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Abstract. Linear cryptanalysis, along with differential cryptanalysis, is an important
tool to evaluate the security of block ciphers. This work introduces a novel extension
of linear cryptanalysis – zero-correlation linear cryptanalysis – a technique applicable
to many block cipher constructions. It is based on linear approximations with a corre-
lation value of exactly zero. For a permutation on n bits, an algorithm of complexity
2n−1 is proposed for the exact evaluation of correlation. Non-trivial zero-correlation lin-
ear approximations are demonstrated for various block cipher structures including AES,
balanced Feistel networks, Skipjack, CLEFIA, and CAST256. Using the zero-correlation
linear cryptanalysis, a key-recovery attack is shown on 6 rounds of AES-192 and AES-256
as well as 13 rounds of CLEFIA-256.
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1 Introduction

Block ciphers have evolved to be the basic primitives of symmetric-key cryptography.
Many sound and efficient cryptographic constructions can be built upon them, such
as stream ciphers, message authentication codes, hash functions or entropy extractors
for random number generators. This is not least due to the fact that block ciphers
possess a far developed analysis toolbox including the two major techniques — linear
and differential cryptanalysis [5, 19]. Block ciphers are widely believed to be the best
understood primitives of symmetric cryptography at hand. Nevertheless, also their se-
curity currently cannot be formally proven. Instead, we rely on cryptanalysis: careful
evaluation against all the known weaknesses. Any significant advance in cryptanalytic
techniques for block ciphers is of high relevance and might result in the re-evaluation
of many designs. In this article, we propose a novel extension of linear cryptanalysis.

1.1 Motivation

Design strategies such as the wide trail design strategy [8] and the decorrelation the-
ory [27] allow to construct block ciphers for which we can state with high confidence
that they will resist crucial analysis methods such as differential cryptanalysis and lin-
ear cryptanalysis. However, these strategies provide only limited evidence of resistance
against some extensions of differential cryptanalysis. While the original differential
cryptanalysis exploits differentials holding with a relatively high probability, impossi-

ble differential cryptanalysis makes use of impossible differentials which are differentials



having a very low or even a zero probability [2,6]. Cryptanalysts have recently been quite
active applying impossible differential cryptanalysis to various ciphers [3,10,16,17,26].

Similarly to differential cryptanalysis, the original linear cryptanalysis is based on
linear approximations with correlations significantly deviating from zero. However, un-
like differential cryptanalysis, for linear cryptanalysis there is only very limited work
using linear approximations with correlation values of exactly zero [11].

In this work, we attempt to bridge this gap by enriching the cryptanalytic toolbox
for block ciphers with a novel approach to linear cryptanalysis: zero-correlation linear

cryptanalysis makes use of linear hulls with no linear trails, thus, having correlation
zero. It can be considered as the counterpart of impossible differential cryptanalysis
in the domain of linear cryptanalysis, though having many significant distinctions of
both theoretical and technical nature. We apply it to balanced Feistel and generalized
Feistel ciphers as well as to round-reduced AES.

1.2 Background

Idealized block cipher A block cipher operating on n-bit blocks with a k-bit key
can be seen as a subset of cardinality 2k of the set of all 2n! permutations over the
space of n-bit strings. In this paper, we are concerned with efficiently implementable
block ciphers, for which a compact description exists and is public. Moreover, the key
length k of efficient block ciphers is usually much smaller than log2(2

n!), which implies
that the block cipher realizes only a small subset of the n-bit permutations. We define
a reference point for our attacks:

Definition 1 (Idealized block cipher). An idealized block cipher with n-bit blocks
and a k-bit key is a set of 2k randomly drawn permutations on n-bit strings. The choice

is performed randomly and uniformly from all 2n! permutations on n bits.

Furthermore, we are interested only in distinguishers of complexity smaller than 2k.

Linear cryptanalysis and correlation Denote the scalar product of binary vectors
by

a ⋄ x =
n

⊕

i=1

aixi.

Linear cryptanalysis [19] uses linear approximations to build a distinguisher. A linear
approximation α → β of a binary transformation f is determined by the input and
output selection patterns, α and β. The probability

p = Pr
x
{α ⋄ x = β ⋄ f(x)}

computed over all inputs x can be used as a measure of approximation goodness. The
more p deviates from 1/2, the better the linear approximation is for linear cryptanalysis.
Following [8] and [22], to characterize the deviation of p from 1/2, we will operate here
in terms of correlation C, which is related to p by: C = 2p− 1.

The correlation of linear approximation 0 → 0 is always 1. The correlation of linear
approximation α→ 0 is exactly zero for α 6= 0. Furthermore, if f is a permutation, the



correlation of 0 → β is also exactly zero for β 6= 0. We call such linear approximations
trivial and the ones with both α 6= 0 and β 6= 0 non-trivial.

