
ECDLP on GPU
Lei Xu

State Key Laboratory of Information Security
Institute of Software,Chinese Academy of Sciences

Beijing, China
Email: xuleimath@gmail.com

Dongdai Lin
State Key Laboratory of Information Security

Institute of Software,Chinese Academy of Sciences
Beijing, China

Email: ddlin@is.iscas.ac.cn

Jin Zou
State Key Laboratory of Information Security

Institute of Software,Chinese Academy of Sciences
Beijing, China

Email: zoujing@is.iscas.ac.cn

Abstract—Elliptic curve discrete logarithm problem (ECDLP)
is one of the most important hard problems that modern
cryptography, especially public key cryptography, relies on. And
many efforts are dedicate to solve this problem. In recent days,
GPU technology develops very fast and GPU has become a
powerful tool for massive computation. In this paper, we give
an implementation of parallel Pollard ρ method, for ECDLP
on GPU, and eliminate nearly all the conditional branches in
procedures for big integer, elliptic curve and iteration function.
The experimental result shows that with the help of GPU, we can
gain a speedup of more than one hundred times. The branchless
procedures are also useful for preventing side channel attacks.

I. INTRODUCTION

Elliptic curve discrete logarithm problem (ECDLP) is one of
the most important hard problems that modern cryptography,
especially public key cryptography relies on. Informally, let
P,Q be two points on an elliptic curve E and Q = kP ,
where k is some integer. To solve ECDLP means to find
out the integer k. Many efforts are dedicated to the solve of
ECDLP. For some special parameters, we have very efficient
algorithm(such as for anomalous curve), and in some cases,
we can deduce ECDLP to discrete logarithm problem on
finite field ([1]), which is easier than ECDLP. But for gen-
eral ECDLP, there is no sub-exponent algorithm and parallel
Pollard ρ method([2]) is believed to be the most effective.

Recently, graphic processing units (GPU) are rising as an
exciting new trend in high-performance computing. While
multi-core CPUs generally exploit the task level parallelism,
the GPU computing is based upon a data parallel programming
model. When receiving a workload, a GPU would launch
tens of thousands of fine-grained threads concurrently, with
each thread executing the same program but on different
chunk of data. NVIDIA’s latest GPU GTX480, could de-
liver a peak double-precision arithmetic rate of 168 Gflops.
Meanwhile, GPU programming has been made accessible to
non-graphic programmers with NVIDIA’s Compute Unified
Device Architecture (CUDA) technology([3], [4]). [5] gave
some description of solving ECC2K-131 using GPU, but
without detailed information.

In this paper, we give a method to implement the parallel
Pollard ρ method on GPU. Detailed information on related
algorithms such as integer and finite field is also provided.
The preliminary experimental result is encouragement: the
GPU is about 100 times faster than traditional CPU for this
application.

The rest of this paper is organized as follows. Section
II gives a brief introduction to elliptic curve over GF (2n)
and parallel ρ method. Section III sketches NVIDIA’s GPU
technology and programming environment CUDA. Section
IV gives detailed information about our implementation of
parallel Pollard ρ method for ECC2K-163 on GPU. Finally
we give the experimental result and draw a conclusion in
Section V.

II. SOME BACKGROUND

A. Elliptic Curve over GF (2n)

For elliptic curve E : y2 + xy = x3 + ax2 + b defined on
GF (2n), the addition laws for points are as follows:

1) Identity. For every P ∈ E(GF (2n)), we have P +O =
O + P = P ;

2) Negative. If P = (x, y) ∈ E(GF (2n)), then (x, y) +
(x, x+y) = O, and denote (x, x+y) as −P , called the
negative of P . Specifically, O = −O;

3) Addition. Let P = (x1, y1), Q = (x2, y2) ∈
E(GF (2n)) and P 6= ±Q, then P + Q = (x3, y3),
where

λ =
y1 + y2
x1 + x2

x3 = λ2 + λ+ x1 + x2 + a

y3 = λ(x1 + x2) + x3 + y1;

4) Doubling. Let P = (x1, y1) ∈ E(GF (2n)) and P 6=
−P , then 2P = (x3, y3), where

λ = x1 + y1/x1

x3 = λ2 + λ+ a

y3 = x21 + λx3 + x3.

