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Abstract

Universal composability (or UC security) provides very strong security guarantees for pro-
tocols that run in complex real-world environments. In particular, security is guaranteed to
hold when the protocol is run concurrently many times with other secure and possibly insecure
protocols. Commitment schemes are a basic building block in many cryptographic construc-
tions, and as such universally composable commitments are of great importance in constructing
UC-secure protocols. In this paper, we construct highly efficient UC-secure commitments from
the standard DDH assumption, in the common reference string model. Our commitment stage
is non-interactive, has a common reference string with O(1) group elements, and has complexity
of O(1) exponentiations for committing to a group element (to be more exact, the effective cost
is that of 23 1

3 exponentiations overall, for both the commit and decommit stages). We present
a construction that is secure in the presence of static adversaries, and a construction that is
secure in the presence of adaptive adversaries with erasures, where the latter construction has
an effective additional cost of just 51

3 exponentiations.

1 Introduction

Background – universal composability and efficiency. Modern cryptographic protocols are
run in complex environments. Many different secure and insecure protocols are executed concur-
rently, and some protocols may have been designed specifically to attack others [14]. The classic
definitions of security that consider stand-alone executions only do not guarantee security in mod-
ern real-world setting. Universal composability (or UC security) is a definitional framework that
guarantees security even if the protocol is run concurrently with arbitrarily many other secure and
insecure protocols, and even if related inputs are used. More specifically, a UC-secure protocol
behaves like an ideal execution (where an incorruptible trusted party carries out the computation
for the parties) no matter what other protocols are being run by the honest parties at the time.

The UC-framework models the real-world execution environment in a far more realistic way
than the classic stand-alone definitions. As such, one would expect the framework to be adopted
by practitioners and those interested in implementing cryptographic protocols that could be run in
practice. In the setting of key exchange this is indeed the case. For just two examples, the SIGMA
family of key exchange protocols that are part of IKE (the standardized Internet key exchange
protocol) and the HMQV protocol have been proven secure in the UC-framework [5, 16]. However,
beyond key exchange, there seems to have been little interest in UC-security from the applied
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cryptographic community. (We stress that this is in contrast to the recent growing interest in
implementations of general and specific protocols for secure two-party and multiparty computation;
see [18, 2, 24, 21, 20] for just a few examples.) There are a number of reasons for this. We believe
that one of the primary reasons is the lack of efficient UC-secure primitives, the exception being
UC-secure oblivious transfer [23]. Given this state of affairs, it is very difficult to construct efficient
UC-secure protocols that can be reasonably implemented.

UC commitments. Commitment schemes are one of the most basic building blocks for crypto-
graphic protocols. A commitment scheme is made up of two phases: a commit phase in which a
committer commits to a value while keeping it hidden, and a decommit phase in which the commit-
ter reveals the value that it previously committed to. The binding property of a commitment states
that the committer is bound to a single value after the commit phase and can only decommit to that
value; the hiding property states that the receiver learns nothing about the committed value until
it is revealed. As such, a commitment scheme has been intuitively described as a digital envelope
containing the committed value: once the envelope has been closed the committer cannot change
the value, and until the envelope is opened the receiver cannot learn what is inside. Despite this
appealing description, regular commitments do not behave in this way. For just one example, they
may be malleable (e.g., it may be possible to generate a commitment to 2x from a commitment to
x, without knowing x). In contrast, UC-secure commitments are non-malleable, cannot be copied,
and are guaranteed to remain secure irrespective of whatever other protocols are run.

Commitment schemes that are secure in the UC-framework were first presented by Canetti and
Fischlin in [4]. They also showed that it is impossible to construct UC commitments in the plain
model, and thus some setup like a common reference string is required. The commitment schemes
of [4] have the property that O(1) asymmetric operations are needed for every bit committed to.
Soon after, Damg̊ard and Nielsen [10] presented UC commitments with the property that O(1)
exponentiations are sufficient for committing to an entire string (that can be mapped into a group
element). This is a significant improvement. However, the Damg̊ard-Nielsen construction suffers
from a few drawbacks. First, it requires a common reference string that grows linearly with the
number of parties in the system; specifically, one group element is needed for every party. This is a
significant obstacle in implementations because it means that it is not possible to publish a single
common reference string that can then be used by arbitrary parties who wish to run the protocol.
Second, the Damg̊ard-Nielsen constructions are based on the N -residuosity and p-subgroup as-
sumptions. These are less established assumptions than RSA and DDH, for example. Furthermore
the N -residuosity assumption, which has become accepted since its introduction in [22], suffers
from a significant computational overhead. This is due to the fact that exponentiations are mod-
ulo N2 (at least) and thus a modulus N of size 1536 – which is needed for reasonable security
– results in exponentiations modulo a number of length 3072 bits. In contrast, basic discrete log
exponentiations can be run in Elliptic curves of size 224 or 256 bits and are significantly faster. In
cryptographic protocols where many UC commitments are needed (see below for an example), this
can be a real obstacle. Following [10], Damg̊ard and Groth [9] presented UC commitments based
on the strong RSA assumption with a CRS of fixed length. However, it seems that the concrete
cost of [9] is considerably greater.1 We stress, however, that the commitment schemes of [10, 9]
provide full adaptive security without erasures, something that is not achieved by this paper.

1It is hard to make a concrete comparison without actually implementing the scheme since one step is to find the
smallest prime greater than 2k · c where c is an element of Z∗

N and k is the bit-length of N . The cost of this step is
incomparable to that of exponentiations, and seems to be very expensive.
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Our results. We present a conceptually simple and efficient protocol for UC-secure commitments
in the common reference string model that is based on the DDH assumption. Our protocol requires
O(1) regular group exponentiations and has a common reference string with O(1) group elements
for any number of parties. In addition, we have a version that provides security in the presence
of adaptive adversaries with erasures that has only slightly additional cost. A comparison of our
result with the construction of [10], which is the previous most efficient, yields the following:

• Assumptions: We rely on the standard DDH assumption, while Damg̊ard-Nielsen rely on the
N -residuosity or p-subgroup assumptions.

• Common reference string (CRS): Our common reference string contains a description of the
discrete log group, its order and 7 group elements, and can be used by any number of parties.
Thus, a single CRS can be published for all to use. In contrast, Damg̊ard-Nielsen need a CRS
with a single (ring or group) element for every party in the system.

• Efficiency: Our protocol has a non-interactive commitment phase with just 5 exponentia-
tions to be computed by the committer. The decommit phase is interactive and requires both
parties overall to compute 21 exponentiations. Using optimizations for computing multi-
exponentiations of the form gr · hs the overall cost in both phases is 231

3 regular DDH ex-
ponentiations. In contrast Damg̊ard-Nielsen have an interactive commitment phase with 10
large modulus exponentiations and a non-interactive decommit phase requiring 4 exponenti-
ations.2 Based on experiments, we estimate that our commitment scheme is approximately
25–30 times faster than the scheme of Damg̊ard-Nielsen. (This estimate is not based on an
implementation of the schemes, but rather a comparison of the time taken to compute 14
exponentiations modN2 with a modulus N of size 2048 bits versus 231

3 Elliptic curve “ex-
ponentiations” over a field of size 256 bits, using the Crypto++ library [26]. When using
a modulus N of size 1536 bits versus a curve over a field of size 224 bits, our scheme is
approximately 20 times faster.)

• Adaptive security: The Damg̊ard-Nielsen construction is secure for adaptive corruptions with-
out erasures, whereas our construction is only secure in the presence of adaptive corruptions
with erasures. (In the model with erasures, the adversary can choose to corrupt parties over
time, but an honest party can follow erase instructions and it is assumed that once data is
erased it cannot be retrieved by the adversary if it later corrupts the party. This is easier to
achieve than adaptivity without erasures.) The additional cost of achieving adaptive security
with erasures is just 51

3 exponentiations, yielding a total of 282
3 . In this case, however, the

majority of the work is in the commitment stage and not in the decommitment stage.