For a randomly drawn n-bit permutation, the correlation C of a non-trivial linear
approximation can be described as a stochastic variable with the following distribution
[23, Theorem 1] and [9, Lemma 8]:

Pr
f

{

C = w · 22−n
}

=

(

2n−1

2n−2+w

)2

(

2n

2n−1

) . (1)

Linear trails and linear hulls To make implementations compact and efficient, de-
signers of block ciphers mostly opt for iterative transformations consisting of a number
of (often similar) simpler maps, called rounds, applied iteratively.

A linear approximation α → β of an iterative block cipher (or any other iterative
transformation) is called a linear hull in [22]. The linear hull contains all possible
sequences of the linear approximations for consecutive intermediate maps with input
selection pattern α and output selection pattern β. These sequences are called linear

trails.

Cf1
u0,u1

Cf2
u1,u2

Cfr
u
r−1,ur

f1 f2 fr
u0 = α u1 u2 ur−1 ur = β

Fig. 1. Iterative transform f : fr ◦ · · · ◦ f1 and a linear trail U = (u0, . . . , ur) of its linear hull α→ β

More formally, let f : Fn
2 → F

n
2 be an iterative transformation on n bits, that is, an

iterative application of r maps fi (rounds):

f = fr ◦ fr−1 ◦ . . . f2 ◦ f1

with fi : F
n
2 → F

n
2 for each i = 1, . . . , r. Consider a linear approximation ui−1→ ui of

a round map fi with input selection pattern ui−1 and output selection pattern ui. The
linear approximation ui−1→ui over one round fi is characterized by its correlation

Cfi
ui−1,ui

= 2Pr
x
{ui−1 ⋄ x = ui ⋄ fi(x)} − 1

computed over all round inputs x, see Figure 1.

Given a linear hull α → β of the entire transformation f , a linear trail U is
the concatenation of an input selection pattern α = u0 before f0, an output selection
pattern β = ur after fr, and r−1 intermediate selection patterns ui between the rounds
fi−1 and fi:

U = (u0, u1, . . . , ur−1, ur).

Thus, each linear trail of f consists of n(r + 1) bits.



The correlation contribution CU of linear trail U is defined as

CU =
r
∏

i=1

Cfi
ui−1,ui

. (2)

The theorem of linear trail composition [8, Theorem 7.8.1] states that for a linear hull
α→ β of an iterative transformation f , its correlation C can be computed as the sum
of correlation contributions CU of all its linear trails U :

C =
∑

U :u0=α,ur=β

CU (3)

with input selection pattern α and output selection pattern β.

1.3 Contributions and outline

We propose a novel extension of linear cryptanalysis – zero-correlation linear attacks
applicable to many block cipher constructions. We now discuss this in some more detail.

Zero-correlation linear hulls in block ciphers A zero-correlation linear hull can be
seen as the counterpart in linear cryptanalysis of an impossible differential in differential
cryptanalysis. It is a linear approximation over a block cipher having a correlation of
exactly zero C = 0 which we denote by α 9 β. To construct a zero-correlation linear
hull in block ciphers, we choose the input and output selection patterns α and β such
that there is no linear trail U with nonzero correlation contribution CU to the linear
hull correlation C.

In Section 3, using this result, we prove a sufficient condition for linear hulls of
iterative ciphers to have zero correlation (Proposition 3). We also prove zero-correlation
linear hulls over a number of rounds of AES [13] as well as several Feistel-type designs
(balanced Feistel [12], Skipjack [25], CLEFIA [24], and CAST-256 [21]) illustrated in
Figure 2. These findings are stated as Theorems 1 and 2. Table 1 compares the linear
hulls that we found to the impossible differentials known in the literature.

Distinguishing with zero correlation In Section 2, we prove that for an idealized
block cipher of sufficiently large block size n with a fixed key, the probability for a given

non-trivial linear approximation to have a correlation of 0 is 1√
2π
2

4−n
2 (Proposition 2).

At the same time, the linear hulls of Table 1 have a zero correlation with probability 1
for any key value. This discrepancy provides a distinguisher with a low error probability.

The distinguisher relies on the precise evaluation of the correlation value for a
given linear approximation. For an n-bit permutation, we show in Proposition 1 how to
reduce the data complexity of the exact correlation evaluation down to 2n−1 by using
chosen inputs or outputs. Algorithm 1 summarizes the procedure of the zero-correlation
distinguisher.



Zero-correlation attack In Section 4, based on the zero-correlation linear hulls iden-
tified for AES and CLEFIA constructions as well as on the distinguisher of Algorithm 1,
we propose a key-recovery attack on 6 rounds of AES-192 and 13 rounds of CLEFIA-
256. The attack is somewhat similar to the impossible differential attack, but there are
some important particularities, which follow from the difference between the mecha-
nisms used in linear cryptanalysis and those in differential cryptanalysis. In particular
distinguishing between a small correlation and a correlation that is exactly zero turns
out to be difficult. Interestingly, this corresponds to the situation for ordinary linear and
differential attacks: linear attacks usually can break a slightly smaller number of rounds
than differential attacks (with a notable exception of DES where linear cryptanalysis
tends to be more efficient [14, 15]).

