Efficient Techniques for Privacy-Preserving
Sharing of Sensitive Information®

Emiliano De Cristofaro, Yanbin Lu, and Gene Tsudik
University of California, Irvine
{edecrist,yanbinl,gis@ics.uci.edu

Abstract

The need for controlled (privacy-preserving) sharing ofssiéve information occurs in many dif-
ferent and realistic everyday scenarios, ranging frononatisecurity to social networking. A typical
setting involves two parties: one seeks information fromdther without revealing the interest while
the latter is either willing, or compelled, to share only tequested information. This poses two chal-
lenges: (1) how to enable this type of sharing such thatgmlearn no information beyond what they are
entitled to, and (2) how to do so efficiently, in real-worldptical terms. This paper explores the notion
of Privacy-Preserving Sharing of Sensitive InformatioRE5I), and provides two concrete and efficient
instantiations, modeled in the context of simple databaseying. Proposed techniques function as a
privacy shieldto protect parties from disclosing more than the requiredimmiim of their respective
sensitive information. PPSSI deployment prompts sevérallenges, that are addressed in this paper.
Extensive experimental results attest to the practicalitgttained privacy features and show that they
incur quite low overhead (e.d.0% slower than standard MySQL).

1 Introduction

In today’s increasingly digital world, there is often a tension betweergsafeing privacy and sharing
information. On the one hand, sensitive data needs to be kept confidentt@le other hand, data owners
are often motivated or forced to share sensitive information. Considéoltbeiing examples:

e Aviation Safety:The Department of Homeland Security (DHS) checks whether any ppeEseon
each flight from/to the United States must be denied boarding or disembarKadised on several
secret lists, including th&error Watch List(TWL) [22]. Today, airlines surrender their passenger
manifests to the DHS, along with a large amount of sensitive information, inguchedit card
numbers [46]. Besides its obvious privacy implications, this modus opepasés liability issues
with regard to mostly innocent passengers’ data and concerns alssittlealata loss. (See [12] for a
litany of recent incidents where large amounts sensitive data were lostlmaumdiged by government
agencies.) lIdeally, the DHS would obtain information pertairingy to passengers on one of its
watch-lists, without disclosing any information to the airlines.

e Law Enforcement:An investigative agency (e.g., the FBI) needs to obtain electronic information
about a suspect from other agencies, e.g., the local police, the militariMhé the IRS, or the
suspect’s employer. In many cases, it is dangerous (or simply forbidoletihe FBI to disclose the
subjects of its investigation. Whereas, the other party cannot disclosdiits @ataset and trust the
FBI to only extract desired information. Furthermore, FBI requests migatitio be prexuthorized

by some appropriate authority (e.g., a federal judge). This way, the &Bouoly obtain information
related to authorized requests.

“A preliminary version of this paper appears in the Proceedings of thentimhtional Conference on Trust and Trustworthy
Computing (TRUST'11). This is the full version.



e Healthcare: A health insurance company needs to retrieve information about its clientdther
entities, such as other insurance carriers or hospitals. The latter gaonate any information on
other patients and the former cannot disclose the identity of the target client.

Other examples of sensitive information sharing include collaborative bd&tection [40] (i.e., service
providers share their logs for the sole purpose of identifying common dies)anterest sharing from
smartphones [16], or preventing cheating in online gamin [8].

Motivated by above examples, this paper develops the architectuirif@cy-Preserving Sharing
of Sensitive Information (PPSSI) and proposes two efficient and secure instantiations that function as a
privacy shieldto protect parties from disclosing more than the required minimum of sensitiveniation.
We model PPSSI in the context of simple database-querying applications vaithasties: aserver in
possession of a database, andliant, performing disjunctive equality queries. In terms of one of the
examples above, the airline company (the server) has a database wighgesmformation, while the
DHS (the client) poses queries corresponding to the TWL.

Intended Contributions. In this paper, we explore the notion of Privacy-Preserving Sharirfeositive
Information (PPSSI). Our main building blocks are efficient Private &etsection (PSI) techniques. Dur-
ing the design of PPSSI, we address several challenges stemming faptngdP Sl to realistic database
settings. Our extensive experimental evaluation demonstrates that oniqgteehincur very low overhead
compared to standard (non privacy-preserving) MySQL. All soaazke is publicly availabl@.

Organization. In next section, we introduce PPSSI syntax, along with its privacy requnts, and re-
view PSI definitions. After reviewing related work in Section 3, in Section d,discuss the insecurity

of a strawman approach obtained with dvesadaptation of PSI techniques to PPSSI. Then, Section 5 in-
troduces a secure PPSSI approach using a novel database emcrgptibanism. Next, in Section 6, we
consider another approach geared for very large databases. nSégiesents our experimental analysis,
and Section 8 concludes the paper by discussing future work. In Alppén we report complete details
and performance evaluation of all considered Private Set Intersexiisiructions.

2 Preliminaries

This section introduces Privacy-Preserving Sharing of Sensitivardtion (PPSSI), formalizes its
privacy requirements, and overviews Private Set Intersection P&l)y main building block.

2.1 PPSSI Syntax & Notation

We model PPSSI in the context of simple database querying. In it, a serigama a databasé) B,
containingw records withm attributes(attry, - - - , attr,,). We denoteDB = {(R;)}}_,. Each record
R; = {valj;}*,, whereval;; is R;'s value for attributeattr;. A client poses simple disjunctive SQL
queries, such as:

SELECT * FROM DB
WHERE (attr] = val; OR--- ORattr} = val}) 1)

As a result of the query, the client gets all recorddJ® satisfyingwhereclause, and nothing else.
Whereas, the server learns nothing about &y, val}}i1<i<,. We assume that the database schema
(format) is known to the client. Furthermore, without loss of generality, veeirag that the client only
gueries searchable attributes.

In an alternative version supportiagthorized querigsve require the client to receive query authoriza-
tions from a mutually trusted offlin€ertification Authority(CA) prior to interacting with the server. That
is, the client outputs matching records only if the client holds pertinent aaétioms for(attr;, val}).

'Source code is available &t tp://sprout.ics.uci.edu/ projects/iarpa-app/index. php?page=code.
php.


http://sprout.ics.uci.edu/projects/iarpa-app/index.php?page=code.php
http://sprout.ics.uci.edu/projects/iarpa-app/index.php?page=code.php

Our notation is reflected in Table 1. In addition, we usec(-) and Decy(+) to denote, respectively,
symmetric key encryption and decryption (under k¢yPublic key encryption and decryption, under keys
pk andsk, are denoted aB,(-) and E(-) !, respectively.c = Sign,, (M) denotes a digital signature
computed over messagé using secret keyk. OperationVrfy,, (o, M) returnsl or 0 indicating whether
o is a valid signature od/. Z}; refers to a composite-order RSA group, whérds the RSA modulus.
We used to denote RSA private key andto denote corresponding public key. We usgto denote a
cyclic group with a subgroup of order wherep andq are large primes, anglp — 1. Let Gy, G be two
multiplicative cyclic groups of prime ordex We uset : Gy x Gy — G1 to denote a bilinear mafZ K PK
is used to denote zero-knowledge proof of knowledge. WeHIsg H (-), Ha2(+), H3(-) to denote different
hash functions. In practice, we impleméitm), H,(m), Ha(m), Hs(m) as SHA-10||m), SHA-1(1||m),
SHA-1(2||m), SHA-1(3||m).

2.2 Privacy Requirements

We now define PPSSI privacy requirements for both standard andrenetth@ueries. We consider
both Honest-but-Curious (HbC) adversaries and malicious advers#ieslbC adversary faithfully fol-
lows all protocol’s specifications (but might attempt to infer additional infagiomeduring or after protocol
execution). Whereas, malicious adversaries may arbitrarily deviate freprdtocol.

Privacy requirements are as follows:

e Server Privacy.The client learns no information about any record in server's datahaseoes not
satisfy thewhere(attr; = val;) clause(s).

e Server Privacy (Authorized Queriesfame as "Server Privacy” above, but, in addition, the client
learns no information about any record satisfying thieere (attr; = wval}) clause, unless the
(attr?,val}) query is authorized by the CA.

¢ Client Privacy.The server learns nothing about any client query parameters, i.et{gllandval;,
nor about its authorizations, (for authorized queries).

e Client Unlinkability. The server cannot determine (with probability non-negligibly exceedlji2y
whether any two client queries are related.

e Server Unlinkability. For any two queries, the client cannot determine whether any record in the
server’s database has changed, except for the records thataredgby the client) as a result of
both queries.

e Forward Security (Authorized Queried)he client cannot violate Server Privacy with regard to prior
interactions, using authorizations obtained later.

Note that Forward Security and Unlinkability requirements are crucial in npaagtical scenarios. Re-
ferring to one example in Section 1, suppose that the FBI queries an eraglay@base without having
authorization for a given suspect, e.g., Alice. Server Privacy (AigedrQueries) ensures that the FBI
does not obtain any information about Alice. However, unless Forwacdi8y is guaranteed, if the FBI
later obtains authorization for Alice, it could inappropriately recover Herfifom the (recorded) protocol
transcript. On the other hand, Unlinkability keeps one party from noticimggés in other party’s input.
In particular, unless Server Unlinkability is guaranteed, the client caayawetect whether the server up-
dates its database between two interactions. Unlinkability also minimizes the rigkamfypleaks. Without
Client Unlinkability, if the server learns that the client’s queries are the sameimteractions and one of
these query contents are leaked, the other query would be immediatelyedxpos

2.3 Private Set Intersection (PSI)

Private Set Intersection (PSI) [26] constitutes our main building blocklldtvs two parties — a server
and a client — to interact on their respective input sets, such that theatiriearns the intersection of the
two sets, while the server learns nothing beyond client’s set size.