B. Parallel ρ Method

ρ method is a general method to calculate discrete loga-
rithms over Abelian groups. It was first proposed by Pollard
in [6] and its time complexity is about O(

√
n), where n is the

size of the group.
Let G be cyclic Abelian group, g, h ∈ G, g is a generator

of G and h = gx. The basic principle of ρ method is to find
integers a1, b1, a2, b2 s.t.

ha1gb1 = ha2gb2

If a1 − a2 is relative prime to |G|, then we have

x ≡ (b2 − b1)(a1 − a2)−1 mod |G| (1)

ρ method relies on a random function f . First initialize a
beginning element X0 = hx0gy0 . Then we calculate X1 =
f(X0), X2 = f(X1) and so on. Until we get a collision s.t.
Xi = Xj .

Paul C. van Oorschot and Michael J. Wiener proposed a
parallel ρ method with linear speedup([2]). First we define
some ”distinguished points”, which satisfy some criteria. Then
we run an iteration function for each processor with differ-
ent random initial point. If during an iteration, we find a
distinguished point, the point is send to a central processor.
The central processor is responsible for distinguished points
storage and collision detection.

III. GPU AND CUDA

In this work, we use NVIDIA’s CUDA platform. Here we
briefly review the characters of CUDA hardware and software.
See [3] and [4] for more detailed information.

The GPU we used in this work is NVIDIA Tesla C1060.
It is not the latest flagship GPU chip of NVIDIA but has
already offer great computation ability. The main computing
resource is organized as an array of 30 streaming multiproces-
sors (SMs), and each SM has 8 streaming processors (SPs).
NVIDIA’s GPU offers various memories: global memory,
texture memory, constant memory, local memory and register.
The capacity and speed of these memory difference largely.
Generally speaking, the larger the storage space, the slower
the access speed.

A CUDA program is composed of codes running on both
CPU and GPU. And the GPU code would be concurrently
executed by GPU as coordinated by CPU. The function called
by CPU but executed on GPU is named as a kernel. One
CUDA program could have multiple kernels executed sequen-
tially. According to the CUDA model, a GPU application could
launch tens of thousands of threads, with each running the
same program on different data sets. Thread is the minimum
unit of parallel execution, and the code inside a thread runs
sequentially. A number of threads are organized into a block,
and a number of blocks are organized into a grid. Threads in
the same block are reside on the same SM and these threads
can exchange data through shared memory. CUDA also offers
some methods for synchronization between GPU threads and
between kernel and CPU program.

Performance optimization on GPU revolves around three
basic strategies:

• Maximize parallel execution to achieve maximum utiliza-
tion;

• Optimize memory usage to achieve maximum memory
throughput;

• Optimize instruction usage to achieve maximum instruc-
tion throughput.

The essence of parallel Pollard ρ method is suitable for
GPU, so the main concerns are to optimize memory and
instruction usage, especially the control flow instructions.
Any flow control instruction (if, switch, do, for,
while) can significantly impact the effective instruction
throughput by causing threads of the same warp to diverge
(i.e. to follow different execution paths). If this happens, the
different executions paths have to be serialized, increasing the
total number of instructions executed for this warp. When
all the different execution paths have completed, the threads
converge back to the same execution path.

IV. OUR DESIGN AND IMPLEMENTATION

In this section, we give detailed information about our
design and implementation of ECC2K-163 on GPU with
CUDA. However, our design is not specific to the parameters
of ECC2K-163, it can be easily extended to other curves
over GF (2n). Also note that in this work we only consider
polynomial basis representation for elements of GF (2n).

