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Abstract. We present a protocol that allows to prove in zero-knowledge that committed values
xi, yi, zi, i = 1, . . . , l satisfy xiyi = zi, where the values are taken from a finite field K, or are integers.
The amortized communication complexity per instance proven is O(κ + l) for an error probability of
2−l, where κ is the size of a commitment. When the committed values are from a field of small constant
size, this improves complexity of previous solutions by a factor of l. When the values are integers, we
improve on security: whereas previous solutions with similar efficiency require the strong RSA assump-
tion, we only need the assumption required by the commitment scheme itself, namely factoring. We
generalize this to a protocol that verifies l instances of an algebraic circuit D over K with v inputs,
in the following sense: given committed values xi,j and zi, with i = 1, . . . , l and j = 1, . . . , v, the
prover shows that D(xi,1, . . . , xi,v) = zi for i = 1, . . . , l. For circuits with small multiplicative depth,
this approach is better than using our first protocol: in fact, the amortized cost may be asymptotically
smaller than the number of multiplications in D.

1 Introduction

The notions of commitment schemes and zero-knowledge proofs are among the most fundamental
in the theory and practice of cryptographic protocols. Intuitively, a commitment scheme provides
a way for a prover to put a value x in a locked box and commit to x by giving this box to a
verifier. Later the prover can choose to open the box by giving away the key to the box. A bit more
precisely, a commitment c = compk(x, r) is a function of the committed value x, a public key pk
and a random value r from some suitable domain. Commitments must be hiding: from c and pk it
is hard to decide the value of x, and binding: it is hard to produce a commitment and open it in
two different ways, i.e., to compute c, x, r, x′, r′ with x 6= x′ and c = compk(x, r) = compk(x

′, r′).
In a zero-knowledge protocol, a prover wants to convince a verifier that some statement is

true, such that the verifier learns nothing except the validity of the assertion. Typically, the prover
claims that an input string u is in a language L, and after the interaction, the verifier accepts or
rejects. We assume the reader is familiar with the basic theory of zero-knowledge protocols and
just recall the most important notions informally: the protocol is an interactive zero-knowledge
proof system for L if it is complete, i.e., if u ∈ L, then the verifier accepts – and sound, i.e., if
u 6∈ L then no matter what the prover does, the verifier accepts with at most probability ε, where
ε is called the soundness error of the protocol. Finally, zero-knowledge means that given only that
u ∈ L, conversations between the honest prover and an arbitrary poly-time verifier can be efficiently
simulated with an indistinguishable probability distribution.

In this paper we concentrate on commitments to elements in a finite field K, or to integers and
we assume that our commitments are also homomorphic, i.e., both commitments and randomness
are chosen from (finite) groups, and we have compk(x, r) · compk(y, s) = compk(x + y, rs). For
K = Fq for a prime q, such commitments can, for instance, be constructed from any q-invertible
group homomorphism [5] that exists, if factoring or discrete log are hard problems. Homomorphic
commitments to integers based on factoring were proposed in [12,10].



In typical applications of these commitment schemes, the prover needs to convince the verifier
that the values he commits satisfy a certain algebraic relation. A general way to state this is that
the prover commits to x1, . . . , xl, and the verifier wants to know that D(x1, . . . , xt) = 0 for an
algebraic circuit D defined over K or over the integers. If D uses only linear operations, the verifier
can himself compute a commitment to D(x1, . . . , xt) (using the homomorphic properties of the
commitment scheme) and the prover opens this to reveal 0. However, if D uses multiplication, we
need a zero-knowledge protocol where the prover convinces the verifier that three committed values
x, y, z satisfy xy = z.

In [7], such a multiplication protocol was proposed for homomorphic commitments over any
finite field K. The soundness error for this protocol is 1/|K|. For fields of small size (constant
or logarithmic in the security parameter), this probability is of course too large, and the only
known way to have a smaller error is to repeat the protocol. This solution leads to a protocol with
communication complexity Θ(κl) for soundness error 2−l and where commitments have size κ bits.

Likewise, a multiplication protocol for integer commitments was proposed in [12,10]. This pro-
tocol has essentially optimal communication complexity Θ(κ + l + k), where k is size in bits of
the prover’s secret integers, but it requires an extra assumption, namely the strong RSA assump-
tion. If we only want to assume what the commitment scheme requires (factoring), the best known
complexity is Θ((κ+ k)l).

An approach to improving this state of affairs was proposed in [6], where it was suggested to
take advantage of the fact that many applications require the prover to make many ZK proofs of
similar statements. The idea is then to combine all the proofs into one protocol and try to make
the amortized complexity per proof be small. In our case, this would mean that the prover commits
to xi, yi, zi for i = 1, . . . , l and wants to convince the verifier that xiyi = zi for all i. The technique
from [6] yields a protocol with amortized complexity Θ(κ + l) but, unfortunately, this will only
work if all xi’s are equal (or all yi’s are equal), and in most applications, this will not be satisfied .

In this paper, we suggest a new protocol that achieves amortized complexityO(κ+l) for arbitrary
xi, yi, zi, and works for any homomorphic commitment scheme over a finite field K. Therefore, when
the committed values are from a field of small constant size, we improve the complexity of previous
solutions by a factor of l. When values are integers, we obtain complexity O(κ + k + l log(l)) and
we improve security of previous solutions that needed the strong RSA assumption, while we need
no additional assumption.

Our basic protocols are only honest-verifier zero-knowledge, but this can be improved to general-
verifier zero-knowledge using standard tools.

Our technique is related to the “multiparty computation in the head” technique from [14], but
with an important difference: both strategies make use of “virtual players”, that is, the prover in his
head imagines n players that receive shares of his secret values and he must later reveal information
to the verifier relating to these shares. The protocol from [14] has complexity linear in n, because
the prover must commit to the view of each virtual player. We use a different approach, exploiting
the homomorphic property of the commitment scheme to get a simpler and more efficient protocol
with complexity logarithmic in n. On the other hand, we show that a combination of “multiparty
computation in the head” and our protocol for verifying algebraic circuits (see below) can actually
improve the communication complexity for some parameter values.

One application area where this result can improve state of the art is the following: as shown
in [9], general multiparty computation can be based on homomorphic encryption schemes, such
as the Goldwasser-Micali (GM)-scheme [13], where the plaintext space is F2. Supplying inputs to
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such a protocol amounts to sending it in encrypted form to all players and proving knowledge of
the corresponding plaintexts. However, in many applications one would want to check that inputs
satisfy certain conditions, e.g., an auction may require that bids are numbers in a certain interval.
Since ciphertexts in the GM-scheme can be thought of as homomorphic commitments on the field
with two elements, our protocol can be used by a player to prove that his input satisfy a given
condition much more efficiently that by previous techniques.

A different type of application is in the area of anonymous credentials and group signatures.
Such constructions are often based on zero-knowledge proofs that are made non-interactive using
the Fiat-Shamir heuristic. If the proof requires showing that a committed number is in a given
interval, the standard solution is to “transfer” the values to an integer commitment scheme and
use the proof technique of Baudot [2]. This in turn requires multiplication proofs, so if a sufficient
number of such proofs are to be given in parallel, one can use our technique for integer commitments
to get a solution that assumes only factoring (rather than strong RSA) with no loss of efficiency.