Zero-correlation linear hulls are called unbiased approximations in [11] by Etrog and
Robshaw. Although they also propose a linear attack, it is quite different from ours.
Their zero-correlation linear hulls are created as follows: starting from an ordinary
linear hull α → β with correlation C, they derive the two linear hulls α 9 0 and
0 9 β, which have correlation zero for any invertible map. Subsequently, they show
how to combine empirical measurements of the correlations of α 9 0 and 0 9 β in
order to obtain information on C. They observe that their attack is usually inferior to
the classical linear attack using α→ β. As opposed to [11], we use the zero-correlation
linear hulls which are due to the specific high-level structure of ciphers to mount our
attack. We conclude in Section 5.

2 Distinguisher of Zero Correlation

In this section, we propose a distinguisher for block ciphers with zero-correlation lin-
ear hulls. Moreover, we show how to evaluate the exact correlation value of a linear
approximation more efficiently and derive the probability of zero correlation for an
idealized block cipher.

2.1 Complexity reduction for correlation evaluation

Our extension of linear cryptanalysis for block ciphers is based on the exact evaluation of
the correlation value for a linear approximation of a permutation. Let x and y = f(x)
be input and output of a permutation f . The straightforward way to evaluate the
correlation is to use its definition by going over all 2n input-output pairs and computing

C = 2p− 1 =
|{(x, y)|α ⋄ x⊕ β ⋄ y = 0}|

2n−1
− 1.

However, it is not necessary to have all 2n input-output pairs to compute C:

Proposition 1 (Efficient correlation evaluation). For any non-trivial linear ap-

proximation α → β of a n-bit permutation f , the correlation value C can be evaluated

with 2n−1 input-output pairs (x, y) in one of the following ways:

C =
|{(x, y)|α ⋄ x = 0 and β ⋄ y = 0}|

2n−2
− 1

=
|{(x, y)|α ⋄ x = 1 and β ⋄ y = 1}|

2n−2
− 1.



Proof. The 2n input-output pairs of an n-bit permutation can be divided into the
following four disjunct sets:

T00 = {(x, y)|α ⋄ x = 0 and β ⋄ y = 0},
T01 = {(x, y)|α ⋄ x = 0 and β ⋄ y = 1},
T10 = {(x, y)|α ⋄ x = 1 and β ⋄ y = 0}, and
T11 = {(x, y)|α ⋄ x = 1 and β ⋄ y = 1}.

Since for a non-trivial linear approximation exactly one half of the inputs x yields
α ⋄ x = 0 and the other half gives α ⋄ x = 1, one has:

|T00|+ |T01| = 2n−1 (4)

and
|T10|+ |T11| = 2n−1. (5)

Moreover, this also applies to the outputs y of the permutation, since it is invertible:

|T01|+ |T11| = 2n−1. (6)

Now subtracting (5) from (6), one gets

|T01| = |T10| (7)

and subtracting (4) from (5) using (7) delivers

|T00| = |T11|. (8)

Then by the definition of correlation, we obtain from (8):

C = 2p− 1 = 2
|T00|+ |T11|

2n
− 1 =

|T00|
2n−2

− 1 =
|T11|
2n−2

− 1.

Recalling the definitions of T00 and T11, one obtains the claim of the proposition.

Proposition 1 says that for an n-bit permutation (e.g. a block cipher under a fixed
key) it is possible to compute the exact value of C having only 2n−1 chosen input-output
pairs (x, y) with one the the following four properties: either α⋄x = 0, α⋄x = 1, β⋄y = 0,
or β ⋄ y = 1.

2.2 Probability of zero correlation

For a randomly drawn permutation on n bits, the correlation value for each non-trivial
linear approximation will be as stated above in (1). Here we derive a compact and
precise approximation of the probability that the correlation value is 0 for an idealized
block cipher.

Proposition 2 (Zero correlation for idealized cipher). The probability that the

correlation value is 0 for a non-trivial linear approximation of an n-bit idealized cipher

with a fixed key can be approximated by 1√
2π
2

4−n
2 for n ≥ 5.



Proof. Recall Theorem 9 of [9]. It states that for a non-trivial linear approximation of
an n-bit idealized block cipher under a fixed key (i.e. of a randomly drawn permutation)
with n ≥ 5 the distribution of the correlation value will be as follows:

Pr{C = z · 22−n} ≈ 1
√
2π2

n−4
2

e−
z2

2n−3 (9)

for integer z between −2n−2 and 2n−2. By substituting z = 0, one obtains the claim of
the proposition.