In the following descriptions of algorithms, ”&” stands for
AND operation and ”⊕” stands for XOR operation.

A. Parameters of ECC2K-163

The parameters of ECC2K-163 are as follows:
• The elliptic curve:

E : y2 + xy = x3 + x2 + 1

• The field polynomial:

p(x) = x163 + x8 + x2 + 1

• The base point order:

n = 00000004 00000000 00000000

00020108 A2E0CC0D 99F8A5EF

• The base point P = (Px, Py)

Px = 00000002 091945E4 2080CD9C

BCF14A71 07D8BC55 CDD65EA9

Py = 00000006 33156938 33774294

A39CF6F8 C175D02B 8E6A5587 (2)

• The public key point Q = (Qx, Qy)

Qx = 00000000 7530EE86 4EDCF4A3

1C85AA17 C197FFF5 CAFECAE1

Qy = 00000007 5DB1E80D 7C4A92C7

= BBB79EAE 3EC545F8 A31CFA6B

B. Overall Roadmap

The overall roadmap is as follow:

1) GPU threads start from different random points on the
elliptic curve and iterate independently;

2) A cache is set in global memory to save distinguished
points and an variable counter is maintained for the
next position to save distinguished point;

3) If a thread find a distinguished point, use the CUDA
atomic instruction atomicAdd() to increase counter,
and the point is saved in the cache at position stored in
previous counter;

4) When the cache is full, all the data is copied to host
memory or disk.

C. Judgement of Distinguished Points

The criteria for distinguished point is in fact a trade-off
between time and space: If the criteria is easy to achieve, then
we will gain more distinguished points and get the desired
discrete logarithm more quickly, but at the same time the space
consumption will increase, and vise versa.

Here we use the hamming weight of the x-coordinate of
a point as the criteria. CUDA offers a function to get the
hamming weight of a 32 bits integer, so the hamming weight
of the x-coordinate of a point can easily been obtained.

D. Iteration Function Implementation

We just select the simple iteration function firstly given by
Pollard in [6]. The functions used in the iteration are given in
the following sections.

Let Ti = aiP + biQ, the iteration function is Ti+1 =
f(Ti)and:

f(Ti) =


Ti + P, ai ← ai + 1, hw(Ti.x) mod 3 = 0

Ti + Ti, ai ← ai + ai, hw(Ti.x) mod 3 = 1

bi ← bi + bi

Ti +Q, bi ← bi + 1, hw(Ti.x) mod 3 = 2
(3)

In order to keep the iteration function branch free, let

Ti = Ti + k1P + k2Q+ k3Ti,

ai = ai + l1ai + l2,

bi = bi +m1bi +m2,

where k1, k2, k3, l1, l2,m1,m2 ∈ {0, 1}.
According to the iteration function we choose, these values

can be set as in Table I.

E. Integer Representation and Related Algorithms

In this work we concern the Certicom ECC2K-163
challenge, so only integers less than n are considered.

TABLE I
THE PARAMETERS SETTING FOR ITERATION FUNCTION

HW (Ti) mod 3
0 1 2

k k1 = 1 k1 = 0 k1 = 0
k2 = 0 k2 = 0 k2 = 1
k3 = 0 k3 = 1 k3 = 0

l l1 = 0 l1 = 1 l1 = 0
l2 = 1 l2 = 0 l2 = 0

m m1 = 0 m1 = 1 m1 = 0
m2 = 0 m2 = 0 m2 = 1

1) Data Structure for Big Integer: Suppose the word size
is 32 bits, we use 6 words to represent an integer. In order
to keep the implementation branch free, only the low 28 bits
of each word are used except the highest word. So there are
totally 172 bits for an integer.

Specifically, an integer a is represented by A[5]A[4] . . . A[0],
s.t.

a = A[0] +A[1]228 +A[2]256 + · · ·+A[5]2140,

the low 28 bits of A[0], A[1], A[2], A[3], A[4] are used and the
whole word A[5] can be used for the representation.

