
Fast and Private Computation of Set
Intersection Cardinality

Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik

University of California, Irvine

Abstract. The use of sensitive electronic information has increased
tremendously in recent years. In many realistic application scenarios, le-
gitimate needs for sensitive information must be reconciled with privacy
concerns. This has motivated various privacy-protecting cryptographic
techniques, such as Private Set Intersection (PSI) and Private Set Union
(PSU). Such techniques involve two parties – a client and a server –
each holding a private data set: the client learns only the intersection (or
union) of the two respective sets, while the server learns nothing. How-
ever, it is often imprudent to use PSI and PSU protocols alone, since their
use may offer little or no privacy for the server. Instead, prospective par-
ticipants in PSI/PSU protocols should use their respective policies to
decide whether or not to participate. Policies can be based on variables,
such as the size of set intersection and its relationship to the entire set
size. To enable policy considerations in advance of private set operations,
we need a cryptographic primitive called Private Set Intersection Car-
dinality (PSI-CA), which yields only the size of set intersection. PSI-CA
protocols are also particularly appealing in numerous realistic scenarios
where it is crucial to obtain the magnitude – rather than the content –
of the set intersection.
This paper motivates the need for PSI-CA and constructs a very effi-
cient (i.e., linear-complexity) protocol. Efficiency claims are supported
by experiments with prototype implementations. Finally, an extension
to support authorization of client input is also sketched.

1 Introduction & Motivation

Proliferation of, and growing reliance on, electronic information fuel the in-
crease of sensitive data in cyberspace. Privacy concerns have motivated the
need for efficient privacy-preserving cryptographic mechanisms, such as Pri-
vate Set Intersection (PSI) [11,22,14,19,15,20,9,8], and Private Set Union (PSU)
[22,15,17,12].

PSI techniques allow one party (client) to compute the intersection of its
input set with that of another party (server), such that: (i) the server learns
nothing about client input, and (ii) the client learns no information about server
input, beyond the intersection. Recently, efficient PSI protocols have been used
as the main building block for many privacy-focused systems and applications,
including location sharing [25], collaborative botnet detection [24], smartphone
applications [6], on-line gaming [4], and intelligence-community systems [18].

Nonetheless, in certain scenarios, PSI and PSU techniques offer limited pri-
vacy for the server. Consider, for instance, an extreme case where the set inter-
section learned by the client corresponds to the entire server input. In this case,
server privacy is non-existent, whereas, client privacy is fully preserved. Simi-
larly, suppose that the size of the union equals the sum of the two respective set
sizes: the server has no privacy since its entire input is disclosed to the client.
Both examples illustrate the need for the server to establish and enforce its own
policy. Such a policy might require the server to determine (in privacy-preserving
manner) cardinality of set intersection before deciding whether or not to engage
in PSI or PSU interactions with the client.

Moreover, private computation of cardinality of set intersection is crucial in
many scenarios where the client is allowed to only obtain the magnitude – rather
than the content – of the set intersection. Recently, the work in [2] advocates the
availability of efficient PSI-CA constructs to perform privacy-preserving pater-
nity testing. PSI-CA also appeals to the case where two parties want to compare
their respective sets of friends and their policy is to become friends if they have
at least a given number of friends in common. Other interesting applications of
PSI-CA include role-based affiliation-hiding authentication [1] as well as associ-
ation rule mining [21].

Roadmap. In this paper, we investigate Private Set Intersection Cardi-
nality (PSI-CA) – a cryptographic primitive involving a server S (on input
of a private set S) and a client C (on input of a private set C). It results in the
client outputting |S∩C|. Prior work yielded some PSI-CA constructs, however, as
demonstrated by this paper, none is efficient enough for real-world applications.
In fact, available PSI-CA protocols involve a number of cryptographic opera-
tions (such as modular exponentiations) quadratic in the size of participants’
sets. Also, some constructs additionally incur quadratic communication over-
head as well. On the contrary, this paper presents the first PSI-CA technique
with linear computation and communication complexity. Proposed technique
uses efficient cryptographic operations involving only a linear number of short-
exponent modular exponentiations and provides provably secure privacy guaran-
tees. We also show that PSI-CA can be used as a building block for policy-based
privacy-preserving set operations and present an efficient three-round Policy-
based Private Set Intersection protocol. In it, the server fixes a policy the
disclosure of set intersection – bounded to the size of the intersection. Finally,
we sketch a protocol variant, called Authorized Private Set Intersection
Cardinality (APSI-CA), where client input must be authorized (signed) by
some recognized and mutually trusted authority (CA).