3



attr, | lth attribute in the database scherha [ ctr;; | number of times whereal;/ ; = val;;,Vj <= j
R; jthrecord in the database tagj, tag forattr;, val;;
valj; | value inR; corresponding tattr, K’ key used to encrypt;

k; key used to encrypR, k7 key used to encrypt index
er; encryption ofR; ekjq encryption of keyk;
thj token evaluated overttr;, val; eind;,; encryption of indexj

Table 1: Notation.

PSI with Data Transfer (PSI-DT): It involves a server, on input a setofitems, each with associated data
record,S = {(s1,datay), -, (sw,data,)}, and a client, on input of a set ofitems,C = {c1,--- , ¢, }.

It results in the client outputting(s;, data;) € S | 3¢; € C s.t. ¢; = s;} and the server — nothing except
This variant is useful whenever the server holds a set of recatigrnthan a simple set of elements.

Authorized PSI-DT (APSI-DT): It ensures that client input authorizedoy a mutually trusted offline CA.
Unless it holds pertinent authorizations, the client does not learn whiggheput is in the intersection.
At the same time, the server does not learn whether client’s input is autthoriee verification of client
authorizations is performed obliviously. More specifically, APSI-DT ies a server, on input of a set of
w items: S = {(s1,datar),- - , (sw,datay)}, and a client, on input of a set ofitems with associated
authorizations (typically, in the form of digital signatureS)= {(c1,0;) -, (cy,0,)}. It results in client
outputting{(s;, data;) € S|3(ci,04) € Cs.t.c; = s; AVrfy,(oi,¢;) = 1} (wherepk is CA's public
key).

We also distinguish between (A)PSI-DT protocols based on whethert tiheypsupporpre-distribution

(A)PSI-DT with pre-distribution: The server can “pre-process” its input set independently from client
input. This way, the server cagme-distributeits (processed) input before protocol execution. Both pre-
processing and pre-distribution can be done offline, once for alilfgesdients.

(A)PSI-DT without pre-distribution: The server cannot pre-process and pre-distribute its input.
Note that pre-distribution precludes Server Unlinkability, since servartiigpassumed to be fixed. Simi-
larly, in the context of authorized protocols with pre-distribution, Forwgedurity cannot be guaranteed.

3 Related Work

A number of cryptographic primitives provide privacy properties redemlhose listed in Section 2.2.
We overview them below.

Secure Two-Party Computation (2PC)2PC allows two parties, on inputandy, respectively, to privately
compute the output of a public functigh over (z,y). Both parties learn nothing beyond what can be
inferred from the output of the computation. Although one could implemenSPR&h generic 2PC, it

is usually far more efficient to have dedicated protocols, as 2PC incunschigputational overhead and
involves several communication rounds.

Oblivious Transfer (OT). OT [44] involves a sender holding secret messages and a receiver willing
to retrieve thei-th among sender’'s messages. It ensures that the sender doegmaethadn message is
retrieved, and the receiver learns no other message. While the OT fuad@ficscomehow resembles PPSSI
requirements, note that, in PPSSI, receiver’s inputs are query kdgywhereas, in OT, they are indices.

Private Information Retrieval (PIR). PIR [14] allows a client to retrieve an item from a server database,
(1) without revealing which item it is retrieving, and (2) incurring a commutisceoverhead strictly lower
thanO(n), wheren is the database size. Observe that, in PIR, privacy of server’s datébaot protected

— the client may receive additional bits of information, besides the receqgisested. Symmetric PIR
(SPIR) [28] additionally offers server privacy, thus achieving OT witmmunication overhead lower than
O(n). However, similar to OT, a client of a symmetric PIR needs to input the indexecdi¢isired item in
server’s database — an unrealistic assumption for PPSSI. An extengieyword-based retrieval is known
as Keyword-PIR (KPIR) [13]. However, KPIR still does not consislerver privacy and it involves multiple
rounds of PIR executions.



Searchable Encryption (SE).Symmetric Searchable Encryption (SSE) [47] allows a client to store, on
an untrusted server, messages encrypted using a symmetric-key cijgfegrits own secret key. Later,
the client can search for specific keywords by giving the server @d@pthat does not reveal keywords
or plaintexts. Boneh et al. [6] later extended SSE to the public-key settingangone can use client’s
public key to encrypt and route messages through an untrusted sewyera(mail server). The client can
then generate search tokens, based on its private key, to let the islenviefiy messages including specific
keywords. We conclude that Searchable Encryption targets relatediffggent scenarios compared to
PPSSI.

Privacy-Preserving Database Query (PPDQ)PPDQ techniques can be distinguished into two kinds.
The first one is similar to SSE: the client encrypts its data, outsources@edmyata to an untrusted service
provider (while not maintaining copies), and queries the service proatesill. In addition to simple
equality predicates supported by SSE, solutions like [29, 32, 5] supgpagral SQL operations. Again,
this setting is often different from PPSSI, as that data, although stordtklserver, belongs to the client;
thus, there is no privacy restriction against the client. Moreover, th@agmns do not provide provably-
secure guarantees, but are based on statistical (probabilistic) methods.

The second kind of PPDQ is closely related to private predicate matchingmafituand Goldberg [42]
propose a transition from block-based PIR to SQL-enabled PIR. Assgubto PPSSI, however, server's
database is assumed to be public, thus, its privacy is not protected. Nlheat, and Chris [35] consider
a scenario where client matches classification rules against serveatsada. However, they assume the
client’s rule set to be fixed in advance and known to the server. Additisoek, such as [45, 15], requires
several independent, mutually-trusted, and non-colluding parties.désan et al. [39] also allow “fuzzy”
matching, yet their solution requires a number of (expensive) cryptbgraperations (i.e., public-key
homomorphic operations) quadratic in the size of parties’ inputs, while we toorstructing scalable
solutions with linear complexity.

4 A Strawman Approach

Looking at definitions in Sectidn 2.3, it seems that PPSSI can be realizeécthply snstantiating PSI-
DT protocols (or APSI-DT for authorized queries). We outline gtimwmanapproach below and show
that it is not secure.

For each record, consider the hash of every attribute-value @iy (val; ;) as a set element, anfg;
as its associated data. Server “set” then becomes:

S = {(H((attr;,valj;), Rj) b1 <i<m1<j<w

Client “set”is:C = {H (attr},val}) }1<i<y, i.€., elements corresponding to thkereclause in Equation/1.
Optionally, if authorized queries are enforcetljs accompanied by signatures over H (attr}, val}),
following the APSI-DT syntax. Parties engage in an (A)PSI-DT interactairthe end of it, the client
obtains all records matching its query.

The strawman approach faces two security issues:

Challenge 1: Multi-Sets. While most databases include duplicate values (e.g., “gender=male”), PSI-
DT and APSI-DT definitions assume that sets do not include dupli@aﬂf&rver set contains duplicated
values, the corresponding messages (pseudorandom functione@ipsted over the duplicated values) to
the client would be identical and the client would learn all patterns and digtibisequencies. This raises a
serious concern, as actual values can be often inferred from tegudncies. For example, consider a large
database where one attribute reflects “employee blood type”: since blpedrgguencies are well-known

for general population, distributions for this attribute would essentiallyalete plaintext. deterministic
encryptions.

2Note that some PSI constructs (e.g., [37]) support multi-sets, fenwiaeir performance is not promising as they incur quadratic
computational overhead (in the size of the sets), as opposed to merd (aPSI-DT protocols with linear complexity (e.g., [34,
119,/17]). Also, they support neithdata transfemor authorization



e Client's input:{c;, o; }1<i<v, Whereic; = H(attr],val]). o, is only used for APSI-DT protocols.

e Serversinput{s;;ti<j<w,1<i<m,{Rj}1<j<w, Where:s;; = H(attr;,val; ;)

) Obliviously computeditk; < Token(¢;) }vs
1. Client Server

2. ServerEDB < Encr ypt Dat abase(Token(:),{R;}1<j<w)

EDB .
3. Server Client

4. Client:V1<i<vRj <« Lookup(tk;, EDB), OutputR1 U - - - U Ry.

Figure 1: Outline of our first PPSSI approach.

Scheme name Token definition PSI category

DT10-1 (Figure 3 of [19]) Token(c) = ([(TT;_; ¢) - 9%<]/c)® mod p PSI-DT without pre-distribution

DT10-APSI (Figure 2 of [19])| Token(c) = ([(T];-, 0:)* - g%<]¢/c*)®= mod N | APSI-DT without pre-distribution

Table 2: Token definition for (A)PSI-DT without pre-distributiorc(, o; is defined in Figure|1l and
c € {cihi<i<v)

Challenge 2: Data Pointers.To enable querying by any attribute, each recod,— must be separately
encryptedn times, i.e., once for each attribute. As this would result in high storage/batidoxdrhead,
one could encrypt eack; with a unique symmetric ke¥; and then using:; (instead ofRR;) as data
associated witlf (attr;, val;;). Although this would reduce the overhead, it would trigger another issue:
in order to use the key — rather than the actual record — as the associatadih the (A)PSI-DT protocol,

we would need to store a pointer to the encrypted record alongsideBachr;, val;;). This would allow

the client to identify allH (attr;, val;,;) corresponding to a given encrypted record by simply identifying
all H (attr;, val;;) with associated data pointers equal to the given records. Such a (pterivicy leak
would be aggravated if combined with the previous “attack” on multi-setsngive encrypted records, the
client could establish their similarity based on the number of equal attributes.

