine OG of the object system with input 1m to produce an output
OG(1m) = (p,M(p,O), O).

2. The CA signs the information p,M(p,O), PD by the signing algorithm of the signature
scheme and the signing key s. Here, PD denotes some further product data useful for
handling or shipping the product. Thereby it creates a string

S
def= Sig(s, p,M(p,O), PD).

3. The CA sticks the objectO to the product. Further, it stores the information p,M(p,O), PD, S
on the product.

Scheme for Testing a Label

1. Some tester Ti is presented with a product that contains a label consisting of the fol-
lowing items:

(a) A physical object O’.

(b) Some numerical data of the form p ′,M(p,O)′, PD′, S′.

If the testing device finds that the label does not have this form, then it concludes that
the label is faked and aborts.

2. The tester checks whether the signature S′ is valid by testing if

Ver(v, (p ′,M(p,O)′, PD′), S′) = 1.

33

3. The tester uses the measuring device M to check if

M(p ′, O′) = M(p,O)′

4. The tester regards the label as valid if and only if the checks described in the last two
steps were positive.

This concludes our description of the standard labeling scheme. In the next section we will
present a formal proof of the security of the standard labeling scheme. That proof will be led
in the formal framework that we have developed over the last sections.

6.3 Security Proof for the Standard Labeling Scheme
We start by a notational convention.

Notation 6.6. Let L =
(
p,M(p,O), Sig(s, p,M(p,O)), O

)
be a label generated by some stan-

dard labeling scheme LS = SL(OS,DSS). Then we introduce the following notations:

Obj(L) def= O

Par(L) def= p

Pro(L) def= (p,M(p,O))

=
(
Par(L),M(Par(L), O)

)
(∗)

Sig(L) def= Sig
(
s, p,M(p,O)

)
The following, basically simple observation will be one of the keys to the proof.

Lemma 6.7 (One Faked Label means One New Signature or One Cloned Object). Let
LS = SL(OS,DSS) = (C,LG, T) be some standard labeling scheme, and let L1, . . . , Lm

and L′1, . . . , L
′
n with m < n be “valid labels” of LS. That is, for some (s, v) ∈ Range (G),

where G is the generator of DSS,

T (v, Li) = 1 for i = 1, . . . ,m, and
T (v, L′i) = 1 for i = 1, . . . , n.

Then, at least one of the following two statements holds:

(1) The labels L′1, . . . , L′n contain two identical “copies” of one certain object contained in
the labels L1, . . . , Lm.
Or, more formally: ∃ i, j ∈ {1, . . . , n}, k ∈ {1, . . . ,m} :
M (Par(Lk),Obj(L′i)) = M (Par(Lk),Obj(L′j)) = M (Par(Lk),Obj(Lk)).

(2) One of the labels L′1, . . . , L′n contains a “new” valid digital signature that is not contained
in any of the labels L1, . . . , Lm.
Or, more formally: ∃ i ∈ {1, . . . , n} : Ver (v,Pro(L′i),Sig(L′i)) = 1
and @ j ∈ 1, . . . , k : Pro(L′i) = Pro(Lj)

Proof. We lead the proof by considering two sets PRO and PRO′. These sets are defined as
follows:

PRO
def= {Pro(Li) | i = 1, . . . ,m},

and
PRO′

def= {Pro(L′i) | i = 1, . . . , n}.

34

In other words: PRO is the set of the properties of the objects contained in the labels
L1, . . . , Lm, and likewise for PRO′ with the labels L′1, . . . , L′n.

We distinguish between two cases:

Case 1: PRO ⊇ PRO′. As m < n, this implies that there must be indices i, j ∈ {1, . . . , n}
such that Pro(L′i) = Pro(L′j), and that there must be a further index k ∈ {1, . . . ,m}
such that Pro(Lk) = Pro(L′i) = Pro(L′j). This implies by the definition of Pro (equation
(∗) in Notation 6.6) that

Par(Lk) = Par(L′i) = Par(L′j),

and that

M(Par(Lk),Obj(Lk)) = M(Par(L′i),Obj(L′i)) = M(Par(L′j),Obj(L′j)).

Together, this implies that

M(Par(Lk),Obj(L′i)) = M(Par(Lk),Obj(L′j)) = M(Par(Lk),Obj(Lk)).