In the final part of the paper, we generalize our approach to a protocol that verifies l instances
of an algebraic circuit D over K with v inputs, in the following sense: given committed values
xi,j and zi, with i = 1, . . . , l and j = 1, . . . , v, the prover shows that D(xi,1, . . . , xi,v) = zi for
i = 1, . . . , l (the protocol generalizes easily to circuits with more than one output). For circuits
with small multiplicative depth (sometimes known as the classes K − SAC0 or K − SAC1) , this
approach is better than using our first protocol, in fact the amortized communication cost can be
asymptotically smaller than the number of multiplications in D.

An interesting feature of this protocol is that prover and verifier can execute it given only black-
box access to an algorithm computing the function implemented by D. This is unlike standard
protocols where the parties work their way through the circuit and must therefore agree on the
layout. Our protocol would, for instance, allow the verifier to outsource computation of the function
to a third party. As long as the verifier chooses the random challenge in the protocol, this would
be secure if the prover is malicious and the third party is semi-honest.

2 Preliminaries

2.1 Commitment Schemes

We consider two kinds of commitment schemes. The first type are commitments to elements in a
finite field K that can be seen as a function compk : K ×H → G where H,G are finite groups and
pk is a public key (this includes the examples suggested in [5]). The second type are commitments
to integers, where we have compk : Z × Z → G.

The public key pk is generated by a probabilistic poly-time algorithm G on input a security
parameter κ. To commit to value x ∈ K or an integer x, the prover chooses r uniformly in H (or,
in case of integer commitments, in some appropriate interval) and sends C = compk(x, r) to the
verifier. A commitment is opened by sending x, r. We assume that the scheme is homomorphic:

compk(x, r) · compk(y, s) = compk(x+ y, rs)

For simplicity, we assume throughout that K is a prime field. It then follows immediately from the
additive property above, by repeated addition, that we also have

compk(x, r)
y = compk(xy, r

y)
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for any y ∈ K. We also use [x] as shorthand for a commitment to x in the following, and hence
suppress the randomness from the notation. Also, if v = (v1, . . . , vm) is a vector with entries
in K (or in the integers), [v] denotes a vector of commitments, one to each coordinate in v. If
u = (u1, . . . , um) is a vector of the same length as v, then [v]u means [v]u =

∏
i[vi]

ui , which is a
commitment containing the inner product of u and v. Moreover [u]∗[v] refers to the component-wise
product.

We consider computationally hiding schemes: for any two values x, x′ the distributions of pk,
compk(x, r) and pk, compk(x

′, s) must be computationally indistinguishable, where pk is generated
by G on input security parameter κ. Such schemes are usually unconditionally binding, meaning
that for any pk that can be output from G, there does not exist x, r, x′, s with x 6= x′ such that
compk(x, r) = compk(x

′, s). For such schemes, the prover usually runs G, sends pk to the verifier
and may have to convince him that pk was correctly generated before the scheme is used.

One may also consider unconditionally hiding and computationally binding schemes, where pk,
compk(x, r) and pk, compk(x

′, s) must be statistically indistinguishable, and where it must be in-
feasible to find x, r, x′, s with x 6= x′ such that compk(x, r) = compk(x

′, s).

2.2 Linear Secret Sharing Schemes

The model of linear secret sharing schemes we consider here is essentially equivalent to both the
monotone span program formalism [15,8] and the linear code based formalism [4]. However, we
generalize to schemes where several values from the underlying field can be shared simultaneously.
The model is designed to allow us to describe our protocol to follow as easily as possible.

Let K be a finite field and let m be a positive integer. Consider the m-dimensional K-vector
space Km. Consider the index set I = {1, 2, . . . ,m}, and write x = (xi)i∈I for the coordinates of
x ∈ Km. In the following, linear functions between finite spaces are considered. It is useful to recall
that because such functions are (additive) group homomorphisms, they are always regular; that is,
each element in the image has the same number of pre-images, namely the cardinality of the kernel.

For a non-empty set A ⊆ I, the restriction to A is the K-linear function

πA : Km −→ K |A|

x 7−→ (xi)i∈A.

Let C ⊆ Km be a K-linear subspace which we keep fixed throughout this section. Let A,S ∈ I
be non-empty sets. We say that S offers uniformity if πS(C) = K |S|. Note that by regularity of
πS , if c is uniform in C, then πS(c) is uniform in K |S|.

Jumping ahead, we will use the subspace C for secret sharing by choosing a random vector
c ∈ C such that πS(c) = s where S is a set offering uniformity and s is the vector of secret values
to be shared. The shares are then the coordinates of c that are not in S.

We say that A determines S if there is a function f : K |A| → K |S| such that, for all c ∈ C,
(f ◦ πA) (c) = πS(c). Note that such f is K-linear if it exists. Note that if c is uniformly chosen
from C and if A determines S, then πA(c) determines πS(c) with probability 1.

We say that A and S are mutually independent if the K-linear function

φA,S : C −→ πA(C)× πS(C)

c 7−→ (πA(c), πS(c))
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is surjective. Note that πS(C) = {0} is the only condition under which it occurs that both A
and S are independent and A determines S. In particular, if c is uniformly chosen from C, then
πS(C) 6= {0} and if A and S are independent, then πA(c) and πS(c) are distributed independently.

Suppose S offers uniformity. Let e be a positive integer and let

g : K |S|+e −→ C

be a surjective K-linear function. Define πg : K |S|+e → K |S| as the projection to the first |S|
coordinates. We say that g is an S-generator for C if πg = πS ◦g, that is, if the first |S| coordinates
of ρ ∈ K |S|+e are the same as the coordinates of g(ρ) designated by S. Such an S-generator always
exists, by elementary linear algebra, with |B|+ ρ = dimK(C).

For any S-generator g we have that if s ∈ K |S| is fixed and if ρs is uniformly chosen in K |S|+e

subject to πg(ρs) = s, then g(ρs) has the uniform distribution on the subset of C consisting of those
c ∈ C with πS(c) = s.

We are now ready to define linear secret sharing schemes in our model: Let S ⊂ I be non-empty
and proper. Write S∗ = I \ S. The tuple (C, S) is a linear secret sharing scheme if S offers
uniformity and if S∗ determines S.

If that is the case, S∗ is called the player set, πS(C) is the secret-space, and πS∗(C) is the
share-space. If j ∈ S∗, then πj(C) is called the share-space for the j-th player. If l = |S|, the
scheme is said to be l-multi-secret. For A ⊆ S∗, we say that the scheme has A-privacy (or A is
an unqualified set) if A = ∅ or if A and S are independent. There is A-reconstruction (or A is
qualified) if A is non-empty and if A determines S. The scheme offers t-privacy if, for all A in the
player set with |A| = t, there is A-privacy. The scheme offers r-reconstruction if, for all A in the
player set with |A| = r, there is A-reconstruction.
Note that 0 ≤ t < r ≤ |S∗| if there is t-privacy and r-reconstruction. A generator for (C, S) is an
S-generator for C.

Let (C, S) be a secret sharing scheme, and let g be a generator. If s ∈ K |S| is the secret, shares
for the players in S∗ are computed as follows. Select a vector ρs according to the uniform probability
distribution on K |S|+e, subject to πg(ρs) = s and compute c = g(ρs). The “full vector of shares” is
the vector πS∗(c).