Paper Organization. Next section reviews related work on privacy-preserving
set operations. Then, Section 3 presents our novel protocol for Private Set In-
tersection Cardinality (PSI-CA), along with security proofs and performance
evaluation (and comparison to prior work). In Section 4, we propose a three-
round policy-based Private Set Intersection based on our PSI-CA construct, and

2

conclude in Section 5. Finally, Appendix A sketches a protocol for Authorized
Private Set Intersection Cardinality (APSI-CA).

2 Related Work

Prior work yielded several approaches to privacy-preserving set operations,
which we review below.

Private Set Intersection and Union

The work in [11] introduces the Private Set Intersection (PSI) problem and
present techniques using Oblivious Polynomial Evaluations (OPE-s) and addi-
tively homomorphic encryption (e.g., Paillier [26]). The intuition is to represent
a set as a polynomial, and its elements – as the polynomial’s roots. The client
uses an additively homomorphic cryptosystem to encrypt the coefficients, that
are then evaluated homomorphically by the server, such that the client learns
the intersection (and nothing else) upon decrypting. Assuming that server and
client sets contain w and v items, respectively, client’s computation complex-
ity amounts to O(w + v) exponentiations, and server’s – O(wv) exponentia-
tions. [11] also proposes techniques to asymptotically reduce server’s workload
to O(w log log v) using Horner’s rule and balanced bucket allocation. Next, [15]
obtains similar complexities but also extend their techniques to the PSU prob-
lem, while [22] extends OPE-s to more than two players, all learning the intersec-
tion/union, with quadratic computational and linear communication complexi-
ties.

Other PSI constructs, such as [14,19], rely on Oblivious Pseudo-Random
Functions (OPRF-s) and reduce computation overhead to a linear number of ex-
ponentiations. Recent results in the Random Oracle Model (ROM) obtain very
efficient PSI protocols, also with linear complexities but using much more effi-
cient cryptographic tools: they replace OPRFs with unpredictable functions [20]
and blind signatures [9], with security under One-More-DH and One-More-RSA
assumptions [3], respectively. Finally, the work in [8] achieves linear communica-
tion and computational complexities, using short exponents, with security under
the DDH assumption.

Authorized Private Set Intersection

Authorization of client input was first investigated, independently, in [5]
and [7] (both with quadratic complexities). Later, this concept was formalized
as Authorized Private Set Intersection (APSI) in [9] and [8], where efficient tech-
niques with linear computation and communication overhead are proposed, with
security under the RSA assumption.

3

Private Set Intersection Cardinality

Prior work has proposed a number of Private Set Intersection Cardinality
(PSI-CA) protocols, which we review below. Note that none of these achieve
practical—specifically, linear-complexity—overhead.

• Note that the PSI protocol by Freedman, Nissim, and Pinkas [11] can actu-
ally be extended to PSI-CA, with similar complexities – i.e., O(w log log v)
computational and O(w+v) communication overhead (again, assuming that
server and client sets contain w and v items).

• Hohenberger and Weis [16] present a PSI-CA protocol based on [11], thus,
achieving similar (sub-quadratic) complexities. [16] also shows that one can
use the additively homomorphic Elgamal variant (rather than Paillier), hence,
using shorter exponents and speeding up computation.

• Kissner and Song [22] propose a PSI-CA construct for multiple (n) play-
ers, incurring O(n2 · v) communication and O(v2) computational overhead
(assuming all parties hold set of size v).

• Vaidya and Clifton [29] also propose a multi-party PSI-CA, based on commu-
tative one-way hash functions [23], using Pohlig-Hellman [27], and incurring
n rounds, O(n2 · v) communication and O(vn) computational overhead.

• Narayanan, et al. [28] present a PSI-CA protocol with information-theoretic
security, however, with high computation and communication overhead. [28]
also requires the presence of a semi-trusted third party.