An example – UC zero-knowledge from Sigma-protocols. Since our efficiency improve-
ment over prior work is concrete and not asymptotic, we demonstrate its potential significance
in implementations. We do this by considering the ramification of our efficiency improvement on
constructions of efficient UC-secure zero-knowledge protocols. Many, if not most, useful efficient
zero-knowledge protocols are based on Sigma protocols; see Appendix A. In the stand-alone case,
transformations from Sigma protocols to zero-knowledge and zero-knowledge proofs of knowledge
are highly efficient, requiring only a few additional exponentiations; see [11, Section 6.5]. Unfortu-
nately, no such efficient analogue is known for achieving UC zero-knowledge from Sigma protocols.

2The question of whether there is more cost in the commitment or decommitment phase is significant in protocols
of the cut-and-choose type where many commitments are sent and only some of them opened. In such cases, it is
preferable to use a commitment scheme with a faster commitment phase.
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Rather, it is necessary to repeat the Sigma protocol L times in order to achieve a soundness error
of 2−L. In addition, 3 UC-commitments are needed for each repetition (but only two are opened);
see [13] and [17, App. C] for a description of the transformation. Setting L = 40 for a reasonable
soundness error, we have that 120 UC commitments are needed for the transformation. Assuming
47 milliseconds for our scheme and 1.35 seconds for Damg̊ard Nielsen (based on estimates using
the Crypto++ library), we have that the additional overhead resulting from the UC commitments
is 5.6 seconds for our protocol versus 162 seconds for Damg̊ard-Nielsen (the difference is actually
even greater since 40 of the 120 commitments are not opened; see Footnote 2). We conclude that
in protocol implementations the efficiency improvement gained by using our new UC commitment
protocol can be definitive.

2 Preliminaries and Definitions

Preliminaries. We denote the security parameter by n. A function µ is negligible if for ev-
ery polynomial p there exists an integer N such that for every n > N it holds that µ(n) <
1/p(n). Two distribution ensembles {X(n, a)}n∈N,a∈{0,1}∗ and {Y (n, a)}n∈N,a∈{0,1}∗ are computa-

tionally indistinguishable, denoted {X(n, a)} c≡ {Y (n, a)}, if for every non-uniform polynomial-time
distinguisher D there exists a negligible function µ such that for all a ∈ {0, 1}∗ and n ∈ N,
|Pr[D(X(n, a)) = 1]− Pr[D(Y (n, a)) = 1]| ≤ µ(n). We write {X(n, a)} ≡ {Y (n, a)} if the distri-
butions are identical.

Universal composability [3]. Universal composability is a definition of security that considers
a stand-alone execution of a protocol in a special setting involving an environment machine Z, in
addition to the honest parties and adversary. As with the classic definition of secure computation,
ideal and real models are considered where a trusted party carries out the computation in the
ideal model and the real protocol is run in the real model. The environment adaptively chooses
the inputs for the honest parties, interacts with the adversary throughout the computation, and
receives the honest parties’ outputs. Security is formulated by requiring the existence of an ideal-
model simulator S so that no environment Z can distinguish between the case that it runs with
the real adversary A in the real model and the case that it runs with the ideal-model simulator S
in the ideal model.

In slightly more detail, we denote by idealF ,SA,Z(n, z) the output of the environment Z with
input z after an ideal execution with the ideal adversary (simulator) S and functionality F , with
security parameter n. We will only consider black-box simulators S, and so we denote the simulator
by SA meaning that it works with the adversary A attacking the real protocol. Furthermore, we
denote by realπ,A,Z(n, z) the output of environment Z with input z after a real execution of
the protocol π with adversary A, with security parameter n. Our protocols are in the common
reference string (CRS) model. Formally, this means that the protocol π is run in a hybrid model
where the parties have access to an ideal functionality Fcrs that chooses a CRS according to the
prescribed distribution and hands it to any party that requests it. We denote an execution of π
in such a model by hybridFcrs

π,A,Z(n, z). Informally, a protocol π UC-realizes a functionality F in the
Fcrs hybrid model if there exists a probabilistic polynomial-time simulator S such that for every
non-uniform probabilistic polynomial-time environment Z and every probabilistic polynomial-time
adversary A, it holds that{

idealF ,SA,Z(n, z)
}
n∈N;z∈{0,1}∗

c≡
{
hybridFcrs

π,A,Z(n, z)
}
n∈N;z∈{0,1}∗

.
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The importance of this definition is a composition theorem that states that any protocol that is
universally composable is secure when run concurrently with many other arbitrary protocols; see [3]
for definitions and details.

UC commitments. The multi-commitment ideal functionality Fmcom, which is the functionality
that we UC realize in this paper, is formally defined in Figure 1.

FIGURE 1 (Functionality Fmcom)

Fmcom proceeds as follows, running with parties P1, . . . , Pm, a parameter 1n, and an adversary S:

• Commit phase: Upon receiving a message (commit, sid, ssid, Pi, Pj , x) from Pi

where x ∈ {0, 1}n−log2 n, record the tuple (ssid, Pi, Pj , x) and send the messages
(receipt, sid, ssid, Pi, Pj) to Pj and S. Ignore any future commit messages with the same
ssid from Pi to Pj .

• Reveal phase: Upon receiving a message (reveal, sid, ssid) from Pi: If a tuple
(ssid, Pi, Pj , x) was previously recorded, then send the message (reveal, sid, ssid, Pi, Pj , x)
to Pj and S. Otherwise, ignore.

The ideal commitment functionality

For technical reasons, the length of the committed value x is n − log2 n. It is defined in this
way because our commitment involves encrypting x together with the session identifiers sid, ssid
and the parties’ identities (i, j). Now, the encryption that we use is of a single group element
that is of length n, and so the combined length of x, sid, ssid, i, j must be n. We therefore define

each identifier and identity to be of size log2 n
4 ; this means that each comes from a superpolynomial

domain and so there are enough to ensure that the session identifiers do not repeat and each party
has a unique identity. Thus, taking x of size n− log2 n we have that the string (x, sid, ssid, i, j) is
of length n.

3 Efficient UC Commitments

3.1 Protocol Idea and Overview

Before describing the idea behind our construction, recall that a UC-secure commitment must be
both extractable (meaning that a simulator can extract the value that a corrupted party commits
to) and equivocal (meaning that a simulator can generate commitments that can be opened to any
value), without the simulator rewinding the adversary. In addition, the adversary must not be able
to generate commitments that are related to commitments generated by honest parties; thus, the
commitment must be essentially non-malleable. Our protocol is in the common reference string
(CRS) model; this is justified by the fact that UC commitments cannot be achieved in the plain
model [4].