In the following, where we write ρs, it will usually be understood that it holds that πg(ρs) = s,
and we say that such a vector is consistent with the secret s.

Multiplication Properties For any x,y ∈ Km, the Schur-product (or component-wise prod-
uct) between them is the element (x ∗ y) ∈ Km defined as (x ∗ y) = (xj · yj)j∈I . If C ⊂ Km is a

K-linear subspace, then its Schur-product transform is the subspace Ĉ ⊂ Km defined as the
K-linear subspace generated by all elements of the form c ∗ c′, where c, c′ ∈ C.

Note that if (C, S) is a linear secret sharing scheme, then S offers uniformity in Ĉ as well. But
in general it does not hold that S∗ determines S in Ĉ. However, suppose that it does (so (Ĉ, S) is
a linear secret sharing scheme). Then (C, S) is said to offer r̂-product reconstruction if (Ĉ, S)
offers r̂-reconstruction.

Sweeping vectors Let (C, S) be a linear secret sharing scheme, let g be a generator for it and
let A be an unqualified set. Since A and S are mutually independent so that φA,S is surjective, it
follows that for any index j ∈ S, there exists cA,j ∈ C such that φA,S(cA,j) = (0, ej) where ej is
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the vector with a 1 in position j and zeros elsewhere. Note that since the generator g is surjective
on C we can choose wA,j such that g(wA,j) = cA,j , and πg(wA,j) = ej . The vector wA,j is called a
jth sweeping vector.

To see the purpose of these vectors, suppose we have shared a vector of |S| zeros, so we have
c0 = g(ρ0). It is now easy to see that the vector

ρ0 +

|S|∑
j=1

xjwA,j

is consistent with the secret (x1, . . . , x|S|). Moreover, if we apply g to this vector, the player set A
gets the same shares as when 0’s were shared.

3 Our Protocol

We are now ready to solve the problem mention in the introduction, namely the prover holds values
x = (x1, . . . , xl),y = (y1, . . . , yl), z = (z1, . . . , zl), has sent commitments [x], [y], [z] to the verifier
and now wants to convince the verifier that xiyi = zi for i = 1, . . . , l, i.e., that x ∗ y = z.

We suppose that both the prover and the verifier agreed on using an l-multisecret linear secret
sharing scheme (C, S), for d players, offering r̂-product reconstruction, and with privacy threshold
t. We fix a generator g : K l+e → C. Moreover, we suppose that ĝ : K l+ê → Ĉ is a generator for
(Ĉ, S) and that a public basis for K l+e (respectively for K l+ê) has been chosen such that the linear

mapping g (resp. ĝ) can be computed as the action of a matrix M (resp. M̂).

The idea of the protocol is as follows: the prover secret shares x and y using (C, S) and z using
(Ĉ, S), in such a way that the resulting vectors of shares cx, cy, ĉz satisfy cx ∗ cy = ĉz, which is
possible since (C, S) offers product reconstruction. The prover commits to the randomness used in
all sharings, which, by the homomorphic property, allows the verifier to compute commitments to
any desired share. The verifier now chooses t coordinate positions randomly and asks the prover
to open the commitments to the shares in those positions. The verifier can then check that the
shares in x,y multiply to the shares in z. This is secure for the prover since any t shares reveal no
information, but on the other hand, if the prover’s claim is false, thus x ∗ y 6= z, then cx ∗ cy and
ĉz can be equal in at most r̂ positions, so the verifier has a good chance of finding a position that
reveals the cheat. More formally, the protocol goes as follows:

Protocol Verify Multiplication

1. The prover chooses two vectors rx, ry ∈ Ke, and sets ρx = (x, rx), ρy = (y, ry). Define cx =
Mρx, cy = Mρy. Now, the prover computes ρ̂z ∈ K l+ê such that ρ̂z is consistent with secret z
and such that

M̂ρ̂z = cx ∗ cy.

Note that this is possible by solving a system of linear equations, exactly because x∗y = z. We
then write ρ̂z = (z, r̂z) for some r̂z ∈ K ê. Set ĉz = M̂ρ̂z.

2. The prover sends vectors of commitments [rx], [ry], [r̂z] to the verifier. Together with the com-
mitments to x,y and z, the verifier now holds vectors of commitments [ρx], [ρy], [ρ̂z].

3. The verifier chooses t uniform indices O ⊂ S∗.
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4. Let mi be the i’th row of M and m̂i the i’th row of M̂ . For each i ∈ O, using the homomorphic
property of the commitments, both prover and verifier compute commitments

[(cx)i] = [ρx]mi , [(cy)i] = [ρy]mi , [(ĉz)i] = [ρ̂x]m̂i .

The prover opens these commitments to the verifier.
5. The verifier accepts if and only if the opened values satisfy (cx)i · (cy)i = (ĉz)i for all i ∈ O.

Theorem 1. Assume the commitment scheme used is unconditionally binding and computationally
hiding. Then the Verify Multiplication protocol is a computationally honest-verifier zero-knowledge
interactive proof system for the language{

([xi], [yi], [zi])
l
i=1 | xiyi = zi, for i = 1, . . . , l

}
with soundness error ((r̂ − 1)/d)t.

Proof. For soundness, we suppose that the prover is dishonest (so xiyi 6= zi for some i) and we
compute the probability that the protocol accepts. Note first that, from the prover’s commitments,
vectors cx, cy, ĉz are determined, where we know that x,y and z respectively appear in coordinates
designated by S. Since xiyi 6= zi for some i, it follows that cx ∗ cy 6= ĉz.

Denote by T ⊂ S∗ the index set in the share space where the vectors cx ∗ cy and ĉz agree.
Note that the cardinality of T is at most r̂ − 1, because cx ∗ cy and ĉz are consistent with

different secrets. In order for the prover to be successful, all t entries the verifier asks the prover
to unveil must be in T . The probability that one entry chosen by the verifier is in T is at most
equal to (r̂ − 1)/d, since the choice is uniform. Repeating this argument t times leads to an error
probability at most equal to ((r̂ − 1)/d)t.

To show (honest-verifier) zero-knowledge, the idea is to “execute the protocol” exactly as the
honest prover would have done, but assuming that all secret values are 0. After that, we adjust the
relevant values so they become consistent with the actual values of x,y and z.

So we first generate random vectors ρx0 = (0, rx0), ρy0 = (0, ry0), both consistent with sharing the

all-0 vector. We compute ρ̂z0 = (0, rz0) such that M̂ρ̂z0 = (Mρx0)∗(Mρy0). We then choose a random

subset A ⊂ S∗ of t indices. Note that we have (Mρx0)i(Mρy0)i = (M̂ρ̂z0)i for i ∈ A, and that these
shares have the same distribution as in the real conversation, since any t shares have distribution
independent of the actual secrets. We then form random vectors of commitments [rx0], [ry0], [rz0]. Note
that since the commitment function is a homomorphism from K ×H to G, the neutral element 1G
is a commitment to 0 ∈ K. Therefore we can form vectors of commitments as follows

[ρx0] = ((1G, . . . , 1G), [rx0]), [ρy0] = ((1G, . . . , 1G), [ry0]), [ρ̂z0] = ((1G, . . . , 1G), [rz0]).