• Finally, Camenisch and Zaverucha [5] present an APSI variant (specifically,
so-called intersection of certified sets) that computes the cardinality of (cer-
tified) set intersection and incurs quadratic communication and computation
complexity.

3 Efficient Private Set Intersection Cardinality

In this section, we define the Private Set Intersection Cardinality (PSI-CA)
functionality, along with its privacy requirements. Next, we present our efficient
construct.

Definition 1 (Private Set Intersection Cardinality (PSI-CA)). A proto-
col involving a server, on input a set of w items, S = {s1, . . . , sw}, and a client,
on input a set of v items, C = {c1, · · · , cv}. It results in client outputting |I|,
where I = S ∩ C.

PSI-CA entails the following (informal) privacy requirements:

• Server Privacy. The client learns no information beyond what can be inferred
from the actual protocol output, i.e., (1) cardinality of set intersection and
(2) upper bound on the size of S.

• Client Privacy. No information is leaked about client set C (except an upper
bound on its size).

4

Client C, on input Server S, on input

C = {c1, . . . , cv} S = {s1, . . . , sw}

Rc ←r Zq, R
′
c ←r Zq

X = gRc

∀i 1 ≤ i ≤ v :

ai = (hci)
R′

c X, {a1, . . . , av}
//
Rs ←r Zq, R

′
s ←r Zq

Y = gRs

∀i 1 ≤ i ≤ v : a′i = (ai)
R′

s

(a′`1 , . . . , a
′
`v) = Shuffle(a′1, . . . , a

′
v)

∀j 1 ≤ j ≤ w : bsj = XRs · (hsj)R
′
s

∀j 1 ≤ j ≤ w : tsj = H ′(bsj)
∀i 1 ≤ i ≤ v:

{ts1, . . . , tsw}

Y, {a′`1 , . . . , a
′
`v}oo

bci = (Y Rc)(a′`i)
1/R′

c

∀i 1 ≤ i ≤ v:

tci = H ′(bci)

Output: |{ts1, . . . , tsw} ∩ {tc1, . . . , tcv}|

Figure 1: Proposed PSI-CA Protocol. All computation is mod p.

• Unlinkability. Neither the server nor the client can determine if any two
instances of the protocol are related, i.e., executed on the same input by the
client or the server.

The Protocol

We present our PSI-CA construct in Figure 1. Note that the protocol is
executed on common input of two primes p, q, s.t., q|p − 1, a generator g of a
subgroup of size q, and two hash functions (modeled as random oracles), H :
{0, 1}∗ → Z∗p and H ′ : {0, 1}∗ → {0, 1}κ, given the security parameter κ. We also
assume that server’s input (S) is randomly permuted before protocol execution
to mask any ordering of the items contained in it. Finally, observe that hci and
hsj denote, respectively, H(ci) and H(sj).

This section presents security proofs for the PSI-CA protocol, introduced in
Section 3. Whereas, security proofs for APSI-CA are left as part of future work.
Below, we discuss our adversarial model and computational assumptions.

Semi-Honest Participants. We start with semi-honest security: we introduce
our security definitions and present formal security proofs. Note that the term
adversary refers to insiders, i.e., protocol participants. Outside adversaries are

5

not considered, since their actions can be mitigated via standard network security
techniques.

One-More-DH Assumption. Informally, the One-More-DH assumption [3]
indicates that the DH problem is hard even if the adversary is given access to a
DH oracle. Formally, let (G, q, g) ← KeyGen(κ) the Key-Generation algorithm
outputting a multiplicative group of order q and assume z ← Zq. We say that
the One-More-DH problem is (τ, t)-hard if for every algorithm A that runs in
time t we have:

Pr[{(gi, (gi)x)}i=1,···v+1 ← ADHz(·)(g1, · · · , gch)] ≤ τ

where A made at most v queries to the DHx(·) oracle.

DDH Assumption. Let G be a cyclic group and let g be its generator. Assume
that the bit-length of the group size is l. The DDH problem is hard in G if for
every efficient algorithm A the probability:∣∣Pr[x, y ←r {0, 1}l : A(g, gx, gy, gxy) = 1]− Pr[x, y, z ←r {0, 1}l : A(g, gx, gy, gz) = 1]

∣∣
is a negligible function of κ.