Remark.. We stress that the above issues do not only apply to thee nedaptation of Private Set Intersec-
tion techniques to the specific PPSSI setting but also to privacy-pregetaia mining [21], information
sharing across databases [1],

5 The First PPSSI Approach

We now present our PPSSI construction that is both secure and a@gpractical. Like the strawman
approach, it relies on (A)PSI-DT. However, it addresses aforéored challenges by introducing a novel
database-encryption technique. In order to guaranteeSmtyer Unlinkabilityand Forward Security we
use (A)PSI-DTwithoutpre-distribution.

Our approachiisiillustrated in Figure 1. In step 1, the client and the sargage in the@bliviouscompu-
tation of Token function: at the end of it, the client obtaits; = Token(c;), wherec; = H (attr}, val}).
Note that the server learns nothing abepbr tk;. Token function is computed using an (A)PSI-DT
protocol, thus, different (A)PSI-DTs instantiate it differently.

In step 2, the server rucr ypt Dat abase procedure — described in Algorithm 1 and discussed in
Section 5.1 — and creates the encrypted datafizid that is transferred to the client in step 3. Finally, in
step 4, the client runsookup procedure — illustrated in Algorithm 2 and discussed in Section 5.2 — using
tk; tokens ovelEDB; at the end of it, the client obtains the set of records satisfying its query.

Our protocol can be used with any (A)PSI-DT, however, we use tHanta without pre-distribution,
since they provide Server Unlinkability and Forward Security. Followingoadihgh experimental analysis
(Appendix A.5), we select the PSI-DT protocol fram [19] (denoteB@40-1) and its APSI-DT counterpart
from [19] (denoted a®T10-APSI) for authorized queries. These protocols were proven securesagain
HbC adversaries [19]. However, it was later shown that, with very similarteead, they can be extended




Public input:p, ¢

Client’s private input{c; }vi

All operations are modulp
. Client: PCH « [[}_, ¢i, Re <~ Z;, X «+ PCH - "¢, Vi, PCH; — 22 R_; & 7%, y; « PCH; - g"ei

C4
) X {yitvi
. Client Server

. ServerR, <~ 73, Z « g™ Vi, z; « y;*

= e e e

N

w

Z{zi}vi .
. Server - Client

. Client:Vi, Token(c¢;) « z; - Z%e . 77 Rei

I

ol

Figure 2: Oblivious computation oToken(-) using DT10-1.

e Public input:e, N e Client’s private input{c; }v:
e CAs private input:d e All operations are moduldV
1. CAVi, a; «— (c;)?
Tifvi
2. CA toike Client
3. Client: PCH «— [[;_, ¢i, PCH* —I];_, 03, Re pull 75 X — (PCH*)? - g
Vi, PCH; «— PCH"/o;,y; — (PCH})?. gRei

_ X {yi}vi
4, Client Server
5. ServerR, < Z;, Z «— ¢° Vi, z; — yi''®
Z{zi}vi )
6. Server Client

7. Client:Vi, Token(c;) « z; - Z%e . z7 e

Figure 3: Oblivious computation ofoken(-) using DT10-APSI.

to achieve security against malicious adversaries [18].

For the sake of completeness, we deflioken function for the selected (A)PSI-DT constructions in
Table 2. Note that botfioken definitions involve random value®. and R, contributed by the client and
the server respectivelyToken function can be directly evaluated by the server over its own inputs (as in
step 9 of Algorithm 1) only after step 1 of Figure 1 where necessarynmdton regardingz. was sent as
part of the oblivious computation protocol by the client to the server. & hasdom values are selected at
the beginning of and kept fixed throughout the PPSSI protocol execulioey are chosen independently,
for each invocation, in order to guarantgerver UnlinkabilityandForward Security

We present the complete details Biken’s oblivious computation in Figure 2 and Figure 3. Both
instantiations incur linear computation overhead with respect to client aner sat size.

Compared to the strawman approach, we modified the “encryption” technigther than (directly)
using a symmetric-key encryption scheme, Ener ypt Dat abase procedure is invoked.

5.1 Database Encryption with counters

We illustrateEncr ypt Dat abase procedure in Algorithm [1. It takes as input the definition of the
Token function, and server’s record set. It consists of two “phases”:R@gdord-leveland (2) Lookup-
Tableencryptions.

Record-level encryption is relatively trivial (lines 1-6): first, the sershuffles record locations; then,
it pads eachz; up to a fixed maximum record size, picks a random symmetridkegnd encrypts?; as
er; = Ency, (R;).

Lookup-Table (LTable) encryption (lines 8—15) pertains to attribute namdevalue pairs. It enables
efficient lookup and record decryption. In step 8, the server haahextribute-value pair and uses the
result as input td'oken function in step 9. In step 10, we use the concatenatiofio&fen output and a
counter,ctr;;, in order to compute the tagg;,;, later used as a lookup tag during client query. We use
ctr;,; to denote the index of duplicate value for thth attribute. In other words;tr;; is the counter of
occurrences obal; ; = val;;,Vj' <= j. For example, the third occurrence of value “Smith” for attribute



Algorithm 1: Encr ypt Dat abase Procedure.

input : FunctionToken(-) and record sefR; }1< <w

output: Encrypted DatabasEDB

1: Shuffle{R; }1<j<w

2: maxlen «+— max length among alR;

3:for1 <j<wdo

4 PadR; to maxlen;

5k < {0,1}'%%
6: erj « Ency, (R;));
7
8
9

for 1 <l <mdo
hsji «— H(attr;,val;;);
tk;, — Token(hs;);

10: tag;, — Hi(tk;|lctri);

11: k” <—H2(t/€31|‘ct7"31)

12: k) — Hs(tkj||ctrsq);

13: ekji — Enck/  (R5);

14: eind;; — Encku ()

15: LTable;; «— (tagj 1, ek, eind;);
16:  end for

17: end for

18: ShuffleLTable with respect tgj and!;
19: EDB « {LTable, {er;}1<j<w};

Algorithm 2. Lookup Procedure.

input : Search tokemk and encrypted databaB3DB = {LTable, {er; }1<j<w}
output: Matching record seR

1: ctr «— 1;

2: while 3tag;,; € LTable s.t. tag;; = Hi(tk||ctr) do

31 k' «— Hs(tkl||ctr);

4:  j' « Decyr(eindj;);
5. k'« Hy(tkl|ctr);
6: k< Decy(ekji);
7. Rj < Deck(erj);
8.
9:

10:

R — RUR;j;
ctr «— ctr + 1;
end while

“Last Name” will have the counter equal & The counter guarantees that duplicéietr, val) pairs
correspond to different tags, thus addressing Challenge 1. Nexemgsomputek’ = = Hoy(tk;||ctr;;)
andk’, = Hs(tk;||ctr;;). Note thatk’ , is used for encrypting symmetric kay. Whereask”l is used

for encrypting the index oR;. In step 13 the server encrypisasek;; = Enck/ (k ). Then, the server
encryptseind;; = Enck// (7). The encryption of index (data pointer) guarantees that the client tanno
link two tags belonging to the same record, thus addressing Challenget2plb5 the server inserts each
tag;, ek;; andeind;; into LTable, which is{tag;,, ek;;, eind;;}1<j<wi1<i<m. Next, the server shuffles
LTable (step 18). The resulting encrypted databBd@B, is composed of LTable angr; }”5”21 (step 19).

5.2 Lookup with counters

We now discuss.ookup procedure shown in Algorithin 2. It is used by the client to obtain the query
result, i.e., to searcRDB for all records that match client’s search tokens.

In step 1, the clientinitializes a counter to 1. Next, it seardiiEsble for tagtag;; = Hi(tk||counter).
If there is a match, the client attempts to recover the record associatethwiih To do so, the client needs
to locate the associated record: it computés= H3(tk||ctr) and recover§’ = Decy(eind;;). Note that
erj NOW corresponds to the associated record. To deenyptthe client first recovers the kdyused to
encrypter;/, by computings’ = Ho(tk||ctr) and obtainingt = Decy (ek;;). Finally, the client recovers
R; by decryption, i.e.R; = Decy(er;).

There are several ways for the client to stbfBable. Hash table storage is most efficient as it only



requires constant lookup time. We can also use binary search tree, takéhsublinear lookup time, but
it requires orderind.Table first.

5.3 Example of Correctness

Assume that server’s database includes the attribute “gender” with tworeoces of value “male”.
In Algorithm|[1, the samek (step 9) will be generated for the two occurrences of ("gender”, "fhale
However, for the first occurrenceng = Hi (tk||1), k' = Ho(tk||1), k" = Hs(tk||1) while, for the second
occurrencetag = Hi (tk||2), k" = Ha(tk||2), k" = Hs(tk||2).

Suppose that the client searches for records matching “gender = nidiest derivestk (step 1 of
Figure/1). Next, it matche#/, (tk||1) in LTable, derives keyss’ = H(tk||1),k"” = Hs(tk||1), and
recovers the index in step 4 and the record in step 7 of Algorithm 2. It alsksléor H; (tk||2) and
performs the same operations as before, exceptithat Hy(tk||2), k" = Hs(tk||2). Finally, the client
looks for H; (tk||3): since it finds no match, it terminates.

5.4 Challenges Revisited

We claim that our approach addresses Challenge 1 and 2, discussectionS}. The intuition is as
follows:

Multi-sets: The use of counters during database encryption makesteagh(resp.ek;;, eind; ;) distinct
in LTable, thus hiding plaintext patterns.

Data Pointers: Storingeind;; (rather thary) in LTable, prevents the server from exposing the relationship
between an entr{.Table;; and its associated record;.

5.5 Security Analysis of First PPSSI Approach

We useg; to denote theth query of the form(attr, val) issued by the client and ugg; to denote all
records matching query.

5.5.1 Security against Honest-but-Curious/Malicious Client

We define security against Honest-but-Curious/Malicious client by cangpis view under real model
with that under ideal model. In the ideal model, there is a trusted third party)($&rving as an honest
server who, in response to the queryonly repliesq);.