As described above, we can assume existence of sweeping vectors wA,j and ŵA,j for the secret

sharing schemes (C, S) and (Ĉ, S), respectively, and we know that the vectors

ρx = ρx0 +

l∑
j=1

xj ·wA,j , ρy = ρy0 +

l∑
j=1

yj ·wA,j , ρ̂z = ρ̂z0 +

l∑
j=1

zj · ŵA,j

are consistent with sharing x,y and z, respectively, but where the subset A gets the same shares as
when 0’s were shared. The simulator cannot compute ρx, ρy, ρ̂z, but it can compute commitments
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to them. Using the fact that the commitments [xj ], [yj ], [zj ] are given and the sweeping vectors are
public, it can compute, for instance, a vector of commitments [xi ·wA,j ] and hence

[ρx] = [ρx0]
l∏

j=1

[xj ·wA,j ], [ρy] = [ρy0]
l∏

j=1

[yj ·wA,j ], [ρ̂z] = [ρ̂z0]
l∏

j=1

[zj · ŵA,j ].

It is easy to verify that because we used neutral elements 1G as the first entries in [ρx0], [ρy0], [ρ̂z0],
the first l entries of [ρx], [ρy], [ρ̂z] as computed above will exactly be [x], [y] and [z]. The simulator
therefore extracts the last e commitments from [ρx] and [ρy], and the last ê commitments from
[ρ̂z], and uses these to simulate the commitments sent in Step 2.

It then outputs the index set A as simulation of step 3.
For step 4, note that the simulator may compute and open commitments to

[(Mρx)i] = [(Mρx0)i], [(Mρy)i] = [(Mρy0)i], [(M̂ρz0)i],

for i ∈ A, where these equalities follow by the sweeping vector properties. By construction, the
opened values satisfy the multiplicative property expected by the verifier.

This simulation is clearly polynomial time, and we argued underway that the distribution of all
values that are opened are exactly as in a real conversation. The commitments [ρx] and [ρy] are
also distributed correctly. Therefore, the only difference between simulation and conversation lies
in the distribution of ρ̂z hidden in [ρ̂z] (in a real conversation, the choice of ρ̂z ensures that the
resulting ĉz satisfies (cx)i(cy)i = (ĉz)i for all indices i, whereas for the simulation this only holds
for i ∈ A). It therefore follows from the hiding property of commitments and a standard hybrid
argument that simulation is computationally indistinguishable from real conversations. ut

In the appendix, we explain how to modify the protocol to work for an unconditionally hiding
commitment scheme.

3.1 Demands to the Secret Sharing Schemes.

Above, we have described the protocol for a fixed secret sharing scheme, but what we really want
is to look at the asymptotic behavior as we increase l, the number of secrets we handle in one
execution. For this, we need a family of secret sharing schemes, parametrized by l, which will make
t, d, e, r̂ and ê be functions of l.

In this notation, the communication complexity of the protocol is O(κ(e+ ê+ t) + t log d) bits,
where κ is the size of a commitment and where we have assumed that opening a commitment
requires sending θ(κ) bits.

Now, suppose we can build a family of secret sharing schemes, where e, ê are O(l), t is θ(l)
and (r̂ − 1)/d is O(1), and finally log d is O(l), then we can achieve the complexities we promised
earlier: the soundness error for one instance of the protocol will be 2−αl for some constant α > 0,
so if necessary, we can achieve 2−l by repeating in parallel a constant number of times. Therefore,
the communication complexity per multiplicative relation proved is indeed O(κ+ l), as promised.

4 Concrete Example Secret Sharing Schemes

As a stepping stone, we consider the following scheme based on Shamir’s scheme. Suppose 2(t +
l − 1) < d and d+ l ≤ |K|. Choose pairwise distinct elements q1, . . . , ql, p1, . . . , pd ∈ K, and define

C = {(f(q1), . . . , f(ql), f(p1), . . . , f(pd)) | f ∈ K[X]≤t+l−1} ⊂ K l+d,
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where K[X]≤t+l−1 denotes the K-vector space of polynomials with coefficients in K and of degree
at most t+ l− 1. Let S correspond to the first l coordinates. Then, by Lagrange Interpolation, it is
straightforward to verify that (C, S) is an l-multi-secret K-linear secret sharing scheme of length
d, with t-privacy and (2t+ 2l− 1)-product reconstruction. So if we set t = l (and hence the degrees
are at most 2l− 1), d = 8l, and |K| ≥ 9l, then 2(t+ l− 1) = 4l− 2 < 8l = d, d+ l = 9l ≤ |K|, and
r̂ = 2t + 2l − 1 = 4l − 1 < 4l = d/2. In particular, r̂−1

d < 1
2 . Moreover, e = 2l, and ê = 4l − 1. So

all requirements are satisfied, except for the fact that in this approach |K| = Ω(log l).

Before we present a scheme which works over a constant size field, yet asymptotically it meets
all requirements, we describe simple, useful lifting technique. Suppose the finite field of interest K,
i.e., the field over which our zero-knowledge problem is defined, does not readily admit the required
secret sharing scheme, but that some degree-u extension L of K does. Then we may choose a K-
basis of L of the form 1, x, . . . , xu−1 for some x ∈ L. It is then easy to “lift” the commitment scheme
and to obtain one that is L-homomorphic instead: simply consider the elements of L as coordinate-
vectors over K, according to the basis selected above, and commit to such a vector by committing
separately to each coordinate. This scheme is clearly homomorphic with respect to addition in
L. Multiplication by (publicly known) scalars from L is easily seen to correspond to applying
an appropriate (publicly known) K-linear form to the vector of K-homomorphic commitments.
Furthermore, K is embedded into L by mapping a ∈ K to a + 0 · x + . . . + 0 · xu−1. When
committing to a ∈ K, simply commit to a in the original commitment scheme, and append u − 1
“default commitments to 0.” This way, the protocol problem can be solved over K, with a secret
sharing scheme over L. However, communication-wise, even though all further parameters may be
satisfied, there are now O(ul) commitments, instead of O(l) as required.

For example, if the above secret sharing scheme is implemented, then since the field K of interest
is of constant size, the field L over which the secret sharing is defined must grow proportionally
to log l. Hence, the total communication is a logarithmic factor off of what we promised. This is
resolved as follows, by using a technique that allows passing to an extension whose degree u is
constant instead of logarithmic.

Let F be an algebraic function field over the finite field Fq with q elements. Write g for its genus
and n for its number of rational points. Suppose 2g+2(t+ l−1) < d and d+ l ≤ n. Choose pairwise
distinct rational points Q1, . . . , Ql, P1, . . . , Pd ∈ F , and define

C = {(f(Q1), . . . , f(Ql), f(P1), . . . , f(Pd)) | f ∈ L(G)} ⊂ Fl+dq ,

where G is a divisor of degree 2g + t + l − 1 whose support does not contain any of the Qj ’s nor
any of the Pi’s, and where L(G) is the Riemann-Roch space of G. As before, let S correspond
to the first l coordinates. Using a similar result as in [3], one proves, using the Riemann-Roch
Theorem that (C, S) is an l-multi-secret Fq-linear secret sharing scheme of length d, with t-privacy
and (2g + 2t + 2l − 1)-product reconstruction. Moreover, e = g + t + l and ê ≤ 3g + 2t + 2l − 1.
Asymptotically, using this result in combination with optimal towers over the fixed finite field Fq
where q ≥ 49 is a square, we get g/n = 1√

q−1 < 1/6. Hence, if we set, for example, t = l = n/20 and

d = 19/20n, then there is Ω(l)-privacy, r̂−1
d < c < 1 for some constant c, and e = Ω(l), ê = Ω(l).