Definitions

We assume semi-honest parties and use general definitions of secure compu-
tation given in [13]. We prove that protocol in Figure 1 satisfies the following
requirements.

Definition 2 (Correctness). If both parties are honest, at the end of the pro-
tocol, run on inputs ((S, v), (C, w)), S outputs ⊥, and C outputs (|S ∩ C|).

The following client and server privacy definitions follow from those in related
work [11,10,14]. In particular, Goldreich ([13], Sec. 7.2.2) states that, in case of
semi-honest parties, the general “real-versus-ideal” definition framework is equiv-
alent to a much simpler framework that extends the formulation of honest-verifier
zero-knowledge. Informally, a protocol privately computes certain functionality
if whatever can be obtained from one party’s view of a protocol execution can
be obtained from input and output of that party. In other words, the view of a
semi-honest party (including C or S, all messages received during execution, and
the outcome of that party’s internal coin tosses), on each possible input (C,S),
can be efficiently simulated considering only that party’s own input and output.

Definition 3 (Client Privacy). For every PPT S∗ that plays the role of S,
for every S, and for any client input set (C(0), C(1)), s.t. |C(0)| = |C(1)|, two views
of S∗ corresponding to C’s inputs: C(0) and C(1), are computationally indistin-
guishable.

6

Definition 4 (Server Privacy). Let ViewC(C,S) be a random variable repre-
senting C’s view during execution of PSI-CA with inputs C,S. There exists a
PPT algorithm C∗ such that:

{C∗(C,S ∩ C)}(C,S)
c≡ {ViewC(C,S)}(C,S)

In other words, on each possible pair of inputs (C,S), C’s view can be efficiently
simulated by C∗ on input: C and S ∩ C (as well as v, w). Thus, as in [13], we
claim that the two distributions implicitly defined above are computationally
indistinguishable.

Proofs

Correctness. For any ci held by the client and sj held by the server, if ci = sj ,
hence, hci = hsj , we obtain:

tc`i = H ′(bci) = H ′(Y Rc · a`i (1/R
′
c)) = H ′(gRcRs · hsjR

′
s)

tsj = H ′(bsj) = H ′(XRs · hsR
′
s

j) = H ′(gRcRs · hsjR
′
s)

Hence, the client learns set intersection cardinality by counting the number of
matching pairs (tsj , tc`i). ut

Client Privacy. Client’s messages to the server are X = gRc – which is inde-
pendent from its input – and ai = H(ci)

R′
c for i = 1, . . . , v, where H is modeled

as a random oracle. It is easy to see that, since R′c is chosen uniformly at random
from Zq (with q|p− 1), the distribution of ai-s are essentially equivalent to that
of random elements in Zp. ut

Server Privacy. We show that client’s view can be efficiently simulated by a

PPT algorithm SIMc, i.e., {C∗(C,S ∩ C)}(C,S)
c≡ {ViewC(C,S)}(C,S). The simu-

lator is constructed as follows:

1. SIMc builds two tables T1 = (q, h) and T2 = (q′, h′) to answer the H and H ′

queries respectively. SIMc responds to a query q (resp. q′) with a value in
h←r Zp for H (h′ ←r Zp for H ′), and stores (q, h) in T1 ((q′, h′) in T2 resp.).
SIMc uses T1, T2 to respond consistently to the queries from the client.

2. SIMc constructs a set TS = {ts1, . . . , tsw}, where tsi ←r Zp, and a random
subset TS′ = {ts′1, . . . , ts′|I|} ⊆ TS such that |TS′| = |I|.

3. Upon receiving X, {a1, . . . , av} from the client, SIMc picks Rs ←r Zq and

R′s ←r Zq, computes a′i = a
R′

s
i and adds (a′, a′R

′
s) to T3. Finally SIMc sends

Y = XRs, Shuffle(a′i, . . . , a
′
v) and {ts1, . . . , tsw} to the client.

4. SIMc adds |I| pairs ((XRs ·H(ci)
R′

s , ts′i ∈ TS′) in T2 and continues to answers
queries to H and H ′ consistently using T1 and T2 as defined in Step 1.