We first consider Honest-but-Curious adversary and analyze malieiduersary at the end of this
section. We define a simulat6tM that attempts to simulate to a real-model client based on output from
ideal-model TTP as follows:

Simulator SIM:

SIM is given input{qi,...,qn}
1. SIM picks all the secret and public parameters.

2. SIM interacts with.4 as a real-model server during oblivious computation of Token (step 1 of
Figure 1).

3. SIM sends{q1, . .., q,} to the TTP and receive®)1, ..., Qx,}.
4. SIM runs an arbitrary function of@1, ..., @, } and outputs the result to the client.

We then define an experiment for any adversdry



The experimentSPrivc 4:
1. The adversaryl outputs to the challenger a list of querigs, . . ., ¢, }

2. The challenger chooses a randombbit- {0, 1} and does one of the following:

(a) If b = 0, then the challenger interacts withas a real-model server.
(b) If b = 1, then the challenger interacts withasSIM({q1, . .., gn}).

3. The adversaryl outputs a bit'.

4. The output of the experiment is defined tolbé b’ = b, and0 otherwise.

Definition 1 The first PPSSI approach is secure against honest-but-curioug dlidar all probabilistic
polynomial-time adversaried, there exists a probabilistic polynomial-time simulagdi such that

1
Pr[SPrivc 4 = 1] < 3 +e

This definition ensures that the client in the real model does not get maliferent information than
the ideal implementation.

Theorem 1 If the hash functiont (-), H1(-), Ha(-), H3(-) are collision resistantEnc is a semantic se-
cure encryption, and Token is unpredictable, then first PPSSI apprisasecure against any probabilistic
polynomial-time honest-but-curious client.

Proof: Our goal is to construct a simulatSitM such that4 cannot tell the difference between the view
when interactiing witlf5IM and the view when interacting with real-model server. Qi is constructed
as follows:

1. SIM picks all the secret and public parameters on behalf of a real-modek sara publish all public
parameters.

2. SIM interacts with A as a real-model server during oblivious computation of Token (step 1gef F
ure 1).

3. SIM queries TTP fof ¢, . .., ¢, } and gets backQ@, ..., Q,}.

4. Let@ denote;Q;. SIM generatess — || random records of the same length as any other message
in Q. Let DB’ denote the concatenation @fand these random records. Note tHaB3’| = w.

5. Use Algorithm 1 to encrypb B’ and returns encrypted databd&BPB’ to the client.

We first analyzeA'’s view between tags ilEDB and tags inEDB’. Note that a tag if.Table is
computed agd;(Token(H (attr,val))||ctr). For all (attr,val) pairs not queried byqi,...,q,}, the
computed tags should be uniformly random unless (1) there existgh thatH (¢;) = H(attr,val);
(2) there exists two pairs fattr’,val’), (attr”,val”) — such thatH; (Token(H (attr’,val’))||ctr’) =
Hi(Token(H (attr” val"))||ctr"); (3) A forges TokefH (attr,val)) for certain (attr,val). All these
happen with negligible probability i/ (-), H;(-) are collision resistant and Token is unpredictable.

Next we analyzeA's view between({ek; , eind;;}1<i<m,erj)i<j<o In EDB and those irEDB'.
For all ek, eind, er whose corresponding tags do not mafeh, . . ., ¢, }, they should appear uniformly
random toA unless (1)A breaks symmetric encryption algorithm; (2) finds collisiondn(-) or Hs(-);
(3) A can forge Toke(H (attr, val)) for certain(attr, val). All these happen with negligible probability if
Hs(+), Hs(+) are collision resistanfznc is semantic secure and Token is unpredictable. O

In order to consider malicious adversary, we need to change the simuéititidn and the experiment.

In SIM, there is no input of¢i,...,qg,} and, inSPrivc 4, there is no step 1. Note, for the first PPSSI
approach, it is secure against malicious adversary only if [18] is umeabfivious computation of Token.

10



Theorem 2 If oblivious computation of Token protocol is secure against malicioustcliee hash function
H(-), Hi(-), Ha(-), H3(-) are collision resistant and’nc is a semantic secure encryption, then first PPSSI
approach is secure against any probabilistic polynomial-time maliciousfclien

Proof: SIM construction is the same as that in the proof for thedrem 1 except that, i@, 88 extracts
all {q1,...,q,} from the ZKPK sent by4, which requires rewinding afl. Then the proof follows that for
Theorem 1. O

5.5.2 Security against Honest-but-Curious/Malicious Server

Given that the server gets no output from the protocol, the definition aftdiprivacy requires simply
that the server cannot distinguish between cases in which the client feasmliinputs.
We define an experiment for any adversaty

The experimentSPrivg 4:
1. The adversaryl chooses its own databasa3 and outputs to the challenger two list of queries
—(a?,---,ap) and(gi, . ., qp)-

2. The challenger chooses a randombbit- {0, 1} and does one of the following:

(@) Ifb = 0, then the challenger interacts withas a honest client using querig$, . . ., ¢%).
(b) If b = 1, then the challenger interacts withas a honest client using querigs, . . ., ¢} ).

3. The adversaryl outputs a bit'.

4. The output of the experiment is defined tolbé b’ = b, and0 otherwise.

Definition 2 The first PPSSI approach is secure against honest-but-curiousimaiserver if, for all
probabilistic polynomial-time adversarie$,

1
Pr[SPrivs 4 = 1] < 5te

Theorem 3 If oblivious computation of Token function is secure against any probabilmlynomial-
time honest-but-curious or malicious server, the first PPSSI appr@ashcure against any probabilistic
polynomial-time honest-but-curious or malicious server.

Proof: In the first PPSSI approach, the only messagdegets from the client is during oblivious Token
computation. If oblivious computation of Token function is secure agamgtpaobabilistic polynomial-
time honest-but-curious or malicious server, the messagesceives from the client should be perfectly
hidden by randomness. Therefore the theorem follows. O

6 The Second PPSSI Approach for Very Large Databases

The first PPSSI approach in Section 5, combines efficiency with provsslalyire guarantees. However,
in the context overy largedatabases, it faces two additional issues:

Challenge 3: Bandwidth. If server’s database is very large and/or communication takes place el@r
channel, the bandwidth overhead incurred by the transfer of the@rdrgiatabase may become prohibitive.

Challenge 4: Liability. The transfer of the encrypted database to the client also prompts therroble
of long-term data safety and associated liability. An encryption schemedeved strong today might
gradually weaken in the long term. While we ensure that the client canngtadeecords outside its query,

11



CLIENT SERVER e Client'sinput:{c;,o;}1<i<v, Where:c; = H (attr;,val;)
R - e Serversinput{s;}i<j<wi<i<m, {Rjhi<j<w,
Q P - N~ Where:sj,l = H(attrl, valj,l)
Y= > .
N Offline:
M 1. Server:
a EDB « Encr ypt Dat abase(Token(-), {R; }1<j<w)
e
s
&L 2. Server EDB B
®ig
E = Online:
E ) Obliviously compute$tk;<—Token(¢;) }v;
_ 1. Client Server
R;«IBLookup(tk;) }vi
2. Client ! (k) 1B
ISOLATED BOX 3. Client:VR € Uy;R;, outputR

Figure 4: The introduction of the Isolated Box. Figure 5: Our second PPSSI approach based on IB.

itis not too far-fetched to imagine that the client might decrypt the entire dagaib reasonably near future,
e.g.,10 or 20 years later. However, data sensitivity might not dissipate over time. Fan@rasuppose that

a low-level DoD employee is only allowed to access unclassified data. Bingaincess to the encrypted
database containing top secret data and patiently waiting for the encryptiems to “age”, the employee
might obtain still-classified sensitive information. Further, in several settpaysies (e.g., banks) may be
prevented, by regulation, from releasing copies of their databases ifeencrypted).

In the rest of this section, we introduce a novel architecture to addré&ssehallenges for very large
databases. Our new approach incurs very limited overhead (in termshoédnmputation and communica-
tion), even when compared to non-privacy preserving queryingregste

6.1 Introducing the “Isolated Box”

In order to address Challenge 3 and 4, we propose a system arcletgtotuvn in Figure 4. It includes a
new componentilsolated Box” (IB), a non-colluding, untrusted party connected with both the serr an
the client.

The new interaction involving IB is shown in Figure 5. During the (offlineupephase, the server
encrypts its database, usiigcr ypt Dat abase (Algorithm[1), and transfers the encrypted database to
the IB. Server's computation dfoken functionality no longer depends on client’s input, thus, the server
can evaluatdoken(-) without involving the client.

To pose a query, the client first engages with the server in oblivious at@tipn of Token (online step
1). Next, for each computed token, it runs thBLookup procedure (Algorithm 3) to retrieve matching
records from the IB.

TheToken(-) functionality is now instantiated using (A)PSI-Diith pre-distribution. Specifically, we
select the construction from [19] (denoted@E10-2), (denoted adL10) and [17] (denoted aBE-
APSI). Again, our choices are based on these protocols’ efficiency andigemodels. Our experiments
— in Appendix A.5 — show that DT10-2, secure in the presence of Hb@radries, is the most efficient
construction, while JL10 combines reasonable efficiency with securitpstgaalicious adversary. IBE-
APSI is the only APSI-DT with pre-distribution, and it is secure against ldd@ersaries. For the sake of
completeness, we defifken function for the selected (A)PSI-DT constructions in Table 3. Note that
d, k, z are server’s secret parameters. Complete details, for each instantifatiolivious computation, are
presented in Figure 6, 7 and 8.