Therefore, at most a degree 6 extension of the field of interest is required, as the maximum is
attained for K = F2 with the extension being F64. Finally, these schemes can be implemented
efficiently.
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5 A More General Approach

In this section we define linear secret sharing with a more general multiplicative property, and
we use the notation from Section 2.2. Let D be an arithmetic circuit over K with v inputs and
one output. Then for c1, . . . , cv ∈ Km, we define D(c1, . . . , cv) ∈ Km as the vector whose j’th
coordinate is D((c1)j , . . . , (cv)j), i.e., we simply apply D to the j’th coordinate of all input vectors.

If C ⊂ Km is a linear subspace, then CD is defined as the K-linear subspace generated by
all vectors of form D(c1, . . . , cv) where c1, . . . , cv ∈ C. Just as for the standard multiplication
property, if (C, S) is a secret sharing scheme, then S offers uniformity in CD, but in general it does
not necessarily hold that S∗ determines S in CD. If it does, however, so that (CD, S) is a linear
secret sharing scheme, then we say that (C, S) offers (r̃, D)-product reconstruction if (CD, S)
offers r̃-product reconstruction.

As a concrete example of this, one may think of Shamir secret sharing. Here, each ci is a
sequence of evaluations of a polynomial fi at a fixed set of points. Then D(c1, . . . , cv) denotes
the vector having coordinates of the form D(f1(j), . . . , fv(j)) for j in the set of evaluation points.
These coordinates can be thought as the evaluations of the polynomial D(f1, . . . , fv) (defined in
the natural way), and sufficiently many of those will determine D(f1, . . . , fv) uniquely.

Based on this more general notion, we can design a protocol where a prover commits to vectors
x1, . . . ,xv, z and wants to prove that D(x1, . . . ,xv) = z.

Similarly to what we assumed in the first protocol, we suppose that both the prover and the
verifier agreed on using an l-multisecret linear secret sharing scheme (C, S), for d players, with
(r̃, D)-product reconstruction, and t-privacy. We fix a generator g : K l+e → C. Moreover, we
suppose that g̃ : K l+ẽ → CD is a generator for (CD, S) and that a public basis for K l+e (respectively
for K l+ẽ) has been chosen such that the linear mapping g (resp. g̃) can be computed as the action

of a matrix M (resp. M̃). The protocol goes as follows:

Protocol Verify Circuit

1. The prover chooses v vectors r1, . . . , rv ∈ Ke, and sets ρj = (xj , rj) for j = 1, . . . , v. Define
cj = Mρj . Now, the prover computes ρ̃z ∈ K l+ẽ such that ρ̃z is consistent with secret z and
such that

M̃ρ̃z = D(x1, . . . ,xv).

Note that this is possible by solving a system of linear equations, because D(x1, . . . ,xv) = z.

We then write ρ̃z = (z, r̃z) for some r̃z ∈ K ẽ. Set c̃z = M̃ρ̃z.

2. The prover sends vectors of commitments [rj ], j = 1, . . . , v and [r̃z] to the verifier. Together with
the commitments to xj and z, the verifier now holds vectors of commitments [ρj ], j = 1, . . . , v,
and [ρ̃z].

3. The verifier chooses t uniform indices O ⊂ S∗.
4. Let mi be the i’th row of M and let m̃i be the i’th row of M̃ . For each i ∈ O, using the

homomorphic property of the commitments, both prover and verifier compute commitments

[(cj)i] = [ρj ]
mi , for j = 1, . . . , v, [(c̃z)i] = [ρ̃z]m̃i .

The prover opens these commitments to the verifier.

5. The verifier accepts if and only if the opened values satisfy D((c1)i, . . . , (cv)i) = (c̃z)i for all
i ∈ O.
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Using a similar proof as for the first protocol, one easily shows

Theorem 2. Assume the commitment scheme used is unconditionally binding and computationally
hiding. Then the above protocol is a computationally honest-verifier zero-knowledge interactive proof
system for the language

{([x1], . . . , [xv], [z]) | D(x1, . . . ,xv) = z}

with soundness error ((r̃ − 1)/d)t.

The interesting question, however, is whether we can build secret sharing schemes with this
type of D-reconstruction and whether the resulting more general protocol offers advantages over
the first one.

The answer to the first question is yes, the construction was already hinted at above: we can
base a scheme on Shamir secret sharing extended à la Franklin and Yung [11] to share blocks of l
secrets. This requires polynomials of degree e = l + t − 1. Since each multiplication in D doubles
the degree of the polynomials, the degree after applying D will be 2δt where δ is the multiplicative
depth of D. This means that ẽ = r̃ = 2δt for this construction, and also we must have d a constant
factor larger than r̃ to get exponentially small error probability.

We assume for simplicity that the cardinality of K is larger than d + l, so that we have the
required number of evaluation points. If this is not the case, we can pass to an extension field at
cost a logarithmic factor, as explained in the previous section. Note that the algebraic geometric
approach presented in Section 2.2 does not give any non-constant improvement over the Shamir-
based approach in this more general setting of product reconstruction with respect to a full circuit D
rather than a single multiplication. However, it appears that the algebraic geometric approach can
be extended so as to get a non-trivial improvement here as well, using more advanced techniques.
A detailed analysis is given in the full version.

We are now in a position to compare two natural approaches to verifying that committed vectors
x1, . . . ,xv, z satisfy D(x1, . . . ,xv) = z:

The first approach is to do the Verify Circuit protocol using the secret sharing scheme we
sketched.

The second approach is to use the Verify Multiplication protocol. The prover will, for every
multiplication gate T in D, commit to a vector zT where (zT )i is the output from T in the instance
of D where the inputs are (x1)i, . . . , (xv)i. Now, for every multiplication gate T the verifier can
compute vectors of commitments [xT ], [yT ] to the inputs to T (since any linear operations in
D “between multiplication gates” can be done by the verifier alone). We then use the Verify
Multiplication protocol to check that xT ∗yT = zT . Each invocation of this protocol costs essentially
κl bits communication, if we choose the parameters to get error probability 2−l, so the total cost
is µκl where µ is the number of multiplication gates in D.

In the first approach the cost will be essentially 2δlκ if again, we go for error probability 2−l

and therefore choose t to be Θ(l).
Notice that large fan-out comes at no cost in our model, and that linear operations with large

fan-in are also for free. Moreover, both approaches generalize easily to circuits with several outputs.
Therefore, there is no fixed relation between µ and δ, in particular, we could consider families of
circuits where δ is constant or logarithmic but µ grows faster than 2δ, for instance. In such a
case, using the Verify Circuit protocol is better, and this has the interesting property that the
amortized cost of verifying a single instance of D can be asymptotically smaller than the number
of multiplication gates in D.
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In the appendix, we sketch a final variant of the Verify Circuit Protocol using the “MPC in the
head approach” [14] where we try to limit the dominating cost of committing to the ẽ entries of r̃z.
The idea is as follows: instead of committing to the values in r̃z in the usual way, the prover will
simply send the required commitments to shares [(c̃z)i] and use the “MPC in the head” approach
to prove to the verifier that the commitments contain the correct shares.