Hence, statement (1) of the lemma holds.

Case 2: PRO (PRO′. Then there is a label L′i in PRO′ such that Pro(L′i) 6= Pro(Lj)
for all j = 1, . . . ,m. As T (v, L′i) = 1, it holds due to the construction of labels and the
tester T of the standard labeling scheme that Ver(v,Pro(L′i),Sig(L′i)) = 1. Therefore,
statement (2) of the lemma is fulfilled.

As the cases cover all possibilities, this shows that under the given premises at least one of
the statements (1) and (2) holds. This completes the proof.

Before we tackle the Main Theorem, we will prove another lemma. It states that a general-
ization of the notion of a unique objects system is equivalent to the original definition. We
start by defining the generalization.

Definition 6.8 (p-Unique Object Systems). Let U be a universe, and let T be a technology.
Let OS = (OG,M) be an object system, and p be a polynomial. OS is called a p-unique
object system in T , if the following holds: For any polynomial ϕ-TM p-CLONE in T , for all
polynomials q and for all sufficiently large k,

Pr


∃ i 6= j, l : P l(O′i) = P l(O′j) = P l(Ol)
and ∀ l ∃ i : P l(Ol) = P l(O′i)

where (O′1, . . . , O
′
p(k)+1)

← p-CLONE
(
1k, P 1(O1), O1, . . . , P p(k)(Op(k)), Op(k)

)
and (P i(Oi), Oi)← OG(1k) for i = 1, . . . , p(k)

 ≤ 1/q(k)

The probability is taken over the random outputs of p-CLONE and OG.

It can be seen easily that the notion of a p-UOS includes the notion of a UOS; indeed, a UOS
is nothing more than a 2-UOS, where the polynomial p is equal to the constant 2. The other
direction will be shown in the next lemma, proving that the two notions coincide.

Lemma 6.9 (Equivalence of UOS and p-UOS). Let U be a universe and T be a technology.
Let further OS be an object system in T . Then, the following statements are equivalent:

35

1. OS is a unique object system in T .

2. OS is a p-unique object system in T for all polynomials p with
p(n) ≥ 2 ∀n ∈ N.

Proof. The implication “⇐” is clear from the two respective definitions (Def. 5.2 and 6.8):
Simply take p(n) = const. = 2 for all n ∈ N.

The other direction “⇒” needs more elaboration. Let OS be an object system in T . We lead
the proof by contradiction, making the following assumption:

Contradiction Assumption: OS is a unique object system in T , but for some polynomial
p with

(
p(n) ≥ 2 for all n ∈ N

)
, OS is not a p-unique object system in T .

The contradiction assumption implies the following:

Statement (1): There is a polynomial ϕ-TM p-CLONE such that for the polynomial p
from the contradiction assumption, some polynomial q and infinitely many k,

Pr


∃ i 6= j, l : P l(O′i) = P l(O′j) = P l(Ol)
and ∀ l ∃ i : P l(Ol) = P l(O′i)

where (O′1, . . . , O
′
p(k)+1)

← p-CLONE
(

1k, P 1(O1), O1, . . . , P p(k)(Op(k)), Op(k)

)
and

(
P i(Oi), Oi

)
← OG(1k) for i = 1, . . . , p(k)

 > 1/q(k),

where the probability is as taken over the random outputs of p-CLONE and OG.

The physical Turing machine p-CLONE addressed in statement (1) “clones” for infinitely
many k with non-negligible probability one of the p(k) input objects. If we could use
p-CLONE to set up a second physical TM CLONE that does the same for one input object,
then OS could be no unique object system. This would provide the sought contradiction and
complete the proof.

The rest of the proof basically consists in unfolding this simple thought, which will require
some technical elaboration. First of all, we need to find an appropriate way to construct the
algorithm CLONE ; then, we need to prove that the success probability of that algorithm is
non-negligible.

We start by defining CLONE. It depends on the polynomial p whose existence is guaranteed
by statement (1), and the ϕ-TM p-CLONE.