Trust Assumptions. The Isolated Box is assumed not to collude with either the server or the client.
(Although, we discuss the consequences of collusion in Section 6.6.) Méarkethat the use of non-
colluding parties in the context of Secure Computation [49] was first stgdédy [23], and then applied

in [3,/10, 20, 36, 35, 2].

12



Scheme name Token definition PSI category

DT10-2 (Figure 4 of [19]) | Token(c) = (c)? mod N PSI-DT with pre-distribution
JL10 (Figure 2 of [34]) Token(c) = ((¢)?~D/9)* mod p | PSI-DT with pre-distribution
IBE-APSI (Figure 5 of [17])| Token(c) = é(Q, ¢)* APSI-DT with pre-distribution

Table 3: Token for (A)PSI-DT with pre-distributiond; = H (attr;,val}) andc € {c; }1<i<v)

e Public input:e, N

e Client's private input{c; }vi

e Server’s private inputd = ¢~ mod ¢(N)
where¢ (V) denotes the order &3

1. Client:Vi,r; < Zx,yi — (ri)¢ - ¢; mod N

Yitvi
2. Client kv Server
3. Serveryi, z; « (y;)* mod N
Zi yVi
4. Server Lzidv Client

5. Client:Vi, Token(c;) « z; -7, " mod N

Figure 6: Oblivious computation oToken(-) using DT10-2.

e Publicinput:p, ¢
e Client’s private input{c; }vi
e Server's private inputk € Z;
1. Client:Vi, a; < Ly, yi — ((ci)(p_l)/q)% mod p
Yi}vi

2. Client L Server
3. Servervi,z; « y¥ mod Z;, 7 — ZKPK{k|{z: = y¥}vi}

{Z'}Viﬂr .
4. Server - Client

5. Client: Aborts ifr doesn’t verify.vVi, Token(c;) « zl.l/“" mod p

Figure 7: Oblivious computation oToken(-) using JL10.

Public input: P, Q = P*
Client’s private input{c; }vi
CA's private input:s.
Server's private inputz
CA:Vi, g; (CZ')S

- e o o o

g 7
CA toi}y Client

Server:R « P? (Offline)

Server Client
Client: Vi, Token(c;) < é(R, o)

akr Wb

Figure 8: Oblivious computation oToken(-) using IBE-APSI.

While our requirement for the presence of IB might seem like a “strongfirmption, we stress that the
IB is only trusted not to collude with other parties. It simply stores servecsypted database and returns
ciphertexts matching client's encrypted queries (tagg, without learning any information about records
and queries. Also note that, in practice, the IB can be either instantiatechas-adlluding) cloud server
or as a piece of secure hardware installed on server's premises: Iy ismortant to ensure that the server
does not learmvhatthe IB reads from its storage and transfers to the client.

6.2 Database Encryption

IB's presence does not really affect database encryption,Breer ypt dat abase procedure pre-
sented in Algorithm 1. It only uses a differefbken(-) function. While in the first approach (Section 5)
we rely on (A)PSI-DTwithoutpre-distribution (i.e., the server cannot rioken(-) before interacting with

13



Algorithm 3: | BLookup Procedure
Client's input : tk;
IB’s input :EDB = {LTable, {67’j}1§j§w}
Client’s output: Matching record seR.
1. Client:ictr «+ 1

2. Client:tag; < Hi(tks||ctr), ki’ < Hs(tk;|||ctr)}

tag; k!

3. Client 1B
4. IB: If (3tag;, € LTable,; s.t.tag;, = tag;)
j" « Decyr(eind;,),

ret «— {ek;,l7 er;}
else
ret «— L

ret

5. 1B Client

6. Client: Ifret = L, abort
elsekg = Ho (tk’iHCtT), k; = Deckg_ (ekj,l)
R; = Decy, (ery), R —RU }?4
ctr « ctr + 1, Goto step 2.

the client), we now use (A)PSI-Dwith pre-distribution. Thus, the server can evalubtden(-) over its
own inputs offling, and then transfer the encrypted database to the IB.

6.3 Query lookup

| BLookup procedure is used by the client to obtain records matching client’s queiy.shown in
Algorithm|3.

Similar to our first approach, the client runs the lookup procedure affitxirong search tokens (via
oblivious computation offoken — online step 1 in Figure|5). For each derived tok&s, it invokes
| BLookup to retrieve (from the IB) all records matchimg;.

We use the terntransactionto denote a complete query procedure, for edgh(from the time the
first query fortk; is issued, until the last response from the IB is receiv&btrievaldenotes the receipt
of a single response record during a transaction. A transaction is cenhpbseveral retrievals between
the client and the IB. The client retrieves records one by one from theyBradually incrementing the
counterctr. In step 1, the client setgr to 1. In step 2, the client deriveg,g; and an index decryption key
k!' from tokentk;. After receivingtag; andk! in step 3, the IB searches for matching tags in the lookup
table in step 4. If there is a match, the IB recovers the inddy decryptingeind;; with £/, assembles
the corresponding recorg-;; and the ciphertext of its decryption key;; into ret and transmits-et to
the client in step 5. Otherwise, is transmitted. If the client receivels, it aborts. Otherwise, it decrypts
ek;, into k; with k! and recovers recor®; from er;, usingk;. Then, it incrementstr and starts another
retrieval by returning to step 2.

We can use hash table to stdi&able for efficiency. If LTable is too big to be stored in hash table,
we can turn to B-tree. Creating B-tree can be done offline at the server.

6.4 Optimizations

Since transmission aft may incur some delay, Algorithm 3 can be sped up by pipe-lining computation
of tag; andk! (step 2) in next retrieval with the transmissionref (step 5) in current retrieval.

Note that the computation ef:; ; andeind,; (steps 13—14 in Algorithm 1) can also be optimized. Since
we use a counter as input to complite (respectivelyk’,;), eachk’, (respectivelyk”) is different for any
j,1. Bothk’, andk?, are 160-bit values (SHA-1), whllk is 128 blts and is cIearIy smaller. Hence, we
can useJne tlme padancryptlon (i.eek;; = k 1Dk andemdj k” @ j) to speed up computation. In
Algorithm'3, Decyr (eind;;) becomess] & emd],l andDeckg(ek],l) cHanges ta; @ ekj.

14



6.5 Challenges Reuvisited

Since we use the same encryption procedure discussed in Section 5ngGadll@nd 2 are already
addressed. Thus, we only consider Challenge 3 and 4.

Bandwidth: Once the server transfers its database (offline) to the IB, the latter setuthe client only
records matching its query. Therefore, bandwidth consumption is minimized.

Liability: Since the IB holds the encrypted database, the client only obtains theakgslgueries, thus,
ruling out any potential liability issues.

Finally, the introduction of the IB enables Server Unlinkability and Forwagdusity, despite the fact that
we use (A)PSI-DTwith pre-distribution techniques. Indeed, records not matching a quenesaes avail-
able to the client, thus, it does not learn whether they have changed. Siptharkiient cannot use future
authorizations to maliciously obtain information from previous (recordedjdnt®ns.

6.6 Discussion

Privacy Revisited. The introduction of the IB and the use of counter mode in database encrypte
vide additional privacy properties. If the client performs only one gaiemsaction, as in Algorithin/ 3, the
IB can link all tag values in step 3 to the santettr, val) pair. This may pose a similar risk to that dis-
cussed in the “multi-set” challenge, with respect to the IB. However, theteoallows the client to retrieve
matching records one by one. Therefore, the client can choose toradd@m delay between two subse-
guent retrievals in a single transaction. If the distribution of additional deladistinguishable from time
gaps between two transactions, the IB cannot tell the difference betweerontinuous retrievals within
one transaction from two distinct transactions. As a result, the 1B canfestwihether two continuously
retrieved records share the safnéfr, val) pair and the distribution of the attribute value remains hidden.

Also note that the introduction of the IB does not violate Client or ServeraByi Client Privacy is
preserved because the client (obliviously) computes a token, which isarmed by the server. The IB
does not learn client’s interests, since client’s input to thett)is statistically indistinguishable from
a random value. Server Privacy is preserved because the clientndb@ain any extra information by
interacting with the IB. Finally, the IB only holds the encrypted database anddano plaintext.

Removing Online Server. Although it only needs to perform oblivious computation of tokens, we still
require the server to be online. Inspired by [30] and [24], we calacepthe online server with a tamper-
proof smartcard, dedicated to computifigken function. The server only needs to program its secret key
into the smartcard, which protects the key from being accessed by the dild@stway, after handing the
smartcard to the client, the server can go offline. The smartcard is assusr@drtce a limit on the number

of Token invocations.

Limitations. We acknowledge that our second PPSSI approach has some limitations tirdweas it
serves many queries, the IB gradually learns the relationship betweeartdgscrypted records through
pointers associated with each tag. This issue can be mitigated by letting theiedically re-encrypt
the database. IB also learns database access patterns generated/lexgautions. Nonetheless, without
knowing the distribution of query predicates, the access pattern of@edrgata leaks very little informa-
tion to the IB. Next, if the server and the IB collude, Client Privacy is losgesithe IB learngag that the
client seeks, and the server knows thé&r, val) pair eachiag is related to. On the other hand, if the client
and the IB collude, the client can access the entire encrypted datahasdjahility becomes a problem.
Last, Server Unlinkability is protected only with respect to the client. Serveinklability with respect
to the IB is not guaranteed, since the IB learns about all changes ier'setatabase. Finally, note that
PPSSI currently supports only equality and disjunctive queries. Enatmimgnctive queries would require
treating all combinations dfatir, val) pairs as server's set elements. Thus, client’s input would become
exponential in terms of the number of attributes. This remains an interestitgrg®left as part of future
work.