2.3 Distinguishing algorithm

To distinguish a block cipher with a zero-correlation linear hull from an idealized cipher,
the adversary collects 2n−1 chosen plaintext-ciphertext pairs obtained under some fixed
user-supplied key κ. The choice of either ciphertexts or plaintexts is performed using
relations from Proposition 1. For the zero-correlation linear hull α9 β, the adversary
evaluates the correlation C using Proposition 1. For an idealized block cipher, C will

be deviating from 0 with a probability of 1− 1√
2π
2

4−n
2 due to Proposition 2. Otherwise,

C = 0 deterministically. The distinguishing test is simple and is defined as Algorithm 1.
The applicability of Algorithm 1 is mainly limited to the cases with k ≥ n (i.e. where
the key is longer than the block). Note that the error probability of distinguishing is
negligible for all practical block sizes (n ≥ 32).

Algorithm 1 Distinguisher for zero correlation
Require:

1. 2n−1 chosen plaintext-ciphertext pairs obtained with an (unknown) user-supplied key κ
2. Non-trivial zero-correlation linear hull α9 β

Perform:

1. Evaluate correlation C for the linear hull α9 β using Prop. 1
2. If C = 0, then return non-idealized, else return idealized

Data complexity:

2n−1 chosen plaintext-ciphertext pairs
Computational complexity:

2n−1 evaluations of α ⋄ x or β ⋄ y
Success probability:

false positive probability 1√
2π

2
4−n

2 due to Prop. 2
false negative probability 0

Algorithm 1 relies on the existence of at least one non-trivial zero-correlation linear
hull for the cipher attacked. In the following, we find zero-correlation linear hulls in some
popular cipher constructions valid for any key value as well as propose key-recovery
attacks based on Algorithm 1 and these zero-correlation linear hulls.



3 Zero-Correlation Linear Hulls

For a fixed key, an idealized cipher is a randomly drawn permutation which is likely to
have at least one non-trivial linear approximation with correlation exactly 0. For in-
stance, this can be observed if one takes the probability for a non-trivial linear approx-
imation of a randomly drawn permutation to have zero correlation from Proposition 2
and recalls that nearly all of its 22n linear approximations are non-trivial. However,
as every key value of the idealized cipher chooses another permutation from the set
of all n-bit permutations and the choice is independent for different keys, which linear
approximations have zero correlation will vary greatly from key to key for the idealized
cipher.

On the contrary, for many real-world ciphers, there exist vast classes of non-trivial
linear hulls with correlation zero, independently of the key value. In this section, we
demonstrate non-trivial zero-correlation linear hulls for such popular cipher construc-
tions as AES, balanced Feistel networks as well as Skipjack, CAST256, and CLEFIA.
Additionally, we observe these linear hulls to have a correlation value of exactly 0 in
our experiments with small-scale variants of ciphers.

3.1 Sufficient condition for zero correlation

Here we prove a sufficient condition for a linear hull of an iterative block cipher to have
correlation zero. The proof is based on the notion of an incompatible pair of adjacent
linear selection patterns. For a linear trail U of an iterative transform f , a pair of
adjacent linear selection patterns ui−1 and ui is called incompatible if the corresponding
linear approximation ui−1→ ui over the intermediate map fi is zero, Cfi

ui−1,ui = 0 (see
Subsection 1.2 and Figure 1 for the details of notation).

Proposition 3 (Sufficient condition for zero correlation). If at least one pair of

adjacent linear selection patterns is incompatible for every linear trail in a linear hull

of an iterative transformation, the correlation of this linear hull is exactly 0.

Proof. Recall the definition of a correlation contribution (2) of a trail and the theorem

of linear trail composition (3) from Subsection 1.2. Due to (2), if Cfi
ui−1,ui = 0 at least

for one linear approximation ui−1→ui over a round map fi, the correlation contribution
for this linear trail U is zero: CU = 0. According to (3), putting CU = 0 for every linear
trail is sufficient for having a correlation C of exactly 0. The claim of the proposition
follows.

Proposition 3 says that in order to prove that a linear hull over an entire iterative
cipher has correlation zero, it is enough to locate a round map whose linear approxi-
mations always have correlation 0 in this linear hull.

3.2 Feistel-type block ciphers

Here we show zero-correlation linear hulls of several Feistel-type block ciphers [12, 20,
21, 24, 25] depicted in Figure 2. Similarly to impossible differentials, for showing zero-
correlation linear hulls it is crucial to require the F-functions φ and ψ of these Feistel
ciphers to be invertible.



Table 1. Zero-correlation linear hulls and best impossible differentials known. All Feistel constructions
are assumed to have invertible F-functions

Block cipher Impossible differential Zero-correlation linear hull
construction rounds pattern rounds pattern

Feistel 5 (0, ∆) 9 (∆, 0) 5 (a, 0) 9 (0, a)

Skipjack 15 [25] (0, 0, 0, ∆) 9 (∇, 0, 0, 0) 15 (0, 0, 0, a) 9 (b, 0, 0, b)

CAST256 19 [7] (0, 0, 0, ∆) 9 (∇, 0, 0, 0) 18 (0, 0, 0, a) 9 (0, a, 0, 0)

CLEFIA 9 [26]
(0, 0, 0, ∆) 9 (0, 0, ∆, 0)
(0, ∆, 0, 0) 9 (∆, 0, 0, 0)

9
(a, 0, 0, 0) 9 (0, 0, 0, a)
(0, 0, a, 0) 9 (0, a, 0, 0)

AES 4 [4] (Θ, 0, 0, 0) 9 (Θ′, 0, 0, 0) 4 (Γ, 0, 0, 0) 9 (Γ ′, 0, 0, 0)

a 6= 0, b 6= 0, ∆ 6= 0, ∇ 6= 0
AES: Θ, Θ′, Γ , Γ ′ are 4-byte columns with exactly one nonzero byte; note that there are also other

impossible differentials and zero-correlation linear hulls for AES

Balanced Feistel [12]

Skipjack [25]

CAST256 [21]

CLEFIA [24]

φφ

φφ

ψ

Fig. 2. Round maps of balanced Feistel network and some generalized Feistel-type constructions with
F-functions φ and ψ invertible
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v2

v2v2
v3v3

z

z

z

z

φ(z)

z1

z2

z3

φ

XOR branching permutation

Fig. 3. Linear approximations of basic operations: XOR ⊕, branching • , and permutation φ. Values
z1, z2, and z3 as well as linear selection patterns v1, v2, and v3



Feistel ciphers make use of three basic operations: XOR-operation, branching oper-
ation, and a key-dependent F-function φ. Linear approximations over these operations
comprise the linear trails of Feistel-type ciphers and obey three major rules (see also [19]
and [1]):

Lemma 1 (XOR approximation [1]). Either the three linear selection patterns at

an XOR ⊕ are equal or the correlation over ⊕ is exactly zero.

Proof. Consider the bitwise XOR operation with 2 input words z1 and z2 as well as 1
output word z3 = z1 ⊕ z2. Let (v1, v2) be the input selection pattern and v3 the output
selection pattern, see Figure 3. The probability of the linear approximation over the
XOR operation to hold is then:

p⊕v1,v2,v3 = Pr{v1 ⋄ z1 ⊕ v2 ⋄ z2 ⊕ v3 ⋄ z3 = 0}
= Pr{(v1 ⊕ v3) ⋄ z1 = (v2 ⊕ v3) ⋄ z2}.

Since the probability is computed over all z1 and z2, p
⊕
v1,v2,v3 6= 1/2 if and only if

v1 ⊕ v3 = 0 and v2 ⊕ v3 = 0, simultaneously. This means that v1 = v2 = v3 is necessary
and sufficient for the linear approximation (v1, v2) → v3 to have a nonzero correlation
over the bitwise XOR operation. By definition of correlation, the claim of the lemma
follows.

Lemma 2 (Branching approximation [1]). Either the three linear selection pat-

terns at a branching point • sum up to 0 or the correlation over • is exactly zero.

Proof. A branching point can be represented as a function with input z and output
(z, z), see Figure 3. Again, if the input selection pattern is v1 and the output selection
pattern is (v2, v3), one has:

p•v1,v2,v3 = Pr{v1 ⋄ z ⊕ v2 ⋄ z ⊕ v3 ⋄ z = 0}
= Pr{(v1 ⊕ v2 ⊕ v3) ⋄ z = 0}.

The probability is computed over all inputs z and, therefore, p•v1,v2,v3 6= 1/2 if and only
if v1 ⊕ v2 ⊕ v3 = 0. Thus, the correlation over the branching point is nonzero, iff the
three selection patterns sum up to 0.

Lemma 3 (Permutation approximation). Over a permutation φ, if the input and

output selection patterns are neither both zero nor both nonzero, the correlation over φ
is exactly zero.

Proof. Let φ be an invertible transform. Consider the linear approximation v1 → v2
over φ, see Figure 3. If z is the input to φ, one has:

pφv1,v2 = Pr{v1 ⋄ z ⊕ v2 ⋄ φ(z) = 0}
=

{

Pr{v2 ⋄ φ(z) = 0}, if v1 = 0,
Pr{v1 ⋄ z = 0}, if v2 = 0.

In case v1 6= 0 and v2 = 0, pφv1,v2 = 1/2, since it is computed over all z. In case v1 = 0

and v2 6= 0, pφv1,v2 = 1/2, since φ is bijective and φ(z) takes all values. By definition of
correlation, the claim of the lemma follows.



The interpretation of Lemmata 1 to 3 is as follows. If in a linear trail:

– the selection patterns at XOR ⊕ are not equal,
– the selection patters at branching point • do not sum up to zero, or
– the selection patterns at permutation φ are neither both zero nor both nonzero,

then this linear trail contains an incompatible pair of adjacent selection patterns. If an
incompatible pair of adjacent selection patterns can be shown for each linear trail in
a linear a hull, the sufficient condition of Proposition 3 applies, which is performed in
the proof of

Theorem 1 (Zero-correlation linear hulls for Feistel ciphers). If the underlying

F-functions of the Feistel-type construction are invertible, the following linear hulls have

zero correlation for a 6= 0 and b 6= 0:

– (a, 0) 9 (0, a) for 5 rounds of balanced Feistel ciphers,

– (a, 0, 0, 0) 9 (0, 0, 0, a) and (0, 0, a, 0) 9 (0, a, 0, 0) for 9 rounds of CLEFIA-type

ciphers,

– (0, 0, 0, a) 9 (b, 0, 0, b) for 15 rounds of Skipjack-type ciphers, and

– (0, 0, 0, a) 9 (0, a, 0, 0) for 18 rounds of CAST256-type ciphers.

Proof. For each of these Feistel-type ciphers, we proceed as follows. Starting separately
with the input and output selection patterns of a linear hull, we obtain partial linear
trails with a nonzero correlation contribution using Lemmata 1 to 3. After that, we
demonstrate that both partial trails cannot match in the middle without turning the
correlation contribution of each of the trails to 0. This makes Proposition 3 applicable
and proves that the correlation of the linear hull is exactly 0.

Balanced Feistel. Consider 5 rounds of the balanced Feistel cipher with bijective F-
functions with input and output selection patterns (a, 0) and (0, a), respectively, see
Figure 4, and try to construct linear trails without incompatible adjacent selection
patterns using Lemmata 1 to 3. The F-functions of rounds 1 and 5 have zero input
and output selection patterns due to Lemmata 1 and 3. Due to Lemma 2, the selection
patterns after round 1 and before round 5 are just swapped input and output selection
patterns. The F-functions of rounds 2 and 4 have nonzero input selection patterns due
to Lemma 2. At round 3, Lemma 1 makes the output selection pattern of the F-function
nonzero. At the same time, Lemma 2 yields a zero input selection pattern for the F-
function in this round. Hence, by Lemma 3 the pair of adjacent selection patterns at
round 3 is incompatible for each linear trail of the linear hull.

CLEFIA, Skipjack, CAST256. For the linear hulls specified for 9 rounds of CLEFIA,
15 rounds of Skipjack and 18 rounds of CAST256, the corresponding linear trails are
derived in Figures 5, 6, and 7 using the lemmata above and all have at least one incom-
patible pair of adjacent selection patterns. In each linear trail, the linear approximation
over rounds 5, 6, and 12 of these constructions, correspondingly, exhibit correlation 0.
For CLEFIA and CAST256, the incompatible selection patterns at the input and out-
put of these round maps are of the same type as for the balanced Feistel. For Skipjack,
Lemma 2 provides an incompatible pair of adjacent selection patterns.
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Fig. 4. Zero-correlation linear hull (a, 0) 9 (0, a) over 5 rounds of balanced Feistel cipher with bijective
F-functions: each linear trail exhibits an incompatible pair of adjacent selection patterns at round 3
due to Lemma 3

Applying Proposition 3 to the incompatible pairs of adjacent selection patterns
above yields the claims of the theorem.

Theorem 1 demonstrates that several widely used Feistel-type block cipher construc-
tions have zero-correlation linear hulls when instantiated with bijective F-functions. We
experimentally verified the correctness of Theorem 1 on small-scale balanced Feistel,
CLEFIA, Skipjack, and CAST256 ciphers. The findings are summarized and compared
to impossible differentials in Table 1.

Luby and Rackoff [18] proved the resistance of the balanced Feistel cipher with
random F-functions to all adaptive chosen plaintext attacks for 3 rounds and to all
adaptive chosen plaintext and ciphertext attacks for 4 rounds, if the number of queries
the adversary is allowed to make is ≪ 2n/2. Our 5-round zero-correlation linear hull
for balanced Feistel does not contradict to these results, since, on the one hand, the
adversary requires at least 2n−1 cipher queries to detect the zero correlation property
and, on the other hand, the F-functions have to be bijective for Theorem 1 to hold.
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3.3 Advanced Encryption Standard (AES)

Here we show a class of zero-correlation linear hulls for 4 rounds of AES. The proof
is based on checking the forward and backward diffusion properties as well as on the
application of Proposition 3.

We consider a 4-round AES transform which consists of the initial key addition
followed by 3 full AES rounds and one incomplete round without the MixColumns
transformation, see Figure 8. One full AES round comprises SubBytes (SB), ShiftRows
(SR), MixColumns (MC), and AddRoundKey (AK) operations. The last incomplete
round consists of SubBytes (SB), ShiftRows (SR) as well as the AddRoundKey opera-
tion (AK’) with the round key mapped using the inverse MixColumns MC−1.

Theorem 2 (Zero-correlation linear hulls for AES). Let Γ and Γ ′ be 4-byte

column selection patterns with exactly one nonzero byte. Then each of the linear hulls

(Γ, 0, 0, 0) 9 (Γ ′, 0, 0, 0) over 4 AES rounds has zero correlation.

Proof. A nonzero byte of a linear selection pattern is called an active byte in the sequel.
For AES, due to the forward diffusion, any input selection pattern with only a single
active byte necessarily results in a selection pattern with all 16 active bytes after 2 full
rounds. At the same time, following the backward diffusion from the output selection
pattern over one incomplete round and one full round, any output selection pattern with
only one active byte results in exactly one active diagonal (4 active bytes). Hence, every
pair of adjacent selection patterns in this linear hull over the key addition of round 2 is
incompatible by Lemma 3 (for a fixed key, the byte key addition is an invertible map).
By Proposition 3, the latter directly translates to a 4-round zero-correlation linear hull.
See Figure 8 for an example of an zero-correlation linear hull of this type.

Theorem 2 yields a class of zero-correlation linear hulls for 4 rounds of AES. Note that
AES has also further zero-correlation linear hulls of similar types over 4 rounds. We



verified the incompatibility of adjacent linear selection patterns of linear trails in the
linear hull of Theorem 2 in our experiments with small-scale SPNs.

4 Zero-Correlation Key Recovery

Algorithm 1 of Section 2 provides a distinguisher for a block cipher when a linear hull
with a correlation of exactly 0 is given. Theorems 1 and 2 of Section 3 show numerous
zero-correlation linear hulls in many popular cipher constructions, whose input and
output selection patterns are independent of the key value. In this section, we turn this
into a key recovery for round-reduced AES-192, AES-256, and CLEFIA-256 [13], [24].

To perform key recovery over more rounds than covered by the zero-correlation
linear hull, one has to guess the (sub)key bits that are needed to compute the internal
values chosen by the input and output selection patterns of the linear hull from a
plaintext and a ciphertext. This is a major distinctive feature of zero-correlation linear
cryptanalysis compared to impossible differential cryptanalysis, where the adversary
has to guess key to control the difference propagation up to the boundaries of the
impossible differential. Moreover, a control over the type of differences is sufficient and
the knowledge of the exact difference values is not needed. That is, the number of
rounds that can be attacked by zero-correlation linear cryptanalysis is defined by the
form and length of the zero-correlation linear hull itself and by the diffusion properties
of the cipher.

Another crucial difference between zero-correlation cryptanalysis and impossible
differential cryptanalysis is the following. For a key guess, once the adversary has a pair
of texts with an impossible combination of input and output differences, he can deduce
that this key guess is wrong, since the attacked cipher would not allow the impossible
differential to go though. For this, only a subset of all plaintext-ciphertext pairs might
be needed. In the zero-correlation cryptanalysis, the adversary has to perform an exact
evaluation of correlation to tell if the key guess results in a zero-correlation linear hull.
Here a full codebook or at least a half of it (see Proposition 1) is always required. This
basically reduces the applicability of zero-correlation cryptanalysis to block ciphers
whose key is longer than the block.

4.1 6 Rounds of AES-192 and AES-256

The zero-correlation linear hull of Theorem 2 and Figure 8 over 4 rounds of AES
can be turned into a key recovery against 6 rounds of AES-192 and AES-256. The
general procedure is to partially encrypt each plaintext and to partially decrypt the
corresponding ciphertext with a guess of subkey bits. For each guess, one computes
the relevant parts of the intermediate internal state and verifies if the remaining cipher
exhibits the zero-correlation linear hull. The key-recovery attack can be outlined as
follows:

1. Guess the first diagonal of the first subkey and the main diagonal of round-6 subkey
(8 bytes, see Figure 8). For each guess:



(a) Partially encrypt each of the 2128 plaintexts one round forwards and partially
decrypt each of the corresponding 2128 ciphertexts one round backwards.

(b) Evaluate the correlation for two zero-correlation linear hulls of the type given
in Figure 8 with input selection pattern in the first column. The right guess will
have zero correlation for both linear hulls.

2. Guess the second diagonal of the first subkey (4 bytes). The main diagonal of round-
6 subkey is already known from Step 1. For each guess:
(a) Partially encrypt each of the 2128 plaintexts one round forwards and partially

decrypt each of the corresponding 2128 ciphertexts one round backwards.
(b) Evaluate the correlation for the zero-correlation linear hull with input selection

pattern in the second column. The right guess will have zero correlation.
3. Guess the third diagonal of the first subkey (4 bytes). The main diagonal of round-6

subkey has already been determined in Step 1. For each guess:
(a) Partially encrypt each of the 2128 plaintexts one round forwards and partially

decrypt each of the corresponding 2128 ciphertexts one round backwards.
(b) Evaluate the correlation for the zero-correlation linear hull with input selection

pattern in the third column. The right guess will have zero correlation.
4. Guess the remaining bits of the user-supplied key (of which the determined diagonals

of the first subkey are a part) by brute force using at most two plaintext-ciphertext
pairs.