The cost of this approach to generate the required commitments to shares is O(l2κ+ ẽl2k).

This should be compared to the normal protocol where the cost is O((ẽ + l)κ). We see that if
κ > l2k and ẽ > l2 - which may well be the case in practice - then this solution has smaller cost.

6 Proving Integer Multiplication

In the following, we show a protocol designed for the case where the prover’s secret values are
integers. We make use of a specific integer linear secret sharing scheme based on polynomials and
assume that the underlying commitment scheme is computationally binding and unconditionally
hiding. The idea of the protocol is similar to the one for finite fields.

Let

∆ =
∏

i,j=1,...,d,
i 6=j

(i− j),

where d is the number of players. Assume that the secrets s1, . . . , sl to be shared satisfy si ∈
{−2k, . . . , 2k} for all i, for some k. In order to share them, sample random integers a1, . . . , at ∈
{−l2k+u∆d!, . . . , l2k+u∆d!} (where u is the security parameter) and use Lagrange interpolation
over the rationals to find g ∈ Q[X] such that

g(−i) = si and g(−l − j) = aj ,

for i = 1, . . . , l and j = 1, . . . , t. Since there are t + l points to interpolate, g has degree equal
to t + l. Define f = ∆ · g. It follows that f is indeed a polynomial over the integers, since ∆ is
a multiple of each denominator appearing in the coefficients of g. The shares are then the values
f(1), . . . , f(d). Given at least t + l + 1 shares, one can reconstruct the secrets, simply by doing
Langrange interpolation over the rationals.

Furthermore, any set of at most t shares has distribution statistically independent of s1, . . . , sl:
let A be an index set designating t players. By Lagrange interpolation we can construct a polynomial
w′A,i of degree at most t + l with rational coefficients such that w′A,i(−i) = 1 and w′A,i(j) = 0 for
i = 1, . . . , l and for j ∈ A. From the standard construction of w′A,i, it follows that wA,i = ∆w′A,i
has integer coefficients, and that wA,i(−l − 1), . . . , wA,i(−l − t) are all numerically at most ∆d!

Now suppose we have shared the secret consisting of l 0’s using polynomial h. Then f =
h+

∑l
i=1 siwA,i is a polynomial consistent with sharing the secrets s1, . . . , sl, but the shares rising

from f received by player set A are the same as the ones rising from h. If f is such that f(−l −
1), . . . , f(−l − t) are in the correct interval we conclude that the set of shares in question will
be chosen for A with the same probability whether the secrets are 0, . . . , 0 or s1, . . . , sl. But the
evaluations h(−l − 1), . . . , h(−l − t) were chosen in an interval a factor 2u larger than the size
of the the evaluations of

∑l
i=1 siwA,i, and hence h and f are both legal, except with probability

negligible in u. Hence the distribution of shares seen by A is, for any tuple of secrets, statistically
indistinguishable from the distribution for the zeros tuple.
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7 A Protocol to Prove Integer Multiplication

In this section, we give a protocol allowing prover to show that committed vectors x,y, z with
integer entries satisfy x ∗ y = z where, consistently with the previous section, an honest prover
will choose the committed integers from {−2k, ..., 2k}. We use the secret sharing scheme from the
previous section where we set the security parameter u to be l (this is consistent with previous
sections where we have used l as the parameter controlling error probabilities). We use the same
notation for commitments as in previous sections, as an example of the concrete commitment
scheme, the reader may think of the factoring based scheme from [12,10].

Before stating the actual protocol, we fix some notation. Let f be a polynomial of degree equal
to m. Write f(X) =

∑m
j=0 fjX

j . Define f = (f0, . . . , fm) and ev(i) = (1, i, . . . , im). Notice that

f(i) =

m∑
j=0

fj · ij = f · ev(i), and [f(i)] =

m∏
j=0

[fj ]
ij = [f ]ev(i).

The formulation on the right hand side of these equations is the one used in the protocol, which
proceeds as follows.

The prover holds values x = (x1, . . . , xl),y = (y1, . . . , yl) and z = (z1, . . . , zl), has sent commit-
ments [x], [y] and [z] to the verifier. We suppose they both agreed in using the linear secret sharing
scheme described in section 6. Moreover, we suppose there exists an interactive zero-knowledge
proof of knowledge PC for the relation

C = {(a,w) | a = compk(x, r), w = (x, r)} .

Moreover, we assume this interactive proof of knowledge is a Σ-protocol that can prove knowledge
of opening for l commitments at once, with knowledge error 2−l. Conversations in such a protocol
has form (a, e, z) where e is random challenge issued by the verifier. Because commitments are
homomorphic, such a proof of knowledge follows immediately from the techniques described in [6].
In the protocol below, we execute a variant of our protocol from the previous sections in parallel
with PC . Thus the overall protocol will have the form of a Σ-protocol which simplifies the proof of
soundness.

1. The prover chooses ax,ay ∈ Zt and uses Lagrange interpolation (over the rationals) to generate
two polynomials gx, gy, having degree t+ l, such that

gx(−i) = xi, gx(−l − j) = (ax)j , gy(−i) = yi, gy(−l − j) = (ay)j ,

for i = 1, . . . , l and j = 1, . . . , t. The prover now sets ĝz = gx · gy, fx = ∆gx, fy = ∆gy and

f̂z = ∆2ĝz. As explained above, fx and fy are polynomials with integral coefficients and have

degree at most t+ l. Notice that f̂z is also a polynomial with integral coefficients, but has degree
at most 2(t+ l).

2. The prover sends commitments [fx], [fy] and [̂fz].

3. The verifier checks that [x], [y] and [z] are consistent with fx, fy and f̂z: namely for all i = 1, . . . , l
it computes

[fx]ev(−i)[∆xi]
−1, [fy]ev(−i)[∆yi]

−1, [̂fz]ev(−i)[∆2zi]
−1,

and asks the prover to open these commitments to zero. If any of these openings do not agree
with the commitments, the verifier quits.
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4. The prover defines the vector xC = ([x], [y], [z], [fx], [fy], [̂fz]) containing committed values. We
think of xC as a vector of instances for the protocol PC . The prover computes a vector aC as
the first message for the protocol PC with instance xC . the prover sends aC to the verifier.

5. The verifier chooses t uniform indices O ⊂ {1, . . . , d}. Similarly as above, the verifier computes

[fx]ev(i) = [(bx)i], [fy]ev(i) = [(by)i], [̂fz]ev(i) = [(b̂z)i],

for i ∈ O. The verifier generates a vector eC as a challenge on (xC , aC) according to PC . The
verifier sends eC together with the index set O to the prover.

6. The prover computes the vector zC as a reply for (xC , aC , eC) according to PC . The prover
sends zC together with the openings of [(bx)i], [(by)i] and [(b̂z)i] for i ∈ O.

7. The verifier accepts if and only if (xC , aC , eC , zC) is an accepted conversation for PC and the
opened values satisfy (bx)i · (by)i = (b̂z)i for i ∈ O.