Machine CLONE :

Input
(
1k, P (O), O

)
Choose i0 uniformly at random from {1, . . . , p(k)}

Set
(
P (Oi0), Oi0)

)
←
(
P (O), O

)
Set

(
P (Oi), Oi

)
← OG(1k) for i = 1, . . . , i0 − 1, i0 + 1, . . . , p(k)

Set
(
P (O′1), O′1, . . . , P (O′p(n)+1), O′p(n)+1

)
36

← p-CLONE
(
P (O1), O1, . . . , P (Op(n)), Op(n)

)
If
(
∃ i 6= j ∈ {1, . . . , p(n) + 1}, k ∈ {1, . . . , p(n)} :
i0 = k and P k(O′i) = P k(O′j) = P k(Ok)

)
then proceed, else output “failure” and abort.

Output P (Oi0), O′i, O
′
j

We would now like to calculate the probability that CLONE is “successful” for a certain
input (1k, P (O), O). Obviously we cannot determine that probability in an absolute sense,
but only in relation to the “success probability” of the algorithm p-CLONE. To that aim, we
introduce a random variable CopInd as follows:

CopInd : DCopInd −→ N0

(P (O1), O1, . . . , P (Ot), Ot)

7−→ min

 l

∣∣∣∣∣∣∣
∃i 6= j : P l(O′i) = P l(O′j) = P l(Ol),

where (P 1(O′1), O′1, . . . , P (O′t+1), Ot+1)
← p-CLONE (P 1(O1), O1, . . . , P (Ot+1), Ot+1)


Note that CopInd is defined in terms of the random variable p-CLONE(·). As min(∅) = 0, it
can be seen rather easily that for the polynomial p and any objects O1, . . . , Op(k),

Pr
[

CopInd(P 1(O1), O1, . . . , P p(k)(Op(k), Op(k)) 6= 0
]

= (1)

= Pr

[
∃ i 6= j, l : Pro(O′i) = Pro(O′j) = Pro(Ol),

where (P
′
1(O′1), O′1, . . . , P

′
p(k)+1(O′p(k)+1)← p-CLONE (O1, . . . , Op(k))

]

We can now calculate the success probability of CLONE in the following way.

Pr

 P (O) = P (O1) = P (O2),

where (P (O), O1, O2)← CLONE (1k, P (O), O)
and O ← OG(1k)

 =

= Pr

 CopInd(O1, . . . , Op(k)) = i0

where i0 ←u.a.r. {1, . . . , p(k)}, Oi0 ← OG(1k),
and Oi ← OG(1k) for i = 1, . . . , i0 − 1, i0 + 1, . . . , p(k)



= Pr

 CopInd(O1, . . . , Op(k)) = i0

where i0 ←u.a.r. {1, . . . , p(k)}
and Oi ← OG(1k) for i = 1, . . . , p(k)



=
p(k)∑
j=1

Pr

 CopInd(O1, . . . , Op(k)) = j and i0 = j

where i0 ←u.a.r. {1, . . . , p(k)}
and Oi ← OG(1k) for i = 1, . . . , p(k)



37

=
p(k)∑
j=1

Pr

[
i0 = j

where i0 ←u.a.r. {1, . . . , p(k)}

]
·

· Pr

[
CopInd(O1, . . . , Op(k)) = j

where Oi ← OG(1k) for i = 1, . . . , p(k)

]

=
1

p(k)
·

p(k)∑
j=1

Pr

[
CopInd(O1, . . . , Op(k)) = j

where Oi ← OG(1k) for i = 1, . . . , p(k)

]

=
1

p(k)
· Pr

[
CopInd(O1, . . . , Op(k)) 6= 0

where Oi ← OG(1k) for i = 1, . . . , p(k)

]

=
1

p(k)
· Pr

 ∃ i 6= j, l : Pro(O′i) = Pro(O′j) = Pro(Ol),

where (O′1, . . . , O
′
p(k)+1)← p-CLONE (O1, . . . , Op(k)+1)

and Oi ← OG(1k) for i = 1, . . . , p(k)


Or, to summarize our calculation,

Pr

 P (O) = P (O1) = P (O2),

where (P (O), O1, O2)← CLONE (1k, P (O), O)
and O ← OG(1k)

 = (2)

=
1

p(k)
· Pr

 ∃ i 6= j, l : Pro(O′i) = Pro(O′j) = Pro(Ol),

where (O′1, . . . , O
′
p(k)+1)← p-CLONE (O1, . . . , Op(k)+1)

and Oi ← OG(1k) for i = 1, . . . , p(k)


We further know from statement (1) that for infinitely many k and a polynomial q,

Pr

 ∃ i 6= j, l : Pro(O′i) = Pro(O′j) = Pro(Ol),

where (O′1, . . . , O
′
p(k)+1)← p-CLONE (O1, . . . , Op(k)+1)

and Oi ← OG(1k) for i = 1, . . . , p(k)

 > 1/q(k).