2) Addition of Big Integers: The addition of two integers
is carried out in two stage:

1) Add the corresponding words of the two integers;
2) Process the carries.
Note that this two-stage strategy is applicable because we do

not use the whole word for big integers(except for the highest
one), so addition of words will not cause overflow.

Algorithm 1 describes the addition procedure, the first loop
(line 1 to 3 of Algorithm 1) is for word additions, and
the second loop (line 4 to 7 of Algorithm 1) is for carries
treatment.

Algorithm 1: Addition of Big Integers
Input: Big integer a, b
Output: c = a+ b

1 for i from 0 to 5 do
2 C[i]← A[i] +B[i]
3 end
4 for i from 0 to 4 do
5 C[i+ 1]← C[i+ 1] + (C[i] >> 28)
6 C[i]← C[i] & 0x0FFFFFFF
7 end
8 return c

3) Modulus of Big Integers n: The same representation
method is used for the modular number n(the order of point
P), that is to say

n = N [0] +N [1]228 +N [2]256 + · · ·+N [5]2140,

where N [5] = 0x0400000, N [4] = 0x0000000, N [3] =
0x0000000, N [2] = 0x020108A2, N [1] =
0x0E0CC0D9, N [0] = 0x09F8A5EF.

We do not do modular operation as soon as an addition is
completed, only in the case that the integer a is much bigger
than the moduli n (that is, the highest 4 bits of A[5] are used),
a modular operation is taken place.

The modular operation also works in two stages:
1) Borrows in advance and subtract n. Because the highest

4 bits of A[5] are used, A[5] is strictly larger than N [5],
so after subtract N [5] from A[5], A[4] can borrow a digit
from A[5]. This ensures that A[4] > N [4]. Repeat the
same procedure and at last we subtract N [0] from A[0].

2) Process possible carries. In the first stage, unnecessary
borrows may be done, so we treat these problems in this
stage.

Algorithm 2 describes the procedure of modulus.

Algorithm 2: Modulus of Big Integers n
Input: Big integer a and moduli n
Output: c = a mod n

1 T ← ((A[5] & 0xF0000000) == 0) · 0xFFFFFFFF
2 C[5]← C[5]− (T & N [5]), C[5]← C[5]− 1
3 C[4]← C[4] | 0x10000000, C[4]← C[4]− 1
4 C[3]← C[3] | 0x10000000, C[3]← C[3]− 1
5 C[2]← C[2] | 0x10000000,
C[2]← C[2]− (T & N [2]), C[2]← C[2]− 1

6 C[1]← C[1] | 0x10000000,
C[1]← C[1]− (T & N [1]), C[1]← C[1]− 1

7 C[0]← C[0] | 0x10000000,
C[0]← C[0]− (T & N [0])

8 for i from 0 to 4 do
9 C[i+ 1]← C[i+ 1] + (C[i] >> 28)

10 C[i]← C[i] & 0x0FFFFFFF
11 end
12 return c

F. Finite Field Element Representation and Related Algo-
rithms

1) Data Structure for Finite Field Element: Using poly-
nomial basis, element of GF (2n) is represented by an array
naturally. Specifically, for e ∈ GF (2n),

e = E[0]E[1] . . . E[5],

where the lowest bit of E[0] is the constant coefficient of the
corresponding polynomial.

2) Addition of Finite Field Elements: The addition of two
elements is simple. We can just XOR the corresponding words
of two finite field elements and get the result.

3) Multiplication of Finite Field Elements: Multiplication
of finite field elements is done by multiplication of two
polynomials and then reduce the result with p(x).

We adopt the multiplication algorithm of NTL([7]), which
extend the original Karatsuba-Ofman algorithm([8], [9]).