In the theorem below, we show soundness and honest verifier zero-knowledge for the above
protocol. It may seem strange at first sight that the theorem does not assume that commitments
are binding. This is because we show that the protocol unconditionally is a proof of knowledge that
either the prover knows x,y, z with the expected multiplicative relation, or he knows a commit-
ment that he can open in two different ways. Using this result in an application, one would apply
the knowledge extractor and then argue that because the commitment scheme is computationally
binding, the possibility that the prover breaks the binding property occurs with negligible proba-
bility. Since the primary example we know of integer commitments ([12,10]) has binding based on
factoring, applications of this result only need to assume factoring is hard, in contrast to earlier
techniques where strong RSA was needed.

Theorem 3. Assume the homomorphic commitment scheme used is unconditionally hiding. Then
the above protocol is a statistical honest-verifier zero-knowledge interactive proof of knowledge for
the relation

M ={(a,w) | a = (pk,Ai, Bi, Ci)
l
i=1 , w = (xi, ri, yi, si, zi, ti)

l
i=1 :

compk(xi, ri) = Ai, compk(yi, si) = Bi, compk(zi, ti) = Ci, zi = xiyi for i = 1, . . . , l}∪
{(a,w) | a = (pk,A) , w = (v, r, v′, r′) : compk(v, r) = A = compk(v

′, r′), v 6= v′}

with knowledge error keM = max{(2(t+ l)/d)t, 2−l}.

Proof. For soundness, for any prover P ∗ that makes the protocol accept with probability p we
build a knowledge extractor EM having running time (p − keM )−1poly(u), where keM is equal to
max{(2(t + l)/d)t, 2−l}. The latter equality allows us to assume p > (2(t + l)/d)t. Note that by
the result from [1], we may assume that P ∗ is deterministic. Therefore p is simply the fraction of
challenges eC , O that P ∗ answers correctly.

(i) EM runs the protocol with P ∗ until step 3; EM stores each opening (v, r) in a list L.
(ii) EM continues the protocol. It receives aC during step 4.
(iii) EM sends eC , O computed according to the protocol at step 5.
(iv) During step 6 EM receives zC and the openings of [(bx)i], [(by)i] and [(b̂z)i] for i ∈ O. EM

rewinds the prover to step 5 and goes to (iii) until it sees two conversations (xC , aC , eC , zC),
(xC , aC , e

′
C , z

′
C) valid for PC and such that eC 6= e′C . At this point EM can retrieve the witness

for xC , namely the values and the randomness used to make the commitments.
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(v) EM checks whether x ∗ y = z. If that is the case, it outputs w = (xi, yi, zi, ri, si, ti)
l
i=1 as a

witness for the committed values [x],[y] and [z] and quits.

(vi) EM performs the check of step 3 on its own, using the retrieved values and randomness. Each
result (v′, r′) is stored on a list L′, using the same ordering as the one for L (i.e. for each
possible j, the j-th entry of L and of L′ correspond to the opening of the same commitment).
If there exists an index j such that Lj = (v, r), L′j = (v′, r′) and v 6= v′, then EM outputs
w = (v, r, v′, r′) as a witness for compk(v, r) = compk(v

′, r′) and quits.

(vii) EM defines T as i ∈ T if and only if xiyi = zi. Then, EM rewinds the prover to step 5 and
sends eC , O according to the protocol.

(viii) During step 6, if for some index i /∈ T the prover outputs (x′i, r
′
i, y
′
i, s
′
i, z
′
i, t
′
i) such that x′iy

′
i = z′i,

then EM outputs w = (xi, ri, x
′
i, r
′
i) if xi 6= x′i, w = (yi, si, y

′
i, s
′
i) if yi 6= y′i, or w = (zi, ti, z

′
i, t
′
i)

if zi 6= z′i and quits. Else EM rewinds the prover to step 5 and repeats this step.

The expected running time of this algorithm can be analyzed as follows:

– Step (i) runs in polynomial time, since EM stores a polynomial amount of data. Notice that the
check at step 3 must pass, since p is bigger than zero.

– Step (ii), (iii), (iv) run in polynomial time. The number of rewindings to pass step (iv) is
bounded by 2(p− 2−l)−1, which is under the constrains. Retrieving the commitments requires
polynomial time (from the special soundness property of sigma protocols).

– Step (v) runs in polynomial time (l multiplications).

– Step (vi) runs in polynomial time, since it requires to perform a polynomial amount of linear
operations and multiplications.

– Step (vii) runs in polynomial time.

– Step (viii) happens if P ∗ makes the test x ∗ y = z fail. We now bound the probability p that
P ∗ succeeds in the protocol in such a situation. In order for P ∗ to be successful, it had to open
the values pointed by O correctly. Since x ∗ y 6= z, then fxfy 6= f̂z. Notice that fxfx and f̂z
are both polynomials of degree 2(t + l) and since they are distinct, they have at most 2(t + l)
roots in common. This implies that one way for P ∗ to succeed is that all the entries in O point
to common roots (that is, O ⊂ T ). Since the choice of O is uniform and independent from
P ∗’s choices, the probability that O ⊂ T is (2(t+ l)/d)t. Since p is assumed to be greater than
(2(t+ l)/d)t, it means there exists some set O 6⊂ T that make P ∗ succeed. The probability for
a uniform O to make P ∗ succeed and O 6⊂ T is equal to p− (2(t+ l)/d)t. This implies that the
expected number of rewinds in step (viii) is equal to (p− (2(t+ l)/d)t)−1; so the total running
time of the algorithm is within the constrains even if it terminates in step (viii).

To show (honest-verifier) zero-knowledge we use the same technique we exploit in the field
scenario. The simulator samples two random polynomials hx, hy of degree t+ l such that hx(−i) =
0 = hy(−i), that is hx, hy are both consistent with sharing the secret consisting of l zeros. It then

computes ĥz = hxhy. Let A ⊂ {1, . . . , d} be a subset of players of size t. Notice that hx(i)hy(i) =

ĥz(i) for all i ∈ A and that these shares have distribution statistically indistinguishable from a
real conversation, since any t shares are essentially independent of the actual secrets. Using the
polynomials wA,i, i = 1, . . . , l we define

fx = hx +

l∑
i=1

xiwA,i, fy = hy +

l∑
i=1

yiwA,i, f̂z = ĥz +

l∑
i=1

∆ziwA,i.
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These three polynomials are consistent with sharing x,y and z, but where the subset A gets the
same shares as when 0’s where shared. The simulator cannot compute these polynomials, but it
can compute commitments to the coefficients. Using the fact that the commitments [x], [y] and [z]
are given, and the polynomials wA,i are public, it can compute commitments

[fx] = [hx]
l∏

k=1

[xk ·wA,k], [fy] = [hy]
l∏

k=1

[yk ·wA,k], [̂fz] = [ĥz]
l∏

k=1

[zk ·∆wA,k].

Step 2 is simulated sending commitments [fx], [fy] and [̂fz]. The verifier in step 3 checks the consis-
tency of the received data and the check passes. We here prove it for xi (with a similar proof one
shows the check passes for yi, zi, for i = 1, . . . , l). The verifier can use the homomorphic properties
of the commitment schemes to check whether

[fx]ev(−i) · [∆xi]−1 = [0].