Inserting this into equation (2) we obtain that for infinitely many k a polynomial q and a
polynomial q,

Pr

 P (O) = P (O1) = P (O2),

where (P (O), O1, O2)← CLONE (1k, P (O), O)
and O ← OG(1k)

 > 1/p(k) · 1/q(k).

Hence it holds that for infinitely many k and a polynomial r def= p · q,

Pr

 P (O) = P (O1) = P (O2),

where (P (O), O1, O2)← CLONE (1k, P (O), O)
and O ← OG(1k)

 > 1/r(k).

38

This implies by the definition of unique object systems (Definition 5.2) that OS is no unique
object system, which is at odds with the contradiction assumption. Therefore it provides the
sought contradiction and completes the proof.

We are now in a position to prove the main theorem.

Theorem 6.10 (Main Theorem). Let U be a universe, and T be a technology in that universe.
Let DSS be a ϕ-secure signature scheme in T , and let OS be a unique object system in T .
Then, the standard labeling scheme from DSS and OS, SL(OS,DSS), is a secure labeling
scheme in T .

Proof. We lead the proof by contradiction, assuming that DSS is a ϕ-secure signature scheme
in T and that OS is a unique object system in T , but that SL(OS,DSS) is not a secure labeling
system in T . By use of lemma 6.9 this is equivalent to the following contradiction assumption:

Contradiction Assumption: DSS is a ϕ-secure signature scheme in T , OS is a p-UOS
in T , and LS def= SL(OS,DSS) is not a secure labeling scheme in T .

The assumption that LS is no secure labeling scheme in T implies the following:

Statement (1): There is a probabilistic polynomial ϕ-TM FAKE in T and polynomials
p, q such that for infinitely many n,

Pr

 T (t, L′i) = 1 for i = 1, . . . , p(n) + 1
where (L′1, . . . , L

′
p(n)+1)← FAKE (L1, . . . , Lp(n)),

L1 ← LG(s), . . . , Lp(n) ← LG(s) and (s, v)← C(1n)

 ≥ q(n),

where the probability is taken over the random outputs of C, P , T and FAKE .

A short outline of the further proof is as follows. Lemma 6.7 tells us that if FAKE is suc-
cessful, then there is either a cloned object or a new digital signature among the faked labels
L1, . . . , Lp(n)+1. Hence, searching the output of FAKE for a cloned object or a new signature
will enable us to “break” the signature scheme DSS or the p-unique object system OS. If
either of them is broken and hence insecure, however, then we are at odds with the contra-
diction assumption, which provides a contradiction and completes the proof.

Still, the formal realization of this argument requires considerable technical effort. One reason
is that Lemma 6.7 only speaks about one single output of FAKE. Contrary to that, the se-
curity definitions of signature schemes and unique object systems are asymptotic, whence we
have to consider infinitely many outputs. The other reason is that the adversarial models for
ϕ-secure signature schemes and unique object systems differ. In the case of signature schemes
the adversary may act adaptively: It can choose the newly queried signatures in dependence
of the signatures queried earlier. This setting enforces that the attacker is modelled as an
oracle probabilistic ϕ-TM. In opposition to that, the input for an attack on a unique object
systems is chosen non-adaptively uniformly at random, whence the attacker is modelled as
a normal ϕ-TM. Therefore, the earlier idea to let one single machine search the output of
FAKE and to let this machine either break the signature scheme or the unique object system
– depending on the output of FAKE – will not work. Such a machine would either fail to
meet the formal attack model for signature schemes or the attack model for unique object
system.

39

Hence, we will construct two separate machines SIGBR and CLONE instead (one of them
equipped with an oracle, the other one not). SIGBR will be equipped with a signature oracle
and will try to break the ϕ-security of the signature scheme DSS. CLONE will have no
signature oracle and will try to break the unique object system. The sought contradiction
will be reached if we can infer that under the premise of statement (1), one of the machines
must be successful with significant probability. This can be achieved by application of Lemma
6.7 and some further probability analysis of SIGBR and CLONE.