15



6.7 Security Analysis of Second PPSSI Approach

Since we do not consider collusion, the security against Honest-bidtGii¥alicious client and server
follows exactly from Theorem|1, 2, 3. So we only discuss security agkiosest-but-Curious/Malicious
Isolated Box.

Like Section 5.5, we usg to denote théth query of the form(attr, val) issued by the client and use
Q; to denote all records matching quegy

6.7.1 Security against Honest-but-Curious/Malicious Isolated Box (1B

We define security against Honest-but-Curious/Malicious Isolated B)bft comparing its view when
interacting with an honest client and an honest server with its view whematileg with a simulatosIM.

Simulator SIM:
SIM is given| Xy | foranyU C {0, ...,n} whereXy = NicyQ;.

1. SIM outputs an encrypted databdsPB’ to A.

2. SIM interacts withA as a client, simulating queri€g, ..., ¢, } (even thougtsIM does not
know {QIu s 7qn})'

Note, in the above definition, the only informati§iV knows is the cardinality oX;; which is defined
as the intersection of a subset of query answers.
We then define an experiment for any adversdry
The experimentSPrivig 4:
1. The adversaryl outputs to the challenger a databd$B and a list of querie$q, . .., ¢, }-

2. The challenger chooses a randonbbit- {0, 1} and does one of the following:

(a) If b =0, then the challenger interacts withas an honest client and an honest server.

(b) If b = 1, then the challenger computé®;, ..., Q,} based onD B, derives all intersec-
tions Xy forall U C {1,...,n} and interacts withd asSIM({| Xv | }vocqi,...n})-

3. The adversaryl outputs a bit'.

4. The output of the experiment is defined tolbé &’ = b, and0 otherwise.

Definition 3 The second PPSSI approach is secure against honest-but-curaicsdms IB if, for all prob-
abilistic polynomial-time adversaried, there exists a probabilistic polynomial-time simulaM such
that

1
PI’[SPI’iV“g’A = 1] < 5 +e€

Theorem 4 If the hash functior (-), H1(+), Ha(+), Hs(-) are collision resistantEnc is a semantic secure
encryption, and Token is unpredictable, then the second PPSSI ajbpssecure against any probabilistic
polynomial-time honest-but-curious/malicious IB.

Proof: Our goal is to construct a simulatStM such that4 cannot tell the difference between the view
when interacting witt5IM and the view when interacting with an honest client and an honest s€@wer.
SIM is constructed as follows:

1. SIM createE£DB':

e Pickw random messages of same length as encrypted messages.

e Then creatd.Table' = {(tag],, ek,

the ohtput length of hash functioh,is the output length of encryption function.

16



2. For each query;, SIM prepares the matching tag $et= {tag! .. .tangi‘} such thal N;ey T} =
| X17| foranyU C {0,...,n} as follows:

e ForalllU, compute X;| whereXy = Xu\Upr|s o) Xur- Given| Xy, | Xy| can be computed
as
Xul = |Xu| - [Xp]

wherel X'y | = | Xu (Vo101 X0)| = s oy [ Xo X o/l =Zjug s o ug 1 v1,01205 | (K00

Xp)N(XunXyg)|+-- -+(—1)(")+"'+(‘U‘“)'!ﬂ|U'\;|U| (XunXy)|) and| Xy, N---N Xy, | =
| Xv,u-up,|- Itis easy to observe that oy .y [Xu| = [ U] Q]

e Randomly pick} | Xy | different tags fromLTable’ and store them ifY’. For eachl,
initialize Q' as follows:

(a) Pick|Xy/| distinct tags from¥” and add them t6);.
(b) Updatey — Y\Qy.

e ForA = 1,...,n, setT) = U,cyQu and append a random tag (used to terminate a query)
which is different from all tags ilLTable’ to T)\. Note|T)| = |Q.] + 1.

3. SIM plays the role of a client as follows: for theh query, makeT) | probes wheréth probe is the
fth element inl’y,.

We first analyze the view ofl between tags ilEDB and those iFEDB’. The distribution of tags in
EDB and those irEDB’ is the same unless one of the following happens: (1) there gxists, val;) #
(attrj,val;) butH (attr;, val;) = H(attrj,val;); (2) H (attr;,val;) # H(attr;,val;) but Hy (Token(H (attr’, val"))||ct
H, (Token(H (attr” ,val”))||ctr"); (3) A forges TokeNH (attr,val)) for certain(attr, val). All these hap-
pen with negligible probability if7 (-), H;(-) are collision resistant and Token is unpredictable.

Next we analyzeA's view between({ek; , eind;;}1<i<m,erj)i<j<w IN EDB and those irEDB'.
They should appear uniformly random tbunless (1)4 breaks symmetric encryption algorithm; (2)
finds collision inHy(-) or Hs(+) (which breaks one-time-pad encryption); (8ran forge Toke(H (attr, val))
for certain(attr, val). All these happen with negligible probability /5 (-), H3(-) are collision resistant,
Encis semantic secure and Token is unpredictable.

Last we show thatd cannot distinguish the way that an honest client’s queries are answsiregl
EDB and the way tha$IM’s queries are answered usiBDB’. For an honest client’s query, there are
|Q;| matches iNREDB. For theSIM’s ith query, it makesT;| probes and there will bg;| — 1 matches.
Since|T;| — 1 = |Q;] and.A cannot distinguislr; from er’, the view in the real protocol and that in the
interaction withSIM are identical. O

7 Performance Evaluation

In this section, we evaluate the performance of our PPSSI approaEhes. we benchmark crypto-
graphic operations and use these results to derive step-by-stefd pogpased techniques. Next, we com-
pare our first PPSSI approach to PIR. Finally, we build a (limited) DBMS topare our second PPSSI
approach to a non privacy-preserving MySQL database.

7.1 Benchmarking All PPSSI Components

The following benchmark refers to executions on an Intel Harpertowrese&vith Xeon E5420 CPU
(2.5 GHz, 12MB L2 Cache) and 8GB RAM inside. We build the benchmarkingldased on OpenSSL
library (ver.1.0.0c) [50] and PBC library (ver.0.5.11) [38].

17



modulus (bits) [ mul (ms) | inv (ms) | exponent (bits)| exp (Ms) | exp-crt (ms)
[¢]=160 0.001 0.016 - - -

_ q[ =160 0.297 -
|p| =1024 0.003 0.244 o[ =1024 1755 —

_ d| =1024 1.725 0.534
|N|=1024 0.003 0.244 =17 0.039 —
|4|=256 0.001 0.03 - - -

_ q =256 1.685 -
|p| =2048 0.009 0.765 o[ =2048 15679 —

d| =2048 12.679 3.451
|N| =2048 0.009 0.765 =17 0124 —

B q| =256 3.719 -
|p| =3072 0.02 0.837 S =3072 T8 -

d| =3072 41.784 11.031
|N| =3072 0.02 0.837 =17 0263 —
Table 4: Benchmarkingnul andexp operations using the OpenSSL library.
base (bits) | order (bits) | expin Go (ms) | expin Gr (Ms) | pairing (ms)
512 160 2.492 0.233 1.859
1024 256 8.896 0.998 9.481
1536 256 15.086 1.922 21.826

Table 5: Benchmarking operations on bilinear maps using the PBC library.

Symmetric encryption (ms/MB)
RC4 | AES-CBC | AES-CTR
3.500 6.539 13.820

Hash function (ms/MB)
SHA1l | SHA256 | SHA512
3.406 6.867 4.586

Table 6: Benchmarking (128-bit) symmetric-key encryptions and hash function atatipns.

7.1.1 Cryptographic Operations

We start with benchmarking modular arithmetic operations. In Table 4, wemrpsrformance results
for modular multiplication fnul) and modular inversionifv) under different modulus sizes (column 1).
We also report the performance of modular exponentiaap) and modular exponentiation with Chinese
Remainder Theoremekp_crt) under different combinations of modulus sizes (column 1) and exponent
sizes (column 4). We choose modulus size to be 1024, 2048, 3072 biestigsly, which corresponds to
80, 112, and 128 symmetric key security level. (The protection lifetime of -bd2#odulus is supposed
to last until 2010, whereas, that of 2048-bit modulus is until 2030, a@@-& — to 2030 and beyond [9]).
exp_crt can only be used when factorization &fis known, thus, we only measure its performance for
exponent sizéd| (beingd RSA secret key).

Table 5 shows the benchmark results of operations in bilinearamag, x Gy — G; under different
Gy base size and different group orders. We choose type A pairingdebvn PBC library. Since type
A provides? - |base| discrete logarithm security, we use half the group size as we do in Tabledis&/
exp(G)) to denote exponentiation in growdg.

In Table 6, we evaluate different symmetric encryption schemes and bastiohs. For symmetric
encryption, we only experiment with 128-bit key size, since it is the lowggtarted by AES and it matches
the security level of 3072-bit RSA keys. The decryption cost is samesaaitryption cost, hence, we omit
it here.

Tablel 7 summarizes the cost of different oblivious computatiohaken, outlined in Figure 2-3 and
Figure 6-8. Combined with Table 4 and Table 5, one can find the specifézidpe each scheme with
different client set sizel).

Table 8 summarizes the cost of EncryptDatabase (Algorithm 1) and Lo@{gprithm|2) algorithm
for different Token definitions. Note that, = w - enc(|R|) + w - m - (hash(|(attr,val)|) + 3 -
hash(|modulus|) + 2 - enc(128)), ¢; = vy, - (3 - hash(|modulus|) 4+ 2 - enc(128) 4+ enc(|R|)), andv,,
is the number of matching records &l is max record size. Also remark thatandc; used in the table
is dependent on the group modulus sizexdulus|. Note thatc, is the cost of record-level encryption;
is the cost of Algorithm 2 and it is also the computation cost of Algorithm 3. Coetbimith Table 4, 5, 6,
one can find the specific speed for each scheme with different setvars (v).