From the construction of fx, it follows that

[fx]ev(−i) · [∆xi]−1 =

(
[hx]ev(−i) ·

l∏
k=1

[xk ·wA,k]ev(−i)

)
· [∆xi]−1

= [hx(−i)] ·
l∏

k=1

[xk · wA,k(−i)] · [∆xi]−1

= [0] · [∆xi] · [∆xi]−1 = [0].

For step 4, the simulator can compute and open commitments

[(fx)i] = [(hx)i], [(fy)i] = [(hy)i], [(f̂z)i] = [(ĥz)i],

for i ∈ A. By construction, the opened values satisfy the multiplicative property expected by the
verifier.

This simulation is clearly polynomial time, and we argued underway that the distribution of
all values that are opened are statsistically close to those of a real conversation. The commitments
[fx] and [fy] are also distributed correctly. Therefore, the only difference between simulation and

conversation lies in the distribution of f̂z hidden in [̂fz] (in a real conversation, the choice of f̂z ensures
that the resulting b̂z satisfies (bx)i(by)i = (b̂z)i for all indices i, whereas for the simulation this
only holds for i ∈ A). Since commitments are statistically hiding, it follows that the simulation is
computationally indistinguishable from a real conversation. ut

On the complexity of the protocol We now examine the complexity of the integer multiplication
protocol assuming we want a knowledge error that is exponentially small in l, as in previous sections.
It is easy to see that this can be arranged if we choose the parameters t and d to be Θ(l). Recall also
that we already chose the statistical security parameter of the secret sharing scheme to be Θ(l).
With these parameter choices, simple inspection of the protocol and secret sharing scheme shows
that the amortized complexity per multiplication proved is O(κ+ l log l+k). This also includes the
cost of the proof PC : This can be verified by a direct inspection of the technique from [5], for a case
where a proof is given for l commitments in parallel and where the statistical security parameter
of the proof is also set to l.
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A Verify Multiplication Protocol for Unconditionally Hiding Commitments

We briefly sketch how to modify the protocol to work for an unconditionally hiding and compu-
tationally binding commitment scheme. The protocol would then be a proof of knowledge that
the prover can open his input commitments to reveal strings x,y, z with x ∗ y = z. We need
to add in Step 2 that the prover must prove that he knows how to open all the commitments
[x], [y], [z], [rx], [ry], [r̂z]. This can be done by simply invoking the amortized efficient zero-knowledge
protocol from [6] since the commitment function we assume is exactly of the form this protocol can
handle. The overhead introduced by this is only a constant factor.

The proof of zero-knowledge is exactly the same, except that we get perfect (statistical) zero-
knowledge if the commitment scheme is perfect (statistically) hiding.

For soundness, we argue that parameters are chosen such that ((r̂ − 1)/d)t is negligible in
the security parameter, and if the prover convinces the verifier with non-negligible probability,
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then there exists a knowledge extractor that uses the prover to compute openings of his input
commitments to strings x,y, z with x ∗ y = z (except with negligible probability). This algorithm
would first invoke the knowledge extractor for the protocol from [6] to get opening of all the prover’s
initial commitments, to strings x,y, z, rx, ry, r̂z. We claim that except with negligible probability,
we will have x ∗ y = z.

This follows since, as we now argue, if x ∗ y 6= z then we could break the binding property
of the commitments. To see this, notice that from the openings we know of the prover’s initial
commitments, we can use the homomorphic property to compute openings of any commitment to a
share that the prover can be asked to open in Step 4. Call these the predetermined openings. Note
that the shares in question will be consistent with secret sharing the strings x,y, z.

Now we send a random challenge to the prover, and by assumption on the prover, his reply
will pass the verifier’s test with non-negligible probability, i.e., for all i ∈ O, the opened values
sx,i, sy,i, sz,i will satisfy sx,isy,i = sz,i. However, this is not the case for the predetermined openings
of the same commitments: it immediately follows from the soundness proof of the previous theorem
that because the predetermined openings are consistent with actually secret sharing x,y, z, these
openings will satisfy the multiplicative relation with only negligible probability ((r̂ − 1)/d)t (over
the choice of the verifier’s challenge). It follows that with non-negligible probability, there will be at
least one commitment to a share for which the predetermined opening is different from the opening
done by the prover in response to the challenge. We have therefore broken the binding property.

B Using MPC in the Head for the Verify Circuit Protocol

We now sketch a final variant of the Verify Circuit protocol that leads to a complexity that is in
general incomparable to the first one, but for reasonable parameter values will give an improvement.

The idea is as follows: instead of committing to the values in r̃z in the usual way, the prover will
simply send the required commitments to shares [(c̃z)i] and use the “MPC in the head” approach
from [14] (the IKOS compiler )to prove to the verifier that the commitments contain the correct
shares.

To use this approach, one first specifies a multiparty protocol that creates the desired output,
the IKOS compiler will then produce a 2 party zero-knowledge protocol proving the result is correct,
assuming also a suitable commitment scheme (not necessarily the one we use in the basic protocol).

The multiparty protocol goes as follows: we will have a ∈ Θ(l) players, of which a constant
fraction may be actively corrupted. The first step is to generate a set of random secret shared
values r1, . . . , rẽ, shared among the a players using standard Shamir sharing over K. Using a
simple variant of the protocol by Hirt and Berliova based on hyperinvertible matrices, this can
be done in total communication complexity O(ẽlk) bits where k is the size of a field element. We
now set r̃z = (r1, . . . , rẽ) and we let the shares of these values be ru,j , u = 1, . . . , ẽ, j = 1, . . . , a.
Let ni be the last ẽ entries of mi. Then each player outputs a commitment to the inner product
[ti,j ] = [(r1,j , . . . , rẽ,j) · ni].

Let λ1, . . . , λa be the Lagrange coefficients to reconstruct the secret given correct shares. Ev-
erybody can now compute [ti] =

∏
j [ti,j ]

λj .
Note that we do not yet know if the value is correct, but if all virtual players output correct

commitments, then it is easy to see that the desired commitment to (c̃z)i can be computed as a
“linear combination” of the commitments z and [ti].

To check that the ti,j are in fact Shamir shares in ti, and they are all correct, except for a
constant fraction. Therefore it follows that ti is correct if all ti,j are on a polynomial of low enough
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degree. We check this by computing commitments to the “syndrome” of the set of ti,j , these should
contain all 0’s. In a normal multiparty situation, we could not open these commitments, but in our
case a prover is executing the protocol in his head, so we can just ask the prover to open these.

When we compile this protocol to a 2-party protocol, the idea is, as mentioned, that the prover
executes the protocol in his head and commits to the views of all players. We do this with a separate
commitment scheme that does not need to be homomorphic. The verifier asks the prover to open
the views of a randomly chosen unqualified subset of players and checks the views for consistency.
The IKOS results shows that the protocol has not worked correctly, the verifier will reject, except
with probability 2−Θ(a). As a result, we get the commitments to shares we wanted.

Since a and t, the number of opened shares are Θ(l), the cost of this is O(l2κ) bits for the
commitments and ẽl2k bits for the views of virtual players.

This should be compared to the normal protocol where the cost is O((ẽ + l)κ). We see that if
κ > l2k and ẽ > l2 then this solution has smaller cost.
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