We will now formally introduce the machines SIGBR and CLONE, starting with the latter.

Machine CLONE :

Input
(
1k, P (O1), O1, . . . , P (Op(k)), Op(k)

)
Set (s, v)← G(1k)

Set Si ← Sig(s, P (Oi)) for i = 1, . . . , p(k)

Set Li ← (P (Oi), Si, Oi) for i = 1, . . . , p(k)

Set (L′1, . . . , L
′
p(k)+1)← FAKE (L1, . . . , Lp(k))

If {Pro(Li) | i = 1, . . . , p(k)} = {Pro(L′i) | i = 1, . . . , p(k) + 1}
then proceed, else output “failure” and abort.

Output
(
Obj(L′1), . . . ,Obj(L′p(k)+1)

)

p-CLONE in effect does the following: It takes as input p(k) objects O1, . . . , Op(k) and tries
to produce a copy of one of these objects (recall that we are considering p-unique object
systems by virtue of Lemma 6.9). To that purpose, it wants to utilize the ϕ-TM FAKE
trying to feed the objects Oi into FAKE in order to be copied. The problem is, however, that
FAKE takes labels, not objects as inputs. p-CLONE hence has to turn the objects Oi into
labels Li. This can be done by imitating the label generation process of the standard labeling
scheme: p-CLONE simply generates a signature key at random and produces signatures for
the properties P (Oi) of the objects Oi. Then, it sets the labels Li

def= (P (Oi), Sig(s, P (Oi), Oi)
and feeds the generated labels into FAKE. In return, FAKE outputs k+1 labels L′1, . . . , L′k+1.

If they are all valid labels, then we know by Lemma 6.7 that either one new signature for a
new object has been produced by FAKE, which does not help the algorithm CLONE, and it
outputs a failure notice. Or, one of the objects O1, . . . , Ok has been copied. This does help
the algorithm CLONE, and it outputs that object together with its copy.

The machine SIGBR whose aim is to break the signature scheme by utilizing FAKE can
be constructed along similar lines. Contrary to p-CLONE, however, SIGBR hopes that the
output of FAKE contains a faked signature, not a cloned object. If that is the case, SIGBR
can output a faked signature; otherwise, it outputs a failure notice.

According to the adaptive attack scenario for ϕ-secure signature schemes, SIGBR is provided
with a signing oracle Ss. For any queried string x this oracle returns the string SOs(x), where

40

SOs(x) def= Sig(s, x), where Sig is the signing algorithm of DSS and s is the corresponding
signing key.

Machine SIGBR:

Input (1k, v)

Set (P i(Oi), Oi)← OG(1k) for i = 1, . . . , p(n)

Set Si ← SOs(P i(Oi)) for i = 1, . . . , p(n)

Set Li ← (P i(Oi), Si, Oi) for i = 1, . . . , p(n)

Set (L′1, . . . , L
′
p(n)+1)← FAKE (L1, . . . , Lp(n))

If ∃ i0 ∈ {1, . . . , p(n) + 1} :

(
Ver (v,Pro(L′i0),Sig(L′i0)) = 1
and @ j ∈ 1, . . . , p(n) : Pro(L′i0) = Pro(Lj)

)
then proceed, else output “failure” and abort

Output (Pro(L′i0),Sig(L′i0))

We will now analyse the success probabilities of SIGBR and CLONE in dependency of the
success probability of FAKE. It holds for any k ∈ N that

Pr

 T (t, L′i) = 1 for i = 1, . . . , p(k) + 1
where (L′1, . . . , L

′
p(k)+1)← FAKE (L1, . . . , Lp(k)),

L1 ← LG(s), . . . , Lp(k) ← LG(s) and (s, v)← C(1k)



= Pr


T (t, L′i) = 1 for i = 1, . . . , p(k) + 1
and T (t, Li) = 1 for i = 1, . . . , p(k)

where (L′1, . . . , L
′
p(n)+1) ← FAKE (L1, . . . , Lp(k)),

L1 ← LG(s), . . . , Lp(k) ← LG(s) and (s, v)← C(1k)



= Pr



(
∃ i 6= j, l : M

(
Par(Ll),Obj(L′i)