1) For multiplication of 1 word polynomials, use school
book shift-add algorithm, and denote this operation by
MUL_1;

2) For multiplication of 3 words polynomials, use 3-way
Karatsuba-Ofman multiplication, denoted by MUL_3
(Algorithm 3);

3) For multiplication of 6 words polynomials, use 2-way
Karatsuba-Ofman multiplication, denoted by MUL_6
(Algorithm 4).

Note that for the 1 word polynomials multiplication, NTL
([7]) use some pre-computation, but we just use the naive shift-
add algorithm, because the space cost of pre-computation.

Algorithm 3: Multiplication of 3 Words Polynomi-
als(MUL_3)

Input: Polynomial a and b, where a, b can be represent
by 3 words

Output: c = a · b
1 Allocate temporary storage
d0[2], d1[2], d2[2], d01[2], d02[2], d12[2]

2 MUL_1(d0, A[0], B[0])
3 MUL_1(d1, A[1], B[1])
4 MUL_1(d2, A[2], B[2])
5 MUL_1(d01, A[0]⊕A[1], B[0]⊕B[1])
6 MUL_1(d02, A[0]⊕A[2], B[0]⊕B[2])
7 MUL_1(d12, A[1]⊕A[2], B[1]⊕B[2])
8 C[0]← d0[0]
9 C[1]← d0[1]⊕ d01[0]⊕ d1[0]⊕ d0[0]

10 C[2]← d01[1]⊕d1[1]⊕d0[1]⊕d02[0]⊕d2[0]⊕d0[0]⊕d1[0]
11 C[3]← d02[1]⊕d2[1]⊕d0[1]⊕d1[1]⊕d12[0]⊕d1[0]⊕d2[0]
12 C[4]← d12[1]⊕ d1[1]⊕ d2[1]⊕ d2[0]
13 C[5]← d2[1]
14 return c

It can be easily seen that the multiplication algorithm is
branch free.

Reduction with p(x) = x163 + x8 + x2 +1 is similar to the
reduction algorithms for the NIST recommended irreducible
polynomials, see [10] for referee.

We describe the reduction algorithm in Algorithm 5.
4) Inversion of Finite Field Element: We use Fermat’s Little

Theorem for inversion computation. This algorithm has two
advantages:

• This algorithm is simple and branch free;
• This algorithm can applied to ZERO element and the

inversion result is also ZERO, which is an useful property
in point addition.

5) Multiplication of Finite Field Element with a Bit: In the
points addition procedure, we have to do some multiplications
of finite field element and a bit. This operation can be
done using ordinary multiplication but the cost is expensive.
Here we give a much simpler algorithm for this operation
(Algorithm 6).

G. Representation of Points on Elliptic Curve and Related
Algorithms

For detailed information about elliptic curve and related
theory, we refer the readers to [10] and [11]. Here we focus

TABLE II
PARAMETERS CONFIGURATION FOR ELLIPTIC CURVE POINTS ADDITION

P1 or P2 = O P1 = −P2 P1 6= P2 6= O P1 = P2 6= O
λ 0 0 N/A N/A
` 0 0 1 1
m irrelevant with m1 irrelevant with m1 m1 = 1 m1 = 0

m2 = m5 = 0 m2 = m5 = 0 m2 = 0,m5 = 1 m2 = m5 = 1
m3 = m4 = 1 m3 = m4 = 0 m3 = 1,m4 = 0 m3 = m4 = 0

k irrelevant with k1, k2 irrelevant with k1, k2 k1 = 1, k2 = 0 k1 = 0, k2 = 1
k3 = 1 k3 = 1 k3 = 1 k3 = 0

t 0 irrelevant with t 1 1

Algorithm 4: Multiplication of 6 Words Polynomials
Input: Polynomial a and b, where a, b can be represent

by 6 words
Output: c = a · b

1 Allocate temporary storage hs0[3], hs1[3], hl2[6]
2 hs0[0]← A[0]⊕A[3]
3 hs0[1]← A[1]⊕A[4]
4 hs0[2]← A[2]⊕A[5]
5 hs1[0]← B[0]⊕B[3]
6 hs1[1]← B[1]⊕B[4]
7 hs1[2]← B[2]⊕B[5]
8 MUL_3(c, a, b)
9 MUL_3(c+ 6, a+ 3, b+ 3)