The high-level idea behind our construction is as follows. The committer commits to a string by
encrypting it with a CCA2-secure encryption scheme Ecca, using a public-key pk1 that is found in
the common reference string (CRS). Observe that this enables extraction because when simulating
a protocol that is in the CRS model, the simulator is allowed to choose the CRS itself. Thus, it can
choose the public key so that it knows the corresponding private decryption key. This enables it
to decrypt and obtain the committed value. Next, in order to decommit, it is clearly not possible
to reveal the value and randomness used to encrypt, because encryptions are perfectly binding and
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so it is not possible to equivocate. Thus, in order to decommit, the committer instead sends the
committed value and then proves in zero knowledge that this is indeed the correct value. At first
sight, this approach may seem futile because in the UC setting it seems no easier to construct
UC zero-knowledge than UC commitments. Nevertheless, we observe that the proof need not be a
full fledged UC zero-knowledge protocol, and in particular there is no need to extract the witness
from the proof. Rather, the only property that we need is that it be possible to simulate without
rewinding. This is due to the fact that the extraction of the committed value already took place in
the commit stage and this proof is just to ensure that corrupted parties decommit to the same value
that they committed to. Thus, only soundness is necessary. (Of course, the ability for a simulator to
equivocate is due to its ability to run a zero-knowledge simulator and essentially lie about the value
committed to.) The proof that we use is based on a Sigma protocol (see Appendix A) and we make
it zero knowledge (without rewinding) by having the verifier first commit to its challenge and then
run the Sigma protocol with the verifier decommitting. In order to have a straight-line simulator we
make this commitment from the verifier be an encryption of the challenge under a different public
key pk2 in the CRS. As above, in the simulation the simulator can choose the public-key so that it
knows the corresponding private key, enabling it to extract the challenge from the verifier. Once it
has extracted the challenge, it can run the simulator for the Sigma protocol which is perfect and
straight line once given the verifier challenge. Although intuitively appealing, this is problematic
because soundness of this transformation from a Sigma protocol to a zero-knowledge proof can only
be proven if the commitment is perfectly hiding.3 But this then clashes with the requirement to
have the commitment be extractable. We solve this efficiently by using a dual mode cryptosystem
Edual, as introduced by [23],4 although we only need a simpler version. Such a cryptosystem has
a regular key generation algorithm and an alternative one, and has the property that it behaves
as a regular public-key encryption scheme when a regular key is generated, but perfectly hides the
encrypted value when an alternative key is generated. Furthermore, the regular and alternative keys
are indistinguishable. As we will see in the proof, this suffices for proving soundness, because at the
point where soundness is needed we no longer need to be able to extract the verifier’s challenge and
thus can replace the key in the common reference string by an alternative one. Note that a regular
key for Edual is used in a real protocol execution, and the ability to generate an alternative key is
used within the proof of security. (Note also that we cannot use this method for the actual UC
commitment because we need to simultaneously extract and equivocate.) This yields a template
for constructing UC commitments, as described in Protocol 1 below.

Before proceeding, we explain why the value x is committed to by encrypting it under an encryp-
tion scheme that is secure under adaptive chosen-ciphertext attacks (CCA2 secure). Specifically,
we have already discussed why some notion of non-malleability is needed, but CCA2-security is
stronger than NM-CPA (non-malleability under chosen plaintext attacks). In order to understand
why we nevertheless need CCA2 security, recall that a simulator must equivocate. Specifically, in

3It is tempting to think that this is only the case if a proof is needed, and not an argument. However, this is not the
case. Rather, the problem is that one needs to reduce the soundness of the zero-knowledge protocol to the security
of the commitment. That is, the reduction needs to say something like “if the adversary succeeds in proving an
incorrect claim then the commitment is of one kind, and otherwise it is of another kind” and thus breaking soundness
results in distinguishing commitments. However, such a reduction is doomed to failure because we only know if the
adversary succeeded in proving after decommitting, when there is no hiding property left.

4We use the formulation as it appears in [23], although the idea of having alternative keys that provide perfect
hiding or regular encryption goes back earlier. Two examples of where similar notions were defined are in [12, 15].
In fact, our construction of dual encryption is exactly the same as the ambiguous commitment used in [12].
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PROTOCOL 1 (UC-commitment template)

Common reference string: (pk1, pk2) where pk1 is the public-key of a CCA2-secure encryption
scheme, and pk2 is the public-key of a dual mode cryptosystem, as described above.

The commit phase:

1. The committer commits to x by encrypting it under pk1 and sending the ciphertext c =
Ecca

pk1
(x; r) to the receiver (i.e., it encrypts x using random coins r).

(Actually, x is encrypted together with a unique session identifier and the identities of the
parties, but we ignore these details here.)

The decommitment phase:

1. The committer sends x to the receiver (without revealing r)

2. Let (α, ε, z) denote the message of a Sigma protocol for proving that c is an encryption of
x (using witness r).

(a) The receiver sends c′ = Edual
pk2

(ε; r′)

(b) The committer sends α

(c) The receiver decommits to ε by sending ε and r′

(d) The committer checks that c′ = Edual
pk2

(ε; r′) and if yes, computes the reply z for the
Sigma protocol, based on (α, ε)

(e) The receiver outputs x as the decommitted value if and only if (α, ε, z) is an accepting
Sigma-protocol transcript

the simulation in the ideal model, the simulator receives commitment receipts that contain no infor-
mation about the committed value. However, in the real world, the adversary receives encryptions
of the actual committed value. Thus, whenever it receives a commitment receipt, the simulator
encrypts 0 and hands it to the real-world adversary. Later, when the commitment is opened and
the simulator learns that it was to a value x, it cheats in the Sigma protocol and “proves” that
the encryption of 0 was actually an encryption of x. In order to prove that encrypting 0 (as the
simulator does) and encrypting x (as an honest party does) makes no difference, it is necessary to
reduce this to the security of the encryption scheme. In such a reduction, an adversary attacking
the encryption scheme simulates the UC commitment execution such that if it received encryptions
of 0 then the result should be the same as the ideal simulation, and if it received encryptions of
real values x then the result should be the same as a real execution with honest parties and the
real adversary. To be more exact, this reduction is carried out by running the simulator for the
UC commitment scheme and using challenge ciphertexts obtained in the encryption game instead
of the simulator generating commitments itself. Of course, in this reduction the simulator does not
choose the CCA2-secure public key to place in the CRS but rather places the public-key that it
receives as part of the encryption distinguishing game. However, as we have already discussed, the
simulator must also be able to extract committed values generated by the adversary by decrypting,
at the same time as we carry out this reduction. This brings us to the crux of the problem which is
that it can only carry out this decryption because it knows the private key, and so it cannot decrypt
when proving the reduction. This problem is solved by using CCA2-secure encryption because now
in the distinguishing game the adversary is allowed to ask for decryptions of ciphertexts, and so
the simulator can decrypt the commitments from the adversary, as required.

7



Efficient implementations. It remains to describe how all of the elements of the protocol can
be efficiently implemented. First, we use the Cramer-Shoup (CS) encryption scheme [7] as the
CCA2-secure encryption scheme. This scheme is defined as follows:

• CS key generation: Let (G, q, g1, g2) be such that G is a group of order q and g1, g2 are two
distinct generators. Choose x1, x2, y1, y2, z ∈R Zq at random and compute c = gx1

1 gx2
2 , d =

gy11 gy22 and h = gz1 . The public key is (G, q, g1, g2, c, d, h) and the secret key is (x1, x2, y1, y2, z).

• CS encryption: Let m ∈ G. Then, in order to encrypt m, choose a random r ∈R Zq,
compute u1 = gr1, u2 = gr2, e = hr ·m, ω = H(u1, u2, e) where H is a collision-resistant hash
function, and v = (c · dω)r. The ciphertext is (u1, u2, e, v).

• CS decryption: Compute ω = H(u1, u2, e). If ux1
1 · ux2

2 · (uy11 · uy22 )ω = v, then output
m = e/(uz1).

The crucial observation that we make is that in order to verify that a ciphertext (u1, u2, e, v) is a
valid encryption of a message m, it suffices to prove that there exists a value r ∈ Zq such that

u1 = gr1, u2 = gr2,
e

m
= hr, and v = (cdω)r.

Furthermore, since ω can be computed publicly from the public-key and ciphertext, all the values
except for r are public. Thus, we have that in order to prove that a ciphertext encrypts some given
value m, we just need to run a proof that 4 values have the same discrete log with respect to their
respective bases. Highly efficient Sigma protocols exist for this task (this is the same as proving
that a tuple is of the Diffie-Hellman form). Thus, the CCA2-secure encryption scheme together
with the required proof can both be implemented very efficiently.