)
=

= M (Par(Ll),Obj(L′j)) = M
(
Par(Ll),Obj(Ll)

))
or

(
∃i : Ver

(
(v,Pro(L′i),Sig(L′i)

)
= 1

and @j : Pro(L′i) = Pro(Lj)

)
where (L′1, . . . , L

′
p(k)+1)← FAKE (L1, . . . , Lp(k)),

L1 ← LG(s), . . . , Lp(k) ← LG(s) and (s, v)← C(1k)


(because of Lemma 6.7)

≤ Pr


∃ i 6= j, l : M (Par(Ll),Obj(L′i)) =

= M (Par(Ll),Obj(L′j)) = M (Par(Ll),Obj(Ll))

where (L′1, . . . , L
′
p(k)+1)← FAKE (L1, . . . , Lp(k)),

L1 ← LG(s), . . . , Lp(k) ← LG(s) and (s, v)← C(1k)



41

+ Pr


∃i : Ver

(
(v,Pro(L′i),Sig(L′i)

)
= 1

and @j : Pro(L′i) = Pro(Lj)
where (L′1, . . . , L

′
p(k)+1)← FAKE (L1, . . . , Lp(k)),

L1 ← LG(s), . . . , Lp(k) ← LG(s) and (s, v)← C(1k)


(because P (A ∪B) ≤ P (A) + P (B))

= Pr

[
CLONE

(
1k, P (O1), O1, . . . , P (Op(k)), Op(k)

)
6= “failure′′

where Oi ← OG(1k) for i = 1, . . . , p(k)

]

+ Pr

[
SIGBR (1k, v) 6= “failure′′

where (s, v)← C(1k)

]
(because of the design of SIGBR and CLONE)

Hence, we obtain from statement (1) that there is a polynomial q such that for infinitely many
k,

Pr

[
CLONE

(
1k, P (O1), O1, . . . , P (Op(k)), Op(k)

)
6= “failure′′

where Oi ← OG(1k) for i = 1, . . . , p(k)

]

+ Pr

[
SIGBR (1k, v) 6= “failure′′

where (s, v)← C(1k)

]

≥ Pr

 T (t, L′i) = 1 for i = 1, . . . , p(k) + 1
where (L′1, . . . , L

′
p(k)+1)← FAKE (L1, . . . , Lp(k)),

L1 ← LG(s), . . . , Lp(k) ← LG(s) and (s, v)← C(1k)


(by the previous calculation)

> 1/q(k)

(by statement (1)).

This implies that for infinitely many k,

Pr

[
CLONE (1k, P (O1), O1, . . . , P (Op(k), Op(k)) 6= “failure′′

where Oi ← OG(1k) for i = 1, . . . , p(k)

]
> 1/q(k)

or

Pr

[
SIGBR (1k, v) 6= “failure′′

where (s, v)← C(1k)

]
> 1/q(k).

Therefore we obtain by the definitions of ϕ-secure signature schemes and p-unique object sys-
tems (Def. 4.5 and 6.8) that OS is no p-unique object system or DSS is no secure signature

42

scheme.

This is at odds with the contradiction assumption, which states that both OS is a p-unique ob-
ject system and DSS is a secure signature scheme. Hence it provides the sought contradiction
and completes the proof.

7 Summary
We introduced Physical Turing Machines (or PhTMs or ϕ-TMs, for short) as a new compu-
tational model, and discussed their applications to the formalization of classical and physical
cryptography. We suggested that PhTMs could be a suitable tool to formalize classical cryp-
tography in such a way that physical computations by the adversary (quantum, optical, etc.)
and perhaps even side channel attacks are included. We sketched a few new, adjusted defini-
tions in order to illustrate our point, but kept this part of our treatment relatively short.

A topic we addressed in greater detail was the formalization of physical cryptography. In
particular, we formalized a standard scheme from physical cryptography, which concerns the
generation of forgery proof physical labels (tags/markers) by use of so-called unique objects
in combination with digital signature schemes. We used PhTMs as a basis to formally define
the relevant notions of a unique object system and a labeling scheme, and led a reductionist
security proof. PhTMs provide a formal computational model for this proof, and, if you like,
serve as its “formal backbone”. Our proof states that the security of the labeling scheme can
be reduced to the assumptions that the employed digital signature scheme and unique object
system are secure.