10 MUL_3(hl2, hs0, hs1)
11 hl2[0]← hl2[0]⊕ C[0]⊕ C[6]
12 hl2[1]← hl2[1]⊕ C[1]⊕ C[7]
13 hl2[2]← hl2[2]⊕ C[2]⊕ C[8]
14 hl2[3]← hl2[3]⊕ C[3]⊕ C[9]
15 hl2[4]← hl2[4]⊕ C[4]⊕ C[10]
16 hl2[5]← hl2[5]⊕ C[5]⊕ C[11]
17 C[3]← C[3]⊕ hl2[0]
18 C[4]← C[4]⊕ hl2[1]
19 C[5]← C[5]⊕ hl2[2]
20 C[6]← C[6]⊕ hl2[3]
21 C[7]← C[7]⊕ hl2[4]
22 C[8]← C[8]⊕ hl2[5]
23 return c

on the arithmetic implementation problems on GPU.

1) Data Structure for Point on Elliptic Curve: Although
using projective coordinate can avoid the expensive inversion
operation in point addition, it is inconvenient to judge whether
a point is distinguished or not. So we choose affine coordinate
for points and each point is represent by two finite field
elements. The point at infinity is represented by two zero
elements.

Algorithm 5: Reduction with p(x) = x163+x8+x2+x+1

Input: Polynomialc(x),degree(c(x)) ≤ 324
Output: d(x) = c(x) mod p(x)

1 for i from 10 to 6 do
2 T ← C[i]
3 C[i− 6]← C[i− 6]⊕ (T << 29)⊕ (T <<

30)⊕ (T << 31)
4 C[i− 5]← C[i− 5]⊕ (T >> 3)⊕ (T >>

2)⊕ (T >> 1)⊕ (T << 5)
5 C[i− 4]← C[i− 4]⊕ (T >> 27)
6 end
7 T ← C[5] >> 3
8 C[0]← C[0]⊕ (T << 8)⊕ (T << 2)⊕ (T << 1)⊕ T
9 C[1]← C[1]⊕ (T >> 24)⊕ (T >> 30)⊕ (T >> 31)

10 C[5]← C[5] ∧ 0x07
11 for i from 0 to 5 do
12 D[i]← C[i]
13 end
14 return d

Algorithm 6: Multiplication of Finite Field Element and
Bit

Input: Finite field element a, a bit b saved in a word
Output: c = a · bit

1 T ← bit · 0xFFFFFFFF
2 C[0]← A[0] ∧ T
3 C[1]← A[1] ∧ T
4 C[2]← A[2] ∧ T
5 C[3]← A[3] ∧ T
6 C[4]← A[4] ∧ T
7 C[5]← A[5] ∧ T
8 return c

2) Addition of Points on Elliptic Curve E: Let P3 = P1 +
P2, Pi = (xi, yi)(i = 1, 2, 3), and

λ =
y1 + k1y2 + k2x

2
1

x1 + k3x2
· t, (4)

x3 = λ2 + λ+ x1 + x2 + `, (5)
y3 = m1λx1 +m2x

2
1 + λx3 (6)

+m3y1 +m4y2 +m5x3. (7)

TABLE III
GPU AND CPU TIME CONSUMPTION COMPARISION FOR ITERATION

Hardware Intel i7 NVIDIA Tesla C1060
Number of Iteration 60× 96× 16 60× 96× 16

(each thread does 16 iterations)
Time 447.007 sec 2.732 sec

where k1, k2, k3, `,m1,m2,m3,m4,m5, t ∈ {0, 1}.
These values are set to fit different point addition situations,

as stated in Table II.
We will prove that formula 4,5, 6 are consistent with

the original point addition formula if the parameters are set
according to Table II.

1) If at least one of the points is infinity point, then
according to Table II

x3 = x1 + x2

y3 = y1 + y2

2) If one point is the negative of the other, then according
to Table II

x3 = x1 + x2 = 0

y3 = 0

3) If P1 6= P2 6= O, then according to Table II

λ = (y1 + y2)/(x1 + x2)

x3 = λ2 + λ+ x1 + x2 + 1

y3 = λx1 + λx3 + y1 + x3

4) If P1 = P2, then according to Table II

λ = (y1 + x21)/x1 = x1 + y1/x1

x3 = λ2 + λ+ x1 + x2 + 1 = λ2 + λ+ 1

y3 = x21 + λx3 + x3

In summary, in all the conditions, formula 4, 5, 6 are consistent
with the point addition.

V. EXPERIMENTAL RESULTS AND ANALYSIS

The experimental environment is as follows: NVIDIA Tesla
C1060 GPU, Intel i7 CPU with 8G memory. The operation
system is Windows XP Professional 64, and the programming
environment is Visual Studio 2008 SP1 + CUDA 3.1.

Because the efficiency of parallel Pollard ρ method is largely
determined by the speed of iteration, we record the time of
running the same number of iterations.

• for CPU, use one thread to do the iteration;
• for GPU, use 60× 96 threads (60 blocks, and 96 threads

per block).
The result is summarized in Table III.
Note that our branch free implementation of addition of

elliptic curve points is also useful to prevent side channel
attacks. Also note that there are many tricks to accelerate the
parallel Pollard ρ method, such as considering the negative
point. But we don’t involve such tricks in our current imple-
mentation. So we believe there is still much room for further
improvement.

REFERENCES

[1] A. J.Menezes, T. Okamoto, and S. A.Vanstone, “Reducing elliptic
curve logarithms to logarithms in a finite field,” IEEE Transactions on
Information Theory, vol. 39, pp. 1639 – 1646, 1993.

[2] P. C. van Oorschot and M. J. Wiener, “Parallel collision search with
cryptanalytic applications,” Journal of Cryptology, vol. 12, pp. 1–28,
1999.

[3] NVIDIA. (2009) Nvidia cuda c programming guide. NVIDIA. [Online].
Available: www.nvidia.com/object/cuda home.html

[4] ——. Nvidia cuda c programming best practices guide. NVIDIA.
[Online]. Available: www.nvidia.com/object/cuda home.html

[5] D. V. Bailey, L. Batina, D. J. Bernstein, P. Birkner, J. W. Bos, H.-C.
Chen, C.-M. Cheng, G. van Damme, G. de Meulenaer, L. J. D. Perez,
J. Fan, T. Gneysu, F. Gurkaynak, T. Kleinjung, T. Lange, N. Mentens,
R. Niederhagen, C. Paar, F. Regazzoni, P. Schwabe, L. Uhsadel, A. V.
Herrewege, and B.-Y. Yang, “Breaking ecc2k-130,” Cryptology ePrint
Archive, Report 2009/541, 2009, http://eprint.iacr.org/.

[6] J. M. Pollard, “Monte carlo methods for index computation (mod p),”
Mathematics of Computation, vol. 32, pp. 918–924, 1978.

[7] V. Shoup. Ntl: A library for doing number theory. [Online]. Available:
http://www.shoup.net/ntl/

[8] A. A. Karatsuba and Y. P. Ofman, “Multiplication of multidigit numbers
on automata.” Soviet Physics Doklady, vol. 7, pp. 595 – 596, 1963.

[9] D. E. Knuth, The Art of Computer Programming. Addison-Wesley,
1981, vol. 2.Seminumerical Algorithms.

[10] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve
Cryptography. Springer-Verlag, 2004.

[11] J. H.Silverman, The Arithmetic of Elliptic Curves, ser. Graduate Texts
in Mathematics. Springer-Verlag, 1986.