7

5. SIMc answers to the queries to H and H ′ as follows:

(a) For query q to H never asked before, SIMc responds with a value in
h←r Zp and adds (q, h) to T1.

(b) For query q′ to H ′ never asked before, if there is a pair (q, h) in T1
such that hR

′
s = (q′/XRs), add (h, (q′/XRs)) to table T3 and aborts;

otherwise SIMc responds with h′ ←r Zp and adds (q′, t′) to T2.

Any efficient honest-but-curious client cannot distinguish between the interac-
tion with an honest server and SIMc. By construction, client’s view differs from
the interaction with an honest server only when SIMc aborts. In particular, the
existence of an efficient honest-but-curious client C∗ that can cause SIMc to
abort allows us to construct an efficient adversary for the Gap-One-More-DH
problem. The reduction SIMc is constructed modifying SIMc as follows:

– Given a Gap-One-More-DH challenge Ch = (g1, . . . , gn) and access to oracles
(·)x and DLx(·, ·), SIMc responds to a query q for H, where q was never asked
before, with a fresh gi rather than with a random element in Zp as defined
in Step 1.

– In Step 3, upon receiving X, {a1, . . . , av} from the client, SIMc picks Rs ←r

Zq and uses the oracle (·)x to compute a′i = axi and adds (a′, a′x) to T3
(i.e. SIMc invokes the oracle (·)x exactly v times). Then SIMc sends Y =
XRs, Shuffle(a′i, . . . , a

′
v) and {ts1, . . . , tsw} to the client.

– In Step 4, SIMc does not add any new pair to T2 and simply answers queries
to H and H ′ consistently.

– In Step 5.(a), SIMc responds to a new query q for H with a fresh element
gi ∈ Ch

– In Step 5.(b), upon receiving a query q′ for H ′, SIMc computes t = q′/XRs .
If there exists an element gi ∈ Ch such that DLx(gi, t) = 1 and (gi, t) /∈ T3,
then SIMc adds (gi, t) to T3

At the end of the execution, we have that |T3| > v. SIMc can now use |T3| to
answer the Gap-One-More-DH challenge. Since this contradicts the hardness of
the Gap-One-More-DH problem, SIMc only aborts – and therefore C∗ detects
the simulation – with only negligible probability. �

Performance Evaluation

The PSI-CA protocol proposed in Figure 1 has been implemented in C++,
using the OpenSSL library, and tested on a PC with 2.33GHz CPU and 8GB
RAM. Source code is available upon request.

We now compare its performance to the most efficient available PSI-CA con-
struct – i.e., the one in [11] (denoted FNP below). Recall that, while PSI-CA
protocol proposed in this paper incurs linear communication and computation
overhead, FNP incurs sub-quadratic computational overhead.

8

In Figure 2, we compare running times of both tested protocols, instantiated
in ROM, using 1024-bit moduli and exponents from subgroups of 160-bit order.
We use increasing set sizes (from 1 to 1000) and plot total running times, in
seconds, using a logarithmic scale. Communication overhead is omitted since it
is the same for both protocols (linear in the size of sets).

Results confirm that our PSI-CA construct remarkably improves efficiency
of prior work (of several order of magnitudes). For instance, if client and server
sets contain 1000 items, our protocol executes in about 1s, compared to more
than 1000s using FNP [11].

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 200 400 600 800 1000

T
im

e
(s

ec
s)

Server Set Size (w)

PSI-CA in FNP (v=1000)
PSI-CA in FNP (v=100)
PSI-CA in FNP (v=10)
Our PSI-CA (v=1000)
Our PSI-CA (v=100)
Our PSI-CA (v=10)

Figure 2: Total computation overhead (in seconds) of PSI-CA in FNP [11] and
our PSI-CA in Figure 1.

4 Policy-based Private Set Intersection

We observe that the Private Set Intersection Cardinality (PSI-CA) primitive
can be used not only for privately computing intersection size of two sets. We
argue, in fact, that our PSI-CA protocol (proposed in Section 3) provides a
powerful tool to construct policy-based privacy-preserving protocols. Consider
the scenario discussed in Section 1 where the execution of Private Set Intersection
(PSI) results in the client learning an intersection with size close to the entire
server set (i.e., |S ∩ C| ≈ |S|).