One central ingredient in our model is the concept of a “technology”. A technology is a
set of functions that maps numbers and objects to numbers and objects, and which subsumes
the current state of human technology and craftsmanship at a given point in time. The use of
technologies in our model can help us to find a balance between the following two extremes:
(i) Allowing currently unrealistic actions and computations (such as practically allowing all
theoretically feasible quantum computations, which would allow for factoring arbitrarily large
numbers in polynomial time), and (ii) ignoring all physical actions and physical computations
in the formalization of cryptography. It turns out that it is not necessary in a reductionist
proof to exactly specify the technology. PhTM nevertheless, i.e. without such a specification,
allow proofs of statements of the following form: If scheme A is secure against attacks with
current technology, and scheme B is secure against attacks with current technology, then so
is scheme C (which is built from A and B).

Another noteworthy aspect of the presented model of PhTMs is their asymptotic character.
While the objects used in physical cryptography (such as Physical Unclonable Functions
(PUFs) or Unique Objects) are finite physical systems with a finite number of atoms and a
finite number of input–output pairs, the traditional treatment of cryptographic security is
based on inherently asymptotic concepts, such as polynomial time and negligible probability.
Reconciling these two finite and infinite worlds can be difficult; it has led to formal problems
in several early PUF definitions, which have been discussed in several well-known publications
on the foundations of PUFs.

One quite obvious problem in this area is the consistent definition of a “physical generator”,
which could serve as an analog to the generators in classic cryptography, for example in
the formalization of digital signature schemes. Such a physical generator should take as
input a number of the form 1k, and output those physical objects that are used in physical
cryptography (Unique Objects, PUFs, etc.) of ever growing size depending on k. If such a
generator is just said to be a finite physical “device” or “machine” — how can a finite device of
finite mass produce objects of growing size, whose mass will eventually exceed the mass of the

43

device itself? This observation poses a problem for any formalization attempts on physical
cryptography. PhTMs and their inherently asymptotic nature could potentially help us to
overcome these problems.

Future Work. Several suggestive lines of future work arise from the presented material.
One example would be to further investigate how PhTMs could be applied to formalize the
security of hardware implementation of classical cryptographic schemes, for example against
invasive and side channel attacks. Due to their asymptotic nature, PhTMs could probably
reconcile the gap between a finite physical system/implementation on the one hand, and the
traditionally asymptotic security notions of cryptographic schemes on the other hand. They
might allow us to lead reductionist proof for the general security of hardware tokens that
could both span over the mathematical security of the implemented scheme and the physical
security of the hardware implementation.

Another natural step would be the formalization of further schemes from physical cryp-
tography by PhTMs. Examples could be several recent protocols for Physical Unclonable
Functions and related primitives, including identification, message authentication, key ex-
change, or oblivious transfer.

Acknowledgements
We would like to thank Stefan Katzenbeisser, Sven Kosub, Ulf Schlichtmann, Georg Sigl,
Helmuth Veith, and Stefan Wolf for useful discussions on Physical Turing Machines and/or
on this manuscript.

44

References
[1] R. Pappu, B. Recht, J. Taylor, N. Gershenfeld, Physical One-Way Functions, Science,

vol. 297, pp. 2026-2030, 20 September 2002.

[2] R. Pappu, Physical One-Way Functions, PhD Thesis, MIT.

[3] J.-W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas: A technique to
build a secret key in integrated circuits with identification and authentication applications.
In Proceedings of the IEEE VLSI Circuits Symposium, June 2004.

[4] B. Gassend, D. Lim, D. Clarke, M. v. Dijk, S. Devadas: Identification and authentication
of integrated circuits. Concurrency and Computation: Practice & Experience, pp. 1077 -
1098, Volume 16, Issue 11, September 2004.

[5] Andrew Chi-Chih Yao: Classical physics and the Church-Turing Thesis. Journal of the
ACM 50(1), 100-105, 2003.

[6] Blaise Gassend, Physical Random Functions, MSc Thesis, MIT, 2003.

[7] Daihyun Lim: Extracting Secret Keys from Integrated Circuits. MSc Thesis, MIT, 2004.

[8] Scott Aaronson: NP-complete Problems and Physical Reality. Electronic Colloquium on
Computational Complexity (ECCC), 026, 2005.

45