It remains to show how a dual-model encryption scheme can be efficiently implemented. We
essentially use the construction of [23], but we need only their basic cryptosystem and not their
full dual-mode one. Specifically, we need the ability to construct a fake public-key that is indistin-
guishable from a regular one, so that if encryption is carried out under this key, then the encrypted
value is perfectly hidden. Such an encryption scheme can be constructed at double the cost of El
Gamal as follows:

• Dual regular key generation: Let (G, q, g1, g2) be as above. Choose ρ ∈R Zq and compute
h1 = gρ1 and h2 = gρ2 . The public key is (G, q, g1, g2, h1, h2), and the private key is ρ.

• Dual alternative key generation: As above, except choose ρ1, ρ2 ∈R Zq with ρ1 ̸= ρ2 and
compute h1 = gρ11 and h2 = gρ22 .

• Dual encryption: To encrypt m ∈ G, choose random R,S ∈ Zq and compute u = gR1 · gS2
and v = hR1 · hS2 ·m. The ciphertext is c = (u, v).

• Dual decryption: To decrypt (u, v), compute m = v/uρ.

Decryption works just like in El Gamal and the alternative keys are indistinguishable from regular
keys by the DDH assumption. In addition, when encrypting under an alternative key, the message
m is perfectly hidden. This is due to the fact that u = gR1 · gS2 and v = gRρ1

1 · gSρ22 · m.

Letting g2 = gw1 for some w, we have that u = gR+wS
1 and v = gRρ1+wSρ2

1 . Considering the matrix(
R wS
Rρ1 wSρ2

)
we have that its determinant equals RwSρ2 − RwSρ1 = RwS(ρ2 − ρ1) which
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equals 0 if and only if ρ1 − ρ2 = 0. However, ρ1 ̸= ρ2 mod q and thus the equations are linearly
independent. This implies that u and v are uniformly distributed in G, over the choice of R and S.
Thus, for every m ∈ G there exist R,S ∈ Zq such that (u, v) is an encryption of m with randomness
R and S. This implies that m is perfectly hidden.

3.2 The Actual Protocol

The full specification of our commitment scheme appears in Protocol 2.

PROTOCOL 2 (UC-Secure Commitment Protocol)

Common reference string: (G, q, g1, g2, c, d, h, h1, h2) where G is a group of order q with
generators g1, g2, and c, d, h ∈R G are random elements of G, and h1 = gρ1 , h2 = gρ2 for a random
ρ ∈R Zq. (Note that (G, q, g1, g2, c, d, h) is a Cramer-Shoup public key, and (G, q, g1, g2, h1, h2) is
the regular public key of a dual-mode encryption scheme.)
Let G(y) be a mapping of a string y ∈ {0, 1}n to G, and assume that G−1 is also efficiently
computable.

The commit phase: Upon input (commit, sid, ssid, Pi, Pj , x) where x ∈ {0, 1}n−log2 n and

sid, ssid ∈ {0, 1}log2 n/4, party Pi works as follows:

1. Pi computes m = G(x, sid, ssid, i, j). (The identities i, j can be mapped to {0, 1}log2 n/4

and so overall (x, sid, ssid, i, j) is an n-bit string.)

2. Pi chooses a random r ∈R Zq, computes u1 = gr1, u2 = gr2, e = hr ·m, ω = H(u1, u2, e) and
v = cr · drω, where H is a collision-resistant hash function (formally, the key for the hash
function can appear in the CRS; we ignore this for simplicity).

3. Pi sets c = (u1, u2, e, v), and sends (sid, ssid, c) to Pj .

4. Pj stores (sid, ssid, Pi, Pj , c) and outputs (receipt, sid, ssid, Pi, Pj). Pj ignores any later
commitment messages with the same (sid, ssid) from Pi.

The decommit phase:

1. Upon input (reveal, sid, ssid, Pi, Pj), party Pi sends (sid, ssid, x) to Pj

2. Pj computes m = G(x, sid, ssid, i, j)

3. Proof of committed value: Pi proves to Pj that m is the encrypted value. This is equivalent
to Pi proving that there exists a value r such that

u1 = gr1, u2 = gr2,
e

m
= hr, and v = (cdω)r

The proof is carried out as follows:

(a) Pj sends (sid, ssid, c′) to Pi, where c′ = (gR1 · gS2 , hR
1 · hS

2 ·G(ε)) is a commitment to a
random challenge ε ∈R {0, 1}n, and R,S ∈R Zq.

(b) Pi computes α = gs1, β = gs2, γ = hs and δ = (cdω)s, and sends (sid, ssid, α, β, γ, δ)
to Pj .

(c) Pj sends the decommitment (sid, ssid,R, S, ε) to the challenge to Pi.

(d) Pi verifies that c
′ = (gR1 · gS2 , hR

1 · hS
2 ·G(ε)). If no, Pi aborts. Otherwise, Pi computes

z = s+ εr and sends (sid, ssid, z) to Pj .

(e) Pj outputs (reveal, sid, ssid, Pi, Pj , x) if and only if

gz1 = α · uε
1, gz2 = β · uε

2, hz = γ ·
( e

m

)ε

, and (cdω)z = δ · vε
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The proof carried out in the decommitment phase is based on a Sigma protocol for Diffie-
Hellman tuples. Regarding completeness of this proof, observe that if Pi is honest, then gz1 =
gs+εr
1 = gs1 · (gr1)ε = α · uε1, gz2 = gs+εr

2 = gs2 · (gr2)ε = β · uε2, hz = hs+εr = hs · (hr)ε = γ ·
(

e
m

)ε
, and

(cdω)z = (cdω)s+εr = (cdω)s · ((cdω)r)ε = (cdω)s · (crdrω)ε = δ · vε.
Concrete efficiency: The cost of the protocol in the number of exponentiations (all other
operations are insignificant) is as follows:

1. Pi computes 5 exponentiations in order to generate the commitment, and 8 exponentiations in
the decommit phase (note that 4 of these exponentiations are in order to verify the challenge ε
from Pj , and since cdω was already computed in the commit stage only a single exponentiation
is needed for δ).

2. Pj computes 0 exponentiations in the commit phase, and 13 exponentiations in the decommit
phase.

Overall, the parties compute 26 exponentiations. Observe that Pi can preprocess all but 6 of its
exponentiations. This is because it can compute gr1, g

r
2, h

r, cr, dr and gs1, g
s
2, h

s, cs, ds before m and
thus ω is known. Once (x, sid, ssid, Pi, Pj) is given and thus m can be computed, Pi just needs
to compute (dr)ω to finish the commitment and (ds)ω to finish the first message of the decommit
stage. Finally, it needs 4 more exponentiation to verify the ε sent by Pj Likewise, Pj can preprocess
4 of its exponentiations by generating c′ ahead of time. We conclude that the protocol requires
26 exponentiations overall, but using preprocessing the committer Pi needs to compute only 6
exponentiations and the receiver Pj needs to compute only 9 exponentiations. In addition, the
computations gR1 · gS2 and hR1 · hS2 needed for computing and verifying the encryption of ε can
be computed at the cost of 11

3 exponentiations each, using the optimization appearing in [19,
Section 14.6]. Thus, the effective number of exponentiations can be reduced to 231

3 .

3.3 Proof of Security

Theorem 1 Assuming that the DDH assumption holds in the group G, Protocol 2 UC-securely
realizes the Fmcom functionality in the Fcrs-hybrid model, in the presence of static adversaries.

Proof: The intuition behind the proof of security already appears in Section 3.1. We therefore
proceed directly to the description of the simulator and the proof of security.