We now show how our PSI-CA protocol can be used, together with PSI pro-
tocols, to design a policy-based PSI technique. In it, the client obtains the inter-
section only if a server’s policy is satisfied. Specifically, before engaging in PSI,
parties first run the PSI-CA protocol with their (client/server) roles reversed.
This way, the server learns the cardinality of the intersection and decides whether
or not to let the client obtain the set intersection.

9

Server S, on input: Client C, on input:

S = {s1, . . . , sw} C = {c1, . . . , cv}

Rs ←r Zq, R
′
s ←r Zq

X = gRs

∀i 1 ≤ i ≤ w :

ai = (hsi)
R′

s X, {a1, . . . , aw}
//
Rc ←r Zq, R

′
c ←r Zq

Y = gRc

∀i 1 ≤ i ≤ w : a′i = (ai)
R′

c

(a′`1 , . . . , a
′
`w) = Shuffle(a′1, . . . , a

′
w)

∀j 1 ≤ j ≤ v : bcj = XRc · hcjR
′
c

∀j 1 ≤ j ≤ v : tcj = H ′(bcj)
∀i 1 ≤ i ≤ w :

bsi = (Y Rs)(a′`i)
1/R′

s

{tc1, . . . , tcv}

Y, {a′`1 , . . . , a
′
`w}oo

∀i 1 ≤ i ≤ w, tsi = H ′(bsi)

T ∗ = {tc1, . . . , tcv} ∩ {ts1, . . . , tsw}

If Policy.isSatisfied(w, v, |T ∗|),
then: T ∗ // ∀ tcj ∈ T ∗: output cj ∈ S ∩ C

Figure 3: Three-round Policy-based Private Set Intersection protocol. All com-
putation is mod p.

Proposed PSI-CA protocol, assuming semi-honest adversaries, can be eas-
ily composed into such a policy-based private set intersection primitive. After
learning the magnitude of the intersection, the server decides whether or not its
policy is satisfied; in this case, it needs to send the client only one last message,
allowing the client to recover the set intersection.

The resulting protocol, which we denote as Policy-based Private Set In-
tersection, is presented in Figure 3. In the first two rounds, the server and the
client run a PSI-CA with their roles reversed, and the last round allows the client
to learn the set intersection. The same approach can be used for other operations
on private sets, such as Private Set Union [15]. Indeed, similar concerns about
server privacy occur in a scenario where |C ∪ S| ≈ |C| + |S|, and can again be
addressed by running PSI-CA with exchanged roles.

5 Conclusion

This paper presented a novel protocol for Private Set Intersection Cardinality
(PSI-CA) that is appreciably more efficient than state of the art. Performance

10

evaluation of prototype implementations confirmed our efficiency claims. Fur-
ther, we showed how to use proposed PSI-CA construct to realize a three-round
policy-based Private Set Intersection protocol, allowing the server to determine
(in privacy-preserving manner) cardinality of set intersection before deciding
whether or not to engage in a PSI interaction with the client.

We proved security of proposed constructs in the presence of semi-honest
models, while we leave as part of future work to prove their security against
malicious adversaries. In particular, note that the composition of protocols for
operations on private set is not a trivial exercise in presence of malicious ad-
versaries. In fact, there is no straightforward guarantee that malicious parties
maintain the same input over multiple interactions, thus, proving Policy-based
Private Set Intersection with malicious-security is an interesting challenge that
calls for further research in the area.

References

1. G. Ateniese, M. Blanton, and J. Kirsch. Secret handshakes with dynamic and fuzzy
matching. In NDSS, 2007.

2. P. Baldi, R. Baronio, E. De Cristofaro, P. Gasti, and G. Tsudik. Countering
GATTACA: Efficient and Secure Testing of Fully-Sequenced Human Genomes. In
To Appear in ACM Conference on Computer and Communications Security (CCS),
2011.

3. M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. Journal
of Cryptology, 16(3), 2003.

4. E. Bursztein, J. Lagarenne, M. Hamburg, and D. Boneh. OpenConflict: Preventing
Real Time Map Hacks in Online Games. In IEEE Security and Privacy Symposium,
2011.