3For more details on the algorithms, we refer the reader to [48]

18



Underlying (A)PSI-DT Party | Cost
Protocol
DT10-1 Client | v-exp(|pl,|p]) + (2v + 2) - exp(|p|, [q]) + 5v - mul(|p]) + 2v - inv(|p|)
(Figure 2) Server | (v 1) - exp(lpl,1a])
DT10-APSI CA | v-exp.ctr(IN],[d])
(Figurd 3) Client | (2v+ 2) - exp(|N],|d]) + Tv - mul(|N|) + 2v - inv(|N|)
Server | (v + 1) -exp(INT, [4]) T (v~ 1) - exp(INT [e])
DT10-2 Client | v (exp(|N|,|e]) + 2 - mul(]N]) + inv(|N]))
(Figurd 6) Server | v - exp-crt(|NJ, [d])
JL10 Client | v - (exp(|pl, [p|) + inv(lq|) + 3 - exp(|p|, [a]) + mul(|p[))
(Figure 7) Server | v (2 exp(lp], [a]) + mul([a]))
IBE-APSI CA | v-exp(Go)
(Figure 8) Client | v - pairing
Server | 0

Table 7: Performance oToken oblivious computation using different (A)PSI-DT protocols.

Token Scheme| EncryptDatabase cost Lookup cost
DT10-1 ce + cc +w-m- (inv(|p|) + mul(|p|) + exp(|p|, q])) a
DT10-APSI Ce +cc+w-m- (inv(|N]|) + 2 - mul(|N|) + exp(|N], |e]) + exp(|N]|, |d])) a
DT10-2 Ce + cc +w-m - exp-crt(|N],|d|) a
JL10 ce + cc +w-m-exp(|p|, |p|) c
IBE-APSI Ce + cc +w - m - (pairing + exp(Gr)) c

Table 8: Performance oEncr ypt Dat abase (Algorithm 1) andLookup (Algorithm'2 and 3).
ce = w-enc(|R|), cc = w - m - (hash(|(attr,val)|) 4+ 3 - hash(/modulus|) + 2 - enc(128))
¢ = vm - (3 - hash(|modulus|) + 2 - enc(128) + enc(|R|)) wherev,, is the number of matching records &l is max record size.

450
DT10-1 ——
400 | DT10-APSI -

sso | PSR
300 }L_IBE-APSI -
250
200 |
150

140
DT10-1 ——
| | DT10-APSI *
120 DT10-2

JL10
100 1| |ge-APSI

80
60

100 | .~ = —
50} el B

0 ez ey o

40

Lookup-table encryption (ms)

20 - DTN = Ly

Oblivious Computation of Token (ms)

1 2 3 4 5 6 7 8 9 10 1 3 4 5 6 7 8 9 10
Client query set size (v) w*m
Figure 9: Token Oblivious Computation. Figure 10: Lookup-Table Encryption

(line 8-15 of Algorithm 1).

7.1.2 PPSSI Operations

We now evaluate the performance of all operations involved in both of B&SPapproaches. Remark
that we use 2048-bit modulus and records of fiRé&dB length.

Figurel 9 measures the time needed to perform the oblivious computatibokei function, for ev-
ery possible (A)PSI-DT instantiation. Observe that the cost alwaygsases linearly with client’s query
size. As for protocols without pre-distribution, DT10-APSI is unsuipgl/ more expensive than DT10-
1. Whereas, DT10-2 and JL10 are, respectively, the most and theelfiaent ones of protocols with
pre-distribution.

Then, Figure 10 evaluates the performance of the Lookup-Table giamy performed by the server.
This operation includes server's computationfak en function over its own input (Note that this is not
oblivious computation). Again, running time always increase linearly with theyxct of the number of
records (v) and the number of attributes:(.

In Figure[ 11, we report the cost of the Record-level encryption. Bhlg depends on the number
of records. Compared to the Lookup-table encryption, the Recortl-émaeyption incurs a negligible
overhead.

Finally, Figure 12 presents the running time of the Lookup procedureo(iéthgn/2 and Algorithm 3
without consideration of communication delay). Unsurprisingly, cost istidanfor both algorithms and
increases linearly with the number of matching records)( This is because we use a hash table to store
all server computed tags IiT'able and matching one client tag takes only constant time.

We conclude that, as all operations have linear complexity, our appreachée efficiently for larger

19



0.006 = L 0.009
[ Record-level Encryption —— 1]

Lookup (Alg.2) —*—
IBLookup (Alg.3) - T

0.005

0.004

0.003

0.002

Lookup cost (ms)

0.001

Record-level encryption (ms)

o] (o]
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Server set size (w) matching records
Figure 11: Record-level Encryption Figure 12: Lookup (Alg.[2) and IBLookup
(line 1-6 of Algorithm 1). (Alg.[3).

700

600 | Network cost s

500 |

5%
55

%
0.0‘0

S

XK
XXX

XK
XX

KK
XXX

XX

XX

.0

XX
XX

400

%
29588
QKK
QK
QKK
RIS
GRS
0K

300 |

Total time (s)

200 |

100

DT10-1 DT10-APSI GR-PIR
PPSSI PPSSI

Figure 13: Performance comparison between the first PPSSI approach (Secéind &R-PIR [27].

databases and query sets. As a result, one can easily infer result#hiaven larger parameters, hence,
we omit them here.

7.2 First PPSSI Approach vs PIR

We now aim at comparing the efficiency of proposed first PPSSI appr@ection b) to that of related
work — SPIR. Recall that first PPSSI approach provides very simileagy properties of SPIR. Indeed,
both PPSSI and SPIR hide client’s access patterns to the server andaikst privacy of server’s data
(with respect to records not matching the queries). However, onéopmssticism against our side is that
the communication overhead lisear in the size of the database size, whereas, SPIR imsudinear
communication overhead. Remark, however, that: (1) SPIR does nmi$igeyword search, and (2) SPIR
introduces a remarkably higher computation overhead, which ends @pstadowing” the advantage in
the communication complexity. To support the latter claim, we compare the overfdhmance of our first
PPSSI approach with that of Gentry and Ramzan'’s single-databas&RHRIR) [27], which is, to the best
of our knowledge, the most efficient single-database PIR. SpecifiGiyPIR [27], assuming a database
with n records, incur$)(k + d) communication complexity (where < logn andd is the bit-length of
each record), an@(n) computation overhead. Also recall that, according to [41], any singlebdae PIR
can be extended to SPIR/OT and we are not aware of any SPIR/OT thatasefficient than GR-PIR.

In our comparison, we use a database witk= 1024 records andn = 5 attributes. Each record has
size2K B. We assume the client’s query sizevis= 1024 and there will be 1@1%) records matching the
query @,,). On a conservative stance, we choose a relatively slow connectimedie the client and the
server, i.e., d0Mbps link. Remark that we choose 2048-bit moduli.

The result of our comparison is showed in Figure 13 and confirms thaampnoach is significantly
more efficient than GR-PIR. We break down the results into client, sengenatwork transmission cost.
Note that, for all schemes, network cost (at the top stack in each baryligibke compared to client and
server cost. Also observe that GR-PIR imposes a significant ovedmeldth client and server. We do not
show results for larger databases, since: (1) both server and aieputational costs will always increase
linearly for all schemes, and (2) for very large database, we pregeapiproach with the Isolated Box
(whose overall performance is evaluated next).

20



0.1 135 1.088

MySQL —6— i DT10-2 vs MySQL —+— DT10-2 vs MySQL ——

DT10-2 -t JL10 vs MySQL === 1.086 JL10 vs MySQL -

0.08 JL1Q e 131% IBE-APSI vs MySQL G- 1084 | % IBE-APSI vS MySQL &
IBE-APS| - i

1.082

1.08
1078
1.076 |
1.074
1.072

1.07

X 1.068 e
1 10 100 1000 10000 100000 1 10 100 1000 10000 100K M 10M 100M

Response Set Size Response Set Size Record Size (B)

125

0.06
23 o X

Time (s)
T/TMySQL
TMwysoL

0.04 =B gy

0.02

0

(a) Index lookup speed comparison. (b) Comparison to MySQL w.r.t. responsé) Comparison to MySQL w.r.t. record
size. size.

[DT10-2, JL10, IBE-APSI labels indicate the instantiation used for theefidknction in PPSSI]

Figure 14: Performance comparison between the second PPSSI approach (SpetmmhMySQL.

7.3 Second PPSSI approach vs MySQL

To the best of our knowledge, there is no available approach to PPSSlotibines efficiency with
provably secure guarantees and that relies on a non-colluding, w@utmparty, such as the Isolated Box.
Therefore, we cannot compare our second PPSSI approachydavge databases (Section 6) to any prior
work. Nonetheless, we evaluate its performance by measuring it againdasd (non privacy-preserving)
MySQL.

On a conservative stance, we use MySQL with indexing enabled on eacothable attribute. We run
the IB and the server on the same machine. Client is connected to the sehtkedB through d00M bps
link. The testing database has 45 searchable attributes and 1 unseaattrddute (type “LARGEBLOB")
used to pad each record to a uniform size. There are, in @@&/000 records. All records have the same
size, which we vary during experiments.

First, we compare thendex lookup timedefined as the time between SQL query issuance and the
receipt of the first response from the IB. We select a set of SQLiepiénat returrd, 1, 10, 100, 1000,
10000 (+10%) responses, respectively, and fix each record six@&B. Figure 14(a) shows index lookup
time for our PPSSI approach (with respect to all underlying (A)PSI-DBiaimtiations), as well as MySQL,
with respect to the response set size. All proposed schemes’ cadiggatty more expensive than MySQL
and are independent of the response size.

Next, we test the impact of the response set size ondtad query time which we define as the time
between SQL query issuance and the arrival of the last respormetimlB. Figure 14(b) shows the time
for the client to complete a query for a specific response set size dibigldke time taken by MySQL
(again, with respect to all underlying (A)PSI-DT instantiations). Resuttslgally converge td.1 for
increasing response set sizes, i.e., our approach islofdyslower than standard MySQL. This is because
the extra delay incurred by cryptographic operations (in the oblivioakiation of Token) is amortized
by subsequent data lookups and decryptions. Note that we can alsthimfenpact of various client query
set size by multiplying the client query set size with each single query delay.

Last, we test the impact of record size on the total query time. We fix reggatsize at00 and vary
each record size betwee@fi0 K B and100M B. Figure 14(c) shows the ratio between our PPSSI approach
and MySQL, once more with respect to all underlying (A)PSI-DT instantiaticAgain, results gradually
converge well belovi.1 with increasing record size. This occurs because, with bigger redbedgverhead
of record decryption becomes the “bottleneck”.

8 Conclusion

In this paper, we proposed secure and efficient techniques fadyrRreserving Sharing of Sensitive
Information (PPSSI), which enable a client and a server to exchangenafion without leaking more than
the required minimum of information. Privacy guarantees are formally deéind achieved with provable
security.

21



We implemented two variants of PPSSI: one is geared for small/medium-size tatatsée the other
minimizes communication overhead, as well as liability issues, for very largbaksa. The latter intro-
duces a non-colluding, untrusted party — the Isolated Box — which can berimapted as a piece of secure
hardware.

Finally, we presented extensive experimental results, which confirmeéduh#PSSI approaches are
efficient enough to be used in real-world applications. Our future warkidtes supporting versatile query
predicates (e.g., conjunctive queries) as well as fuzzy queries owenarmalized data.

Acknowledgements. This research was supported by the US Intelligence Advanced Rbsesojects
Activity (IARPA) under grant number FA8750-09-2-0071. We alsaugdike to thank Xiaomin Liu and
Stanislaw Jarecki for their helpful comments.

References

[1] Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing acrossgie databases. In: SIGMOD
(2003)

[2] Asonov, D., Freytag, J.C.: Almost optimal private information retrieval.Rrivacy Enhancing Tech-
nologies (2003)

[3] Beaver, D.: Commodity-based cryptography. In: STOC (1997)

[4] Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanakay, Shacham, H.: Randomiz-
able proofs and delegatable anonymous credentials. In: Crypto (2009)

[5] Bertino, E., Byun, J., Li, N.: Privacy-preserving database systdrogndations of Security Analysis
and Design (2005)

[6] Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Publiekcryption with keyword search.
In: Eurocrypt (2004)

[7] Boneh, D., Franklin, M.K.: Identity-based encryption from the weirpg. SIAM Journal of Com-
puting 32(3), 586—615 (2003)

[8] Bursztein, E., Lagarenne, J., Hamburg, M., Boneh, D.: OpenCtnficeventing Real Time Map
Hacks in Online Games. In: S&P (2011)

[9] Burt Kaliski: TWIRL and RSA Key Size.
http://ww. rsa. com rsal abs/ node. asp?i d=2004

[10] Cachin, C.: Efficient private bidding and auctions with an oblivioutharty. In: CCS (1999)

[11] Camenisch, J., Zaverucha, G.M.: Private intersection of certifiesd & Financial Cryptography’09
(2009)

[12] Caslon Analytics: Consumer Data Losséd.t p: / / www. casl on. com au/ dat al ossnot e.
ht m

[13] Chor, B., Gilboa, N., Naor, M.: Private information retrieval by keyds. Manuscript (1998)

[14] Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private informmatietrieval. Journal of the ACM
45(6), 965-981 (1998)

[15] Chow, S., Lee, J., Subramanian, L.: Two-party computation modekieaicy-preserving queries over
distributed databases. In: NDSS (2009)

[16] De Cristofaro, E., Durussel, A., Aad, |.: Reclaiming Privacy for &iplzone Applications. In: PerCom
(2011)

22


http://www.rsa.com/rsalabs/node.asp?id=2004
http://www.caslon.com.au/datalossnote.htm
http://www.caslon.com.au/datalossnote.htm

[17] De Cristofaro, E., Jarecki, S., Kim, J., Tsudik, G.: Privacy-pngsg policy-based information trans-
fer. In: PETS (2009)

[18] De Cristofaro, E., Kim, J., Tsudik, G.: Linear-Complexity Private $&tisection Protocols Secure in
Malicious Model. In: Asiacrypt (2010)

[19] De Cristofaro, E., Tsudik, G.: Practical private set intersectiatqmols with linear complexity. In:
FC (2010)

[20] Du, W., Zhan, Z.: A practical approach to solve secure multi-pangpdation problems. In: NSPW
(2002)

[21] Evfimievski, A., Gehrke, J., Srikant, R.: Limiting privacy breachesrimgey preserving data mining.
In: PODS

[22] Federal Bureau of Investigation: Terrorist Screening Center.
http://ww. fbi.gov/terrorinfo/counterrorisnitsc. htm

[23] Feige, U., Killian, J., Naor, M.: A minimal model for secure computationt€eged abstract). In:
STOC (1994)

[24] Fischlin, M., Pinkas, B., Sadeghi, A.R., Schneider, T., Visconti, |cude set intersection with un-
trusted hardware tokens. In: CT-RSA (2011)

[25] Freedman, M., Ishai, Y., Pinkas, B., Reingold, O.: Keyword searuth oblivious pseudorandom
functions. In: TCC (2005)

[26] Freedman, M., Nissim, K., Pinkas, B.: Efficient private matching andhsersection. In: Eurocrypt
(2004)

[27] Gentry, C., Ramzan, Z.: Single-database private information retmétta constant communication
rate. In: ICALP (2005)

[28] Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data ady in private information re-
trieval schemes. In;: STOC (1998)

[29] Hacigamus, H., lyer, B., Li, C., Mehrotra, S.: Executing SQL over encryptetd da the database-
service-provider model. In: SIGMOD (2002)

[30] Hazay, C., Lindell, Y.: Constructions of truly practical secure ptots using standardsmartcards. In:
CCS (2008)

[31] Hazay, C., Lindell, Y.: Efficient protocols for set intersection aradt@grn matching with security
against malicious and covert adversaries. In: TCC (2008)

[32] Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving inflexrange queries. In: VLDB (2004)

[33] Jarecki, S., Liu, X.: Efficient Oblivious Pseudorandom Functiatihwpplications to Adaptive OT
and Secure Computation of Set Intersection. In: TCC, pp. 577-599J20

[34] Jarecki, S., Liu, X.: Fast secure computation of set intersectiorS@N (2010)
[35] Kantarcigylu, M., Clifton, C.: Assuring privacy when big brother is watching. In: RBI (2003)

[36] Kantarcioglu, M., Vaidya, J.: An architecture for privacy-pmedeg mining of client information. In:
CRPIT (2002)

[37] Kissner, L., Song, D.: Privacy-preserving set operationsCRYPTO (2005)

23


http://www.fbi.gov/terrorinfo/counterrorism/tsc.htm

[38] Lynn, B.: PBC: The Pairing-Based Cryptography Librahtt p: // crypt o. st anf ord. edu/
pbc/

[39] Murugesan, M., Jiang, W., Clifton, C., Si, L., Vaidya, J.: Efficienvacy-preserving similar docu-
ment detection. VLDB (2010)

[40] Nagaraja, S., Mittal, P., Hong, C., Caesar, M., Borisov, N.: BotGFipding Bots with Structured
Graph Analysis. In: Usenix Security (2000)

[41] Naor, M., Pinkas, B.: Oblivious Transfer and Polynomial Evaluation STOC (1999)
[42] Olumofin, F., Goldberg, |.: Privacy-preserving queries oviatienal databases. In: PETS (2010)

[43] Paillier, P.: Public-key cryptosystems based on composite degidagsiy classes. In: Eurocrypt’99
(1999)

[44] Rabin, M.: How to exchange secrets by oblivious transfer. TR-&trvard Aiken Computation Lab
(1981)

[45] Raykova, M., Vo, B., Bellovin, S., Malkin, T.: Secure anonymous basa search. In; CCSW (2009)

[46] Sherri Davidoff: What Does DHS Know About You?
http://philosecurity. org/ 2009/ 09/ 07/ what - does- dhs- know about - you

[47] Song, D., Wagner, D., Perrig, A.: Practical techniques for $eron encrypted data. In: S&P (2000)
[48] Stallings, W.: Cryptography and network security: principles ardiixe. Prentice Hall (2010)
[49] Yao, A.: Protocols for secure computations. In: FOCS (1982)

[50] Young, E., Hudson, T.. OpenSSL:. The Open Source toolkit foL/BISS. http:// ww.
openssl.org

A Comparion of State-of-the-art PSI-DT

In the following, we review and compare state-of-the-art PSI protocudsfecus on PSI-DT variants.
We assume client and server set sizesvaaadw, respectively.

A.1 PSI-DT without Pre-distribution

FNPO4. Freedman, Nissim, and Pinkas [26] us#ivious polynomial evaluatioto implement PSI. Their
approach can be slightly modified to support PSI-DT. The modified prbtadenoted as FNP04 —works as
follows: the client first setups an additively homomorphic encryption scheunwd as Paillier [43], with key
pair (pk., sk.). Client defines a polynomidi(y) = [];_, (v — ¢;) = >_i_, a;y* whose roots are its inputs.
It encrypts each coefficient; under its public keyk. and sends encrypted coefficiedtBnc,