The simulator S:

• Initialization step: S chooses a public-key/private-key pair for the Cramer-Shoup cryp-
tosystem; let (G, q, g1, g2, c, d, h) be the public-key. In addition, S chooses a random ρ and
computes h1 = gρ1 and h2 = gρ2 . S sets the CRS to be (G, q, g1, g2, c, d, h, h1, h2).

• Simulating the communication with Z: Every input value that S receives from Z is
written on A’s input tape (as if coming from Z) and vice versa.

• Simulating the commit stage when the committer Pi is corrupted and the receiver
Pj is honest: Upon receiving (sid, ssid, c) from A as it intends to send from Pi to Pj , the
simulator S uses its knowledge of the Cramer-Shoup secret key to decrypt c. Let m =
G(x, sid′, ssid′, i′, j′) be the result. If (sid′, ssid′, i′, j′) ̸= (sid, ssid, i, j) or the decryption is
invalid, then S sends a dummy commitment (commit, sid, ssid, Pi, Pj , 0) to Fmcom. Otherwise,
S sends (commit, sid, ssid, Pi, Pj , x) to Fmcom.
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• Simulating the decommit stage when Pi is corrupted and Pj is honest: S runs the
honest strategy of Pj with A controlling Pi. If Pj would output (reveal, sid, ssid, Pi, Pj , x),
then S sends (reveal, sid, ssid, Pi, Pj) to Fmcom. Otherwise, it does nothing.

• Simulating the commit stage when Pi is honest and Pj is corrupted: Upon receiving
(receipt, sid, ssid, Pi, Pj) from Fmcom, the simulator S computes a Cramer-Shoup encryption
c of 0, and hands (sid, ssid, c) to A, as it expects to receive from Pi.

• Simulating the decommit stage when Pi is honest and Pj is corrupted: Upon
receiving (reveal, sid, ssid, Pi, Pj , x) from Fmcom, S works as follows:

1. S hands (sid, ssid, x) to A, as it expects to receive from Pi.

2. S receives c′ from A and uses its knowledge of the discrete log ρ of h1, h2 (in the CRS)
in order to decrypt the encryption c′ of G(ε) and obtain ε.

3. Let c = (u1, u2, e, v) be as computed by S in the commit stage. S chooses a random
z ∈R Zq and computes α = gz1/u

ε
1, β = gz2/u

ε
2, γ = hz/(e/m)ε and δ = (cdω)z/vε, and

hands (α, β, γ, δ) to A.

4. S receives (R′, S′, ε′) from A. If c′ ̸= (gR
′

1 · gS′
2 , hR

′
1 · hS′

2 · G(ε′)) then S simulates Pi

aborting the decommitment. Otherwise, ε′ = ε (this must be the case because when
the regular public-key of the dual encryption scheme is used the encryption is perfectly
binding), and S hands z to A.

Simulation in the cases that both Pi and Pj are honest is straightforward. This is due to
the fact that when both parties are honest, the simulator can choose the value ε itself and
generate a valid proof for any value needed.

Analysis of the simulation: Denoting Protocol 2 by π and recalling that it runs in the Fcrs-
hybrid model, we need to prove that for every A and every Z,{

idealFmcom,SA,Z(n, z)
}
n∈N;z∈{0,1}∗

c≡
{
hybridFcrs

π,A,Z(n, z)
}
n∈N;z∈{0,1}∗

.

We prove this via a series of hybrid games.

Hybrid game hyb-game1: In this game, the ideal functionality gives the simulator S1 the value x
committed to by an honest Pi together with the regular (receipt, sid, ssid, Pi, Pj) message. S1 works
in exactly the same way as S except that when simulating the commit stage when Pi is honest and
Pj is corrupted, it computes c as an encryption of m = G(x, sid, ssid, i, j) as an honest Pi would.
Otherwise, it behaves exactly as S in the simulation. In order to show that the output of Z in
hyb-game1 is indistinguishable from its output in ideal, we need to reduce the difference to the
security of the encryption scheme. However, S and S1 need to decrypt in the simulation of the
commit stage when the committer Pi is corrupted and Pj is honest (see the simulator description).
S and S1 can carry out this decryption because they know the Cramer-Shoup secret-key. But, this
means that security cannot be reduced to this scheme. We solve this problem by using the fact
that the Cramer-Shoup encryption scheme is CCA2-secure. Thus, S and S1 can decrypt by using
their decryption oracle. We use the LR-formulation of CCA2-security [1]. In this formulation a
bit b is randomly chosen and the adversary can ask for many encryption challenges. Each query
consists of a pair (m0,m1) and the adversary receives back an encryption of mb (always with the

11



same b). The aim of the adversary is to guess the bit b. Of course, given that this is a CCA2 game,
the adversary can ask for a decryption of any ciphertext that was not received as an encryption of
one of the pairs.

Formally, we construct a CCA2 adversary Acs attacking the Cramer-Shoup scheme as follows.
Let (G, q, g1, g2, c, d, h) be the public-key given to Acs. Adversary Acs chooses ρ ∈R Zq, computes
h1 = gρ1 and h2 = gρ2 , and sets the CRS to be (G, q, g1, g2, c, d, h, h1, h2). Then Acs simulates an
execution of idealFmcom,SA,Z with the following differences:

1. Whenever an honest Pi commits to a value x, instead of S encrypting 0 (or S1 encrypting x),
Acs generates the encryption in the ciphertext by asking for an encryption challenge of the
pair (0, G(x, sid, ssid, i, j)). The ciphertext c received back is sent as the commitment. (Note
that Acs knows x because it runs Z and so knows the inputs handed to the honest parties.)

2. Whenever a corrupted Pi sends a commitment value (sid, ssid, c) and the simulator needs to
decrypt c, Acs queries its decryption oracle with c. If c was received as a ciphertext challenge
then Acs has the simulator send a dummy commitment (commit, sid, ssid, Pi, Pj , 0) to Fmcom

as in the case that (sid′, ssid′, i′, j′) ̸= (sid, ssid, i, j) in the simulation. Since c was received
as a ciphertext challenge, indeed it holds that (sid′, ssid′, i′, j′) ̸= (sid, ssid, i, j) and so this
is the same.

Finally, Acs outputs whatever Z outputs.
Now, if b = 0 in the CCA2 game, then all of the commitments c generated when the committer

Pi is honest are to 0. Thus, the simulation is exactly like S and the output of Acs is exactly that
of idealFmcom,SA,Z(n, z). (Note that all other instructions are carried out identically to S.) In
contrast, if b = 1, then the commitments generated are to the correct values x and so the simulation
is exactly like S1. Thus, the output of Acs is exactly that of hyb-game1SA

1 ,Z(n, z). We conclude

that {
hyb-game1Fmcom,SA

1 ,Z(n, z)
}
n∈N;z∈{0,1}∗

c≡
{
idealFmcom,SA,Z(n, z)

}
n∈N;z∈{0,1}∗ ,

by the fact that the Cramer-Shoup encryption scheme is CCA2-secure.

Hybrid game hyb-game2: In this game, the simulator S2 works in exactly the same way as S1,
except that when simulating the decommitment phase when Pi is honest and Pj is corrupted,
it computes the messages (α, β, γ, δ) and z in the proof exactly as an honest Pi would. It can
do this because the commitment c sent in the commitment phase is to the correct value m =
G(x, sid, ssid, i, j) and so it can play the honest prover. The output distribution of this game
is identical to hyb-game1 by the perfect simulation property of the proof of the decommitment
phase. This proof is based on a standard Sigma protocol that a tuple is a Diffie-Hellman tuple and
it is straightforward to verify that the distributions are identical. We therefore have that:{

hyb-game2Fmcom,SA
2 ,Z(n, z)

}
n∈N;z∈{0,1}∗

≡
{
hyb-game1Fmcom,SA

1 ,Z(n, z)
}
n∈N;z∈{0,1}∗

.

Completing the proof: It remains to show that the output of Z after an execution of π in the
hybridFcrs model is indistinguishable from its output after the hyb-game2 game. First, observe
that the commitment and decommitment messages in the case of an honest committer Pi are
identical in both hyb-game2 and a real protocol execution in the hybridFcrs model. Thus, the
only difference between the output of Z in both cases can be due to the value x output by an honest
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receiver Pj after a decommit from a corrupted sender Pi. This is due to the fact that in hyb-game2,
the value x output by an honest Pj is the value sent by S2 to Fmcom after decrypting the associated
ciphertext in the commit stage using the Cramer-Shoup secret-key. In contrast, in hybridFcrs the
value x output by an honest party is that sent by A in the first step of the decommitment stage
(as long as the proof passes). These values can only be different if A can convince an honest Pj to
output x in the decommitment phase, even though the encrypted value c sent in the commitment
phase is not to m = G(x, sid, ssid, i, j). Thus, this difference reduces to the soundness of the proof
in the decommitment phase. Recall that by the special soundness property of Sigma protocols, in
the case that c is not an encryption of m = G(x, sid, ssid, i, j), for every first message (α, β, γ, δ)
there is only a single ε for which there exists a convincing answer z.

It is tempting to conclude that since the encryption of ε is semantically secure, the adversary
cannot cheat in the Sigma protocol. However, this requires a reduction and such a reduction cannot
be carried out because the adversary does not “reveal” to us whether it succeeds in the proof until
we decrypt ε. Thus, one cannot reduce the ability of the adversary to cheat to the hiding of ε (in
such a reduction, one cannot reveal ε together with the randomness used to encrypt). However,
it is possible to replace the values h1, h2 where h1 = gρ1 and h2 = gρ2 with values h1 = gρ11 and
h2 = gρ22 for ρ1, ρ2 ∈R Zq. In such a case, as we have discussed, the encryption c′ perfectly hides the
value ε. Furthermore, there is no need to ever decrypt c′ here (the simulator S2 in hyb-game2 does
not decrypt these values). Thus, there is no problem replacing h1, h2 in this way. Finally, recall
that the alternative key h1, h2 is indistinguishable from the regular one. Thus, defining hyb-game3

to be the same as hyb-game2 except that the keys h1, h2 are different as described, and letting
S3 = S2 (except again for how h1, h2 are chosen), we have{

hyb-game3Fmcom,SA
3 ,Z(n, z)

}
n∈N;z∈{0,1}∗

c≡
{
hyb-game2Fmcom,SA

2 ,Z(n, z)
}
n∈N;z∈{0,1}∗

.

We are now ready to conclude the proof. Since the encryption c′ perfectly hides the challenge ε, the
probability that A successfully proves an incorrect statement in the decommitment stage is at most
2−n (recall that there is exactly one ε that it can answer). Thus, the value sent by S3 to Fmcom

is the same value as that output by an honest Pj , except with negligible probability. The only
other difference is that in hyb-game3 an alternative public-key for the dual mode cryptosystem
is used, whereas in hybrid a regular one is used. Recalling that these keys are computationally
indistinguishable, we conclude that{

hybridFcrs
π,A,Z(n, z)

}
n∈N;z∈{0,1}∗

c≡
{
hyb-game3Fmcom,SA

2 ,Z(n, z)
}
n∈N;z∈{0,1}∗

.

Combining all of the above, we have that the output of Z with A after an execution of π in the
Fcrs-hybrid model is computationally indistinguishable from its output after an execution with SA

and Fmcom in the ideal model, and so Protocol 2 is UC-secure in the presence of static adversaries,
as required.
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4 Adaptive Adversaries with Erasures

4.1 Background and Outline of Solution

In the setting of adaptive corruptions, the adversary can corrupt parties throughout the computa-
tion. Upon corruption, it receives the local state of the parties, including randomness it has used
and so on. In the model with erasures, a protocol can instruct a party to erase some of its state
(e.g., old keys), and in such a case the adversary does not obtain the erased state upon corruption.
Adaptive corruptions accurately models the realistic setting where parties can be “hacked” during
a computation. As such, it is desirable to have protocols that are secure in this model.

This model introduces significant difficulties when proving security. Specifically, observe that
Protocol 2 is not secure in the presence of adaptive adversaries, even with erasures, because the
committer must store the randomness r used to commit to x in order to run the decommitment
stage. Now, in our simulation, the simulator commits to 0, even when the commitment is really
to x. However, upon corruption in the real world, the adversary obtains r and x such that c is
encryption of x using randomness r. In the simulation, such randomness can never be produced
because c is an encryption of 0 and not of x (there does not exist an r′ that can explain c as an
encryption of x ̸= 0).

Achieving adaptive security. Our protocol can be modified so that it achieves adaptive security
with erasures, with little additional cost. Interestingly, the only modifications necessary are a
change in the order of operations and 1 additional Pedersen commitment. In order to see this,
recall that the problem with achieving adaptive security is that the committer cannot erase r
before sending c in the commit phase, because then it will not be able to prove the proof in the
decommit phase. However, it is possible for the parties to run most of the proof already in the
commit phase, before the commitment is even sent (actually, the ciphertext c is committed to
equivocally, but not yet revealed). That is, the committer and receiver run the zero-knowledge
protocol before c is sent, without the committer sending the last message z. In addition, the
committer commits to its first message (α, β, γ, δ) of the protocol instead of sending it in the clear.
(Thus, the receiver sends a commitment to ε; the committer sends a commitment to (α, β, γ, δ);
the receiver decommits revealing ε; finally, the committer prepares z based on ε without sending
it.) Following this preamble, the committer erases all of its randomness, except for that needed
to decommit to the first message of the zero-knowledge protocol, and only then reveals c. This
completes the commit phase. The decommit phase simply consists of the committer sending the
decommitment to (α, β, γ, δ) and the message z (which has already been prepared), and the receiver
verifies the decommitment and that ((α, β, γ, δ), ε, z) constitutes an accepting transcript.

Observe that before the committer sends c, nothing has actually been revealed; the committer
only sent a commitment to (α, β, γ, δ). Thus, this does not affect the hiding property of the original
commitment scheme. Furthermore, the committer erases all secret state before sending c, and in
particular erases the random coins used to generate c. Thus adaptive corruptions make no difference
because the committer has no secret state once c is sent, and has revealed no information before c is
sent. In actuality, in order to achieve this property that all messages sent before c are independent
of x, we have to have the committer commit to the first message of the proof using a perfectly hiding
commitment scheme. Furthermore, it needs to be adaptively secure in that upon corruption, the
prover can open it to anything that it wishes. Fortunately, this can be easily achieved by using
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a Pedersen commitment Com(x) = gr · ĥx with a value ĥ that appears in the CRS.5 (Note that
given the discrete log ρ̂ of ĥ it is possible to decommit to any value desired. Specifically, commit
by computing c = ga for a known a. Now, given x we wish to find r such that c = ga = gr · ĥx.
Given that ĥ = gρ̂ this means that we need to find r such that ga = gr+ρ̂x, or equivalently r such
that a = r + ρ̂x mod q. Thus, just take r = a − ρ̂x mod q.) We remark that although the above
works, it introduces an additional difficulty because the soundness of the Sigma protocol now also
rests on the hardness of finding the discrete log of ĥ. This requires an additional reduction; see the
proof for details. See Protocol 3 for the outline of the modified protocol.

PROTOCOL 3 (UC-commitment template for adaptive security)

Common reference string: (pk1, pk2,G, q, g, ĥ) where pk1 is the public-key of a CCA2-

secure encryption scheme, pk2 is the public-key of a dual mode cryptosystem, and (G, q, g, ĥ) are
parameters for the Pedersen commitment scheme.

The commit phase:
1. The committer computes a commitment to x as c = Ecca

pk1
(x; r), and sends a Pedersen

commitment of c to the receiver, using (g, ĥ).

2. The receiver sends c′ = Edual
pk2

(ε; r′); its commitment to the first message of the proof.

3. The committer sends a Pedersen commitment to the first prover message α to the receiver,
computed from the ciphertext c (observe that c has not yet been revealed).

4. The receiver decommits to ε by sending ε and r′

5. The committer checks that c′ = Edual
pk2

(ε; r′) and if yes, it computes the reply z for the
Sigma protocol, based on (α, ε).

6. The committer now erases r and the randomness used to generate α and z, stores α, z and
the randomness used to generate the Pedersen commitments, and finally sends c and its
decommitment to the receiver.

The decommitment phase:
1. The committer sends x, (α, z), and the randomness used to generate the Pedersen commit-

ment to α to the receiver.

2. The receiver outputs x as the decommitted value if and only if the Pedersen commitment
was to α and (α, ε, z) is an accepting Sigma-protocol transcript.

4.2 The Adaptive Protocol

The scheme that is adaptively secure with erasures appears in Protocol 4. We note one difference
between the actual protocol and the intuitive explanation above, regarding the Pedersen commit-
ments. We use these commitments to commit to group elements in G. However, the input of
a Pedersen commitment is in Zq and not G. One solution to this is to break the elements up
into pieces and separately commit to each piece. We use a different solution which is to compute
Com(m) = gr · ĥH(m) where H is a collision-resistant hash function. The commitment is still per-
fectly hiding and can be opened to any value. The only difference is that the binding property relies
now both on the hardness of the discrete log problem (as in the standard case) and on the collision
resistance of H. By convention, in Protocol 4, all messages are sent together with (sid, ssid).

5We note that such a commitment is not extractable but we do not need it to be.
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PROTOCOL 4 (UC-Secure Commitment Protocol – Adaptive with Erasures)

Common reference string: (G, q, g1, g2, c, d, h, h1, h2, ĥ) where G is a group of order q with
generators g1, g2, and c, d, h ∈R G are random elements of G, and h1 = gρ1 , h2 = gρ2 for a random
ρ ∈R Zq. (Note that (G, q, g1, g2, c, d, h) is a Cramer-Shoup public key, (G, q, g1, g2, h1, h2) is the

regular public key of a dual-mode encryption scheme, and (G, q, g1, ĥ) are parameters for Pedersen
commitments.)
Let G(y) be a mapping of a string y ∈ {0, 1}n to G, and assume that G−1 is also efficiently
computable.

The commit phase: Upon input (commit, sid, ssid, Pi, Pj , x) where x ∈ {0, 1}n−log2 n and

sid, ssid ∈ {0, 1}log2 n/4, party Pi works as follows:

1. Pi computes m = G(x, sid, ssid, i, j). (The identities i, j can be mapped to {0, 1}log2 n/4

and so overall (x, sid, ssid, i, j) is an n-bit string.)

2. Pi chooses a random r ∈R Zq, computes u1 = gr1, u2 = gr2, e = hr ·m, ω = H(u1, u2, e) and
v = cr · drω, where H is a collision-resistant hash function (formally, the key for the hash
function can appear in the CRS; we ignore this for simplicity). Pi sets c = (u1, u2, e, v).

3. Pi chooses κ1 ∈R Zq, computes c1ped = gκ1
1 · ĥH(c), and sends c1ped to Pj .

4. Pj sends c′ = (gR1 · gS2 , hR
1 · hS

2 ·G(ε)) to Pi, where ε ∈R {0, 1}n and R,S ∈R Zq.

5. Pi computes α = gs1, β = gs2, γ = hs and δ = (cdω)s, and computes a Pedersen commitment

c2ped = gκ2
1 · ĥH(α,β,γ,δ), where κ2 ∈R Zq. Pi sends c

2
ped to Pj .

6. Pj sends (R,S, ε) to Pi.

7. Pi verifies that c′ = (gR1 · gS2 , hR
1 · hS

2 · G(ε)). If no, it aborts. Otherwise, Pi computes
z = s+ εr.

8. Pi erases r and s, and stores (x, α, β, γ, δ, κ2, z). Pi sends (κ1, c) to Pj .

9. Pj verifies that c1ped = gκ1
1 · ĥH(c). If yes, it stores (sid, ssid, Pi, Pj , c, ε, c

2
ped) and out-

puts (receipt, sid, ssid, Pi, Pj). Pj ignores any later commitment messages with the same
(sid, ssid) from Pi.

The decommit phase:

1. Upon input (reveal, sid, ssid, Pi, Pj), Pi sends (x, α, β, γ, δ, κ2, z) to Pj .

2. Pj computes m = G(x, sid, ssid, i, j) and outputs (reveal, sid, ssid, Pi, Pj , x) if and only if

c2ped = gκ2
1 · ĥH(α,β,γ,δ), gz1 = α · uε

1, gz2 = β · uε
2, hz = γ ·

( e

m

)ε

, and (cdω)z = δ · vε

Efficiency. The complexity of Protocol 4 is the same as the static version (Protocol 2) plus
two additional Pedersen commitment that must be computed and verified. Naively, this costs an
additional 8 exponentiations overall. However, again using the multiexponentiation optimization,
these can be computed at the effective cost of 51

3 exponentiations. Thus, we have an overall cost
of 282

3 exponentiations.
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4.3 Proof of Security

Theorem 2 Assuming that the DDH assumption holds in the group G, Protocol 4 UC-securely
realizes the Fmcom functionality in the Fcrs-hybrid model, in the presence of adaptive adversaries
with erasures.

Proof: The proof of security is very similar to the static case, with the addition of how to deal
with adaptive corruptions. We remark that we follow the convention where the only part of the
commitment message not seen by the ideal adversary is the commitment value [6]. Thus, when an
honest Pi sends a message to the Fmcom functionality, the adaptive ideal adversary knows what
type of message it is and who the intended recipient is.

The main observation regarding the simulation of adaptive adversaries is that if a committing
party is corrupted before the commitment stage is finished, then no meaningful information has
been given away. This is due to the use of Pedersen commitments and the fact that the simulator
can open them to any way it wishes by choosing ĥ so that it knows its discrete log. Furthermore, if
a committing party is corrupted after the commitment phase is finished, then the randomness used
to generate the Cramer-Shoup encryption and the Sigma protocol prover messages has already been
erased. Thus, all the simulator has to do is to run the Sigma-protocol simulator using the proof
statement based on the commitment value obtained, and this will look exactly like an honestly
generated commitment.

The adaptive simulator S:

• Initialization step: S chooses a public-key/private-key pair for the Cramer-Shoup cryp-
tosystem; let (G, q, g1, g2, c, d, h) be the public-key. In addition, S chooses a random ρ ∈R Zq

and computes ĥ1 = gρ1 and h2 = gρ2 , and a random ρ̂ ∈R Zq and computes ĥ = gρ̂1 . S sets the

CRS to be (G, q, g1, g2, c, d, h, h1, h2, ĥ).

• Simulating the communication with Z: Every input value that S receives from Z is
written on A’s input tape (as if coming from Z) and vice versa.

• Simulating the commit stage when Pi and Pj are honest: S generates an encryption
c of 0, sets c1ped to be a Pedersen commitment to c, and sets c2ped ∈R G to be a random group
element (where S knows the exponent so that it can decommit to any value). The values
ε,R, S are generated as by honest parties.

• Simulating the decommit stage when Pi and Pj are honest: Upon receiving from
Fmcom the reveal message (reveal, sid, ssid, Pi, Pj , x), simulator S runs the Sigma protocol
simulator to obtain an accepting transcript ((α, β, γ, δ), ε, z) for c being a commitment to x,
and uses its knowledge of ρ̂ in order to find κ2 so that c2ped = gκ1 · ĥH(α,β,γ,δ). (See the proof
of Theorem 1 for details of the simulation.) S then simulates Pi sending (κ2, α, β, γ, δ) and z
to Pj .

• Simulating the commit stage when the committer Pi is corrupted and the receiver
Pj is honest: Upon receiving (sid, ssid, c) from A at the end of the commitment phase with
honest Pj as the receiver, the simulator S uses its knowledge of the Cramer-Shoup secret key
to decrypt c. Let m = G(x, sid′, ssid′, i′, j′) be the result. If (sid′, ssid′, i′, j′) ̸= (sid, ssid, i, j)
or the decryption is invalid, then S sends a dummy commitment (commit, sid, ssid, Pi, Pj , 0)
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to Fmcom. Otherwise, S sends (commit, sid, ssid, Pi, Pj , x) to Fmcom. In addition, S stores
the c2ped value and sends the c′, R, S, ε values as an honest Pj would.

• Simulating the decommit stage when Pi is corrupted and Pj is honest: S runs the
honest strategy of Pj with A controlling Pi. If Pj would output (reveal, sid, ssid, Pi, Pj , x),
then S sends (reveal, sid, ssid, Pi, Pj) to Fmcom. Otherwise, it does nothing.

• Simulating the commit stage when Pi is honest and Pj is corrupted: S works here
in an identical way as to when Pi and Pj are honest, using the values ε,R, S as obtained from
A controlling Pj .

• Simulating the decommit stage when Pi is honest and Pj is corrupted: Once again,
S works exactly as when Pi and Pj are honest, but runs the Sigma-protocol simulator using
ε as obtained from A.

• Simulating adaptive corruption of Pi before the commit phase has ended: In this
case, the only messages sent from Pi are Pedersen commitments that can be opened to any
value. The simulation of this case is therefore straightforward.

• Simulating adaptive corruption of Pi after a commit but before a decommit: This
works exactly as in the decommit stage for an honest Pi. Specifically, given x, S runs the
Sigma-protocol simulator with challenge ε in order to obtain (α, β, γ, δ) and z that form an
accepting transcript for input x. Then S finds randomness κ2 such that c2ped is a commitment
to (α, β, γ, δ). Observe that Pi has no other state other than the randomness used to generate
c2ped and the values of the proof ((α, β, γ, δ), z). This therefore suffices (indeed, observe that
Pi stores no information that is not sent to Pj in the decommit stage).

Analysis of the simulation: The analysis is almost identical to the proof of Theorem 1. In the
first hybrid game, we have the simulator commit to real values, and prove indistinguishability via
the CCA2-security of the Cramer-Shoup encryption scheme. The changes that we have made for
adaptive security make no difference to this. Likewise, the transition to the second game where real
proofs are provided is also identical. The major difference to the proof is in the last step in order
to prove the soundness of the proofs provided by corrupted parties. That is, we need to claim that
a corrupted party can prove an incorrect statement with probability that is at most negligible. In
order to prove this, we first replace the dual mode public key with the alternative one, as in the
proof of the case of static corruptions. However, this does not yet suffice because the adversary
may be able to prove an incorrect claim by breaking the computational binding of the Pedersen
commitments (recall that the last message of the proof is decommitted to only after the challenge
ε is revealed). Despite this, we use the fact that the ability to decommit to two different values is
equivalent to find the discrete log of ĥ. Specifically, given cped together with (κ,m) ̸= (κ′,m′) such

that cped = gκ1 · ĥm = gκ
′

1 · ĥm′
, it holds that ĥ = g

(κ−κ′)(m′−m)−1

1 and so the discrete log of ĥ is
κ−κ′

m′−m which can be efficiently computed.
We therefore prove soundness as follows. Assume that there exists an environment Z, adversary

A, and an input z to Z such that for infinitely many n’s, A succeeds in proving an incorrect
statement with non-negligible probability. In this case, A will succeed in proving an incorrect
statement with non-negligible probability also in hyb-game3. (We remark that it is possible to
detect this event because we can decrypt the Cramer-Shoup encryption and see what value was
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actually encrypted.) Now, let (G, q, g1, ĥ) be parameters for a Pedersen commitment. An adversary
Aped attempting to break the commitment scheme receives the parameters and works as follows.
It chooses all of the values in the common reference string like S (based on (G, q, g1)) and then
simulates the hyb-game3 experiment running Z with input z and A. If A proves an incorrect
statement, then Aped rewinds the entire execution (including Z) until the point that A sent c2ped.
Aped then sends a different decommitment (R′, S′, ε′) to a fresh random ε′. Note that since at this
point the public key for the dual-mode cryptosystem is the alternative one, and Aped knows the
discrete logs ρ1, ρ2 of h1, h2, it can efficiently find (R′, S′, ε′) such that c′ = (gR1 · gS2 , hR1 · hS2 ·G(ε))
even though c′ was originally generated as an encryption of some ε ̸= ε′. (In order to do this,
Aped also needs to know the discrete logs of g2 and G(ε), G(ε′) relative to g1, but these value can
be chosen in that way. See the explanation of the concrete dual-mode cryptosystem at the end of
Section 3.1 in order to see what equations Aped needs to solve.) Aped then continues the execution
until the point that A decommits to the transcript. If it is accepting, then A must have opened
the Pedersen commitment c2ped differently (because A can only answer one ε if the statement is

incorrect). In this case Aped has found the discrete log of ĥ and halts. Otherwise, Aped repeatedly
rewinds until A does provide an accepting transcript. This yields an expected polynomial-time
adversary Aped; a strict polynomial-time adversary can be derived by just truncating the execution
after enough time. We remark that although we are working in the UC framework, Aped is allowed
to rewind in the reduction because this has nothing to do with the simulation, and we are reducing
the difference between hyb-game3 and hybrid to the hardness of finding the discrete log of ĥ.
This completes the proof.
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A Sigma Protocols

A Sigma protocol is a 3-round honest-verifier zero-knowledge protocol. We denote the messages
sent by P and V by (a, e, z). We say that a transcript (a, e, z) is an accepting transcript for x if the
protocol instructs V to accept based on the values (x, a, e, z). Formally:

Definition 3 A protocol π is a Σ-protocol for relation R if it is a three-round public-coin protocol
and the following requirements hold:

• Completeness: If P and V follow the protocol on input x and private input w to P where
(x,w) ∈ R, then V always accepts.

• Special soundness: There exists a polynomial-time algorithm A that given any x and any
pair of accepting transcripts (a, e, z), (a, e′, z′) for x where e ̸= e′, outputs w s.t. (x,w) ∈ R.

• Special honest verifier zero knowledge: There exists a probabilistic polynomial-time
simulator M , which on input x and e outputs a transcript of the form (a, e, z) with the
same probability distribution as transcripts between the honest P and V on common input x.
Formally, for every x and w such that (x,w) ∈ R and every e ∈ {0, 1}t it holds that{

M(x, e)
}
≡

{
⟨P (x,w), V (x, e)⟩

}
where M(x, e) denotes the output of simulator M upon input x and e, and ⟨P (x,w), V (x, e)⟩
denotes the output transcript of an execution between P and V , where P has input (x,w), V
has input x, and V ’s random tape (determining its query) equals e.

A survey of Sigma protocols and their properties can be found in [8] and [11, Chapter 6].
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