5. J. Camenisch and G. M. Zaverucha. Private intersection of certified sets. In
Financial Cryptography, 2009.

6. E. De Cristofaro, A. Durussel, and I. Aad. Reclaiming Privacy for Smartphone
Applications. In PerCom, 2011.

7. E. De Cristofaro, S. Jarecki, J. Kim, and G. Tsudik. Privacy-preserving policy-
based information transfer. In PETS, 2009.

8. E. De Cristofaro, J. Kim, and G. Tsudik. Linear-Complexity Private Set Intersec-
tion Protocols Secure in Malicious Model. In Asiacrypt, 2010.

9. E. De Cristofaro and G. Tsudik. Practical private set intersection protocols with
linear complexity. In Financial Cryptography, 2010.

10. M. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and oblivious
pseudorandom functions. In TCC, 2005.

11. M. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set inter-
section. In Eurocrypt, 2004.

12. K. Frikken. Privacy-Preserving Set Union. In ACNS, 2007.
13. O. Goldreich. Foundations of Cryptography. Cambridge U. Press, 2004.
14. C. Hazay and Y. Lindell. Efficient protocols for set intersection and pattern match-

ing with security against malicious and covert adversaries. In TCC, 2008.
15. C. Hazay and K. Nissim. Efficient Set Operations in the Presence of Malicious

Adversaries. In PKC, 2010.

11

16. S. Hohenberger and S. Weis. Honest-verifier private disjointness testing without
random oracles. In PET, 2006.

17. J. Hong, J. W. Kim, J. Kim, K. Park, and J. H. Cheon. Constant-Round Privacy
Preserving Multiset Union. Cryptology ePrint Archive, Report 2011/138, 2011.
http://eprint.iacr.org/.

18. Intelligence Advanced Research Projects Activity. Automatic Privacy Protection
Program. http://sprout.ics.uci.edu/projects/iarpa-app/.

19. S. Jarecki and X. Liu. Efficient Oblivious Pseudorandom Function with Appli-
cations to Adaptive OT and Secure Computation of Set Intersection. In TCC,
2009.

20. S. Jarecki and X. Liu. Fast secure computation of set intersection. In SCN’10,
2010.

21. M. Kantarcioglu, R. Nix, and J. Vaidya. An efficient approximate protocol for
privacy-preserving association rule mining. KDD, 2009.

22. L. Kissner and D. Song. Privacy-preserving set operations. In Crypto, 2005.
23. A. Menezes, P. V. Oorschot, and S. Vanstone. Handbook of Applied Cryptography.

CRC, 1997.
24. S. Nagaraja, P. Mittal, C. Hong, M. Caesar, and N. Borisov. BotGrep: Finding

Bots with Structured Graph Analysis. In Usenix Security, 2010.
25. A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg, and D. Boneh. Location

Privacy via Private Proximity Testing. In NDSS, 2011.
26. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.

In Eurocrypt, 1999.
27. S. Pohlig and M. Hellman. An improved algorithm for computing logarithms

over GF(p) and its cryptographic significance. IEEE Transactions on information
Theory, 24(1), 1978.

28. G. Sathya Narayanan, T. Aishwarya, A. Agrawal, A. Patra, A. Choudhary, and
C. Pandu Rangan. Multi Party Distributed Private Matching, Set Disjointness
and Cardinality of Set Intersection with Information Theoretic Security. In CANS,
2009.

29. J. Vaidya and C. Clifton. Secure set intersection cardinality with application to
association rule mining. Journal of Computer Security, 13(4), 2005.

A Efficient Authorized Private Set Intersection
Cardinality

In this appendix, we introduce the concept of Authorized Private Set Inter-
section Cardinality (APSI-CA). It extends PSI-CA to enforce authorization of
client input. Similar to Authorized Private Set Intersection, APSI-CA involves
an (offline) trusted third party, e.g., a Certification Authority (CA).

Definition 5 (Authorized Private Set Intersection Cardinality (APSI-
CA)). A protocol involving a server, on input of a set of w items: S = {s1, · · · , sw},
and a client, on input of a set of v items with associated authorizations (signa-
tures), C = {(c1, σi) · · · , (cv, σv)}. It results in the client outputting outputting
|I∗|, where:

I∗ = {sj ∈ S | ∃(ci, σi) ∈ C s.t. ci = sj ∧ Verify(σi, ci) = 1}.