Once the one diagonal of the first subkey has been determined (Step 1), we switch to
active bytes in another column of the input selection pattern for the zero-correlation
linear hull and repeat the procedure (Steps 2 and 3). We use two more input selection
patterns corresponding to two more diagonals of the first subkey. For each of these, we
do not have to guess another diagonal of the last subkey and just stick to the previous
output selection pattern of the zero-correlation linear hull.

For each of 264 guesses in Step 1, one needs to evaluate the correlation values for
two linear hulls to decrease the error probability. Due to Proposition 2, we expect a
wrong guess to result in zero correlation value with probability about 2−63.3. For the
correlations of two distinct linear hulls, this probability reduces to a negligible value of
about 2−126.7. The evaluation of the correlation for another linear hull can be performed
in parallel.

The complexity of each of Steps 2 and 3 is about 232 · 2128/12 ≈ 2156.4 encryptions.
The complexity of Step 4 is 2 ·2256−64−2·32 = 2161 encryptions. Thus, the computational
complexity of the full 6-round attack is dominated by Step 1 and can be estimated as
264 · 2128/12 ≈ 2188.4 encryptions and is the same for both AES-192 and AES-256. The
data complexity is 2128 plaintext-ciphertext pairs (cf. e.g. 2118.8 time and 22

113.8
data to

attack 7 rounds of AES-192 as well as 2227.8 time and 2111.1 data complexity to attack
8 rounds of AES-256 in [16] with an impossible-differential key recovery). A similar
5-round chosen-ciphertext or chosen-plaintext attack would reduce the computational
complexity to about 2156.3 encryptions and the data requirements to 2127.

4.2 13 rounds of CLEFIA-256

Based on the zero-correlation linear hull (a, 0, 0, 0) 9 (0, 0, 0, a) of Theorem 1, Ta-
ble 1, and Figure 5 over 9 rounds for CLEFIA-type structures, we demonstrate a



zero-correlation key-recovery attack against 13 rounds of CLEFIA-256. The general
procedure is similar to that for the attack on AES: We guess all key values needed to
compute the active intermediate values at the input and output selection patterns of
the zero-correlation linear hull. In our attack, the 9-round zero-correlation linear hull
covers rounds 3 to 11. The procedure can be outlined as follows:

1. Guess 4 32-bit secret-key values:

– The XOR of the 32-bit round-key chunk and 32-bit whitening-key chunk in
round 1 to predict the output of one F-function in round 1,

– The 32-bit round-key chunk to predict the output of one F-function in round 2,

– The XOR of the 32-bit round-key chunk and 32-bit whitening-key chunk in
round 12 to predict the input of one F-function in round 12,

– The 32-bit round-key chunk to predict the input of one F-function in round 13.

2. For each guess:

(a) Partially encrypt each of 2128 plaintexts two rounds forwards and partially de-
crypt each of the corresponding 2128 ciphertexts two rounds backwards.

(b) Evaluate the correlation for three zero-correlation linear hulls of the type given
in Figure 5. The right guess will have zero correlation for all three linear hulls.

We evaluate correlation for three distinct linear hulls to reduce the error proba-
bility for each of 2128 guesses to about 2−190. The computational complexity of the
13-round attack amounts to 2128 · 2128 · 2

13 ≈ 2253.3 encryptions. The data complexity
is 2128 plaintext-ciphertext pairs (cf. 2212 time and 2120.3 data in [26] for a 14-round
impossible differential key-recovery attack on CLEFIA-256). A similar 11-round chosen-
ciphertext or chosen-plaintext attack would have a computational complexity of about
2155.5 encryptions and a data complexity of 2127 texts.

5 Conclusion

In this article, we have introduced a novel extension of linear cryptanalysis – zero-
correlation linear cryptanalysis. We demonstrate linear hulls with a correlation of ex-
actly 0 for many cipher structures including AES as well as balanced and generalized
Feistel networks (CLEFIA, Skipjack, and CAST256). This extension of linear crypt-
analysis bears some similarities to impossible differential cryptanalysis and can be seen
as its counterpart in the domain of linear cryptanalysis, though being essentially dif-
ferent and having numerous significant distinctions.

We apply zero-correlation linear cryptanalysis to 6 rounds of AES-192 and AES-256
as well as 13 rounds of CLEFIA-256. The new attack does not break stronger ciphers
than the impossible-differential attack. This conforms to the general belief that for
most ciphers (however, not for all of them), differential attacks are stronger than linear
attacks. The main contribution of this work belongs to the theory of cryptanalysis of
block ciphers. One may expect some block ciphers to be re-evaluated using the novel
approach to linear cryptanalysis. This attack also can be taken into account while
designing new block ciphers.
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