12

http://eprint.iacr.org/
http://sprout.ics.uci.edu/projects/iarpa-app/

Client C, on input Server S, on input

C = {(c1, σ1), . . . , (cv, σv)} S = {s1, . . . , sw}
(∀i, 1 ≤ i ≤ v : σi

e = hci)

Rc ←r ZN/2

∀i, 1 ≤ i ≤ v :

ai = (σi)
2Rc

{a1, . . . , av}
//
Rs ←r ZN/2

∀i, 1 ≤ i ≤ v, tci = H ′((ai)
eRs)

(tc`1 , . . . , tc`v) = Shuffle(tc1, . . . , tcv)

∀j, 1 ≤ j ≤ w, bsj = (hsj)
Rs∀i, 1 ≤ j ≤ w :

tsj = H ′((bsj)
2Rc)

{bs1, . . . , bsw}

{tc`1 , . . . , tc`v}oo

Output: |{tc`1 , . . . , tc`v} ∩ {ts1, . . . , tsw}|

Figure 4: Authorized Private Set Intersection Cardinality. All Computation is
mod N .

APSI-CA entails the following informal privacy requirements:

• Server Privacy (APSI-CA). The client learns no information beyond what
can be inferred from the protocol output, i.e., (1) cardinality of set intersec-
tion on authorized items and (2) upper bound on the size of S.

• Client Privacy (APSI-CA). No information is leaked about items or autho-
rizations in client set (except an upper bound on their number).

• Unlinkability. Similar to PSI-CA, we require that neither the server nor the
client can determine if any two instances of the protocol are related, i.e.,
executed on the same input by the client or the server.

Proposed APSI-CA Construct. We illustrate our APSI-CA protocol in Fig-
ure 4. Note that the CA is responsible for generating public parameters: on
input of security parameter κ, it executes (N, e, d, g)← RSA.KGen(κ), where g
is a generator of QRN , and selects H : {0, 1}∗ → ZN ∗ (Full-Domain Hash) and
H ′ : {0, 1}∗ → {0, 1}κ (modeled as a random oracles). The CA authorizes client
input ci by issuing σi = H(ci)

d mod N (i.e., an RSA signature). The protocol is
executed between the client and the server, on common input (N, e,H,H ′). We
assume that server’s input (S) is randomly permuted before protocol execution
to mask any ordering of the items contained in it. Finally, observe that hci and
hsj denote, respectively, H(ci) and H(sj).

13

Similar to its PSI-CA counterpart, this APSI-CA has the following properties:

• Correctness. For any (σi, ci) held by the client and sj held by the server,
if: (1) σi is a genuine CA signature on ci, and (2) ci = sj , hence, hci = hsj ,
we obtain: tc`i = H ′((σi)

2eRcRs) = H ′((hci)
2RcRs) = tsj .

• Privacy. In this version of the paper, we only provide some intuition for our
security arguments, and defer to future work formal proofs. Client privacy
is based on its input being statistically indistinguishable from a random dis-
tribution in QRN . Arguments regarding server privacy are similar to those
for PSI-CA, thus, we do not repeat them here. We argue that if one could
violate APSI-CA server privacy, then the one would also violate server pri-
vacy of the APSI construct in Fig.1 of [8], proven secure under the RSA and
DDH assumptions. Finally, note that the protocol is unlinkable, given that
random values, Rc, Rs, are selected fresh for each protocol execution.

• Efficiency. This APSI-CA protocol incurs linear computation (for both par-
ties) and communication complexity. Specifically, the client performs O(w)
exponentiations and the server – O(w+v). However, exponents are now taken
in the RSA settings, while in PSI-CA can be taken from a smaller group,
thus, be much shorter (e.g., 160-bit vs 1024-bit long). Communication com-
plexity amounts to O(w + v). Note that such a complexity is remarkably
lower compared to related work, i.e., [5], which incurs quadratic—O(wv)—
communication and computation overhead.

14

	Fast and Private Computation of Set Intersection Cardinality
	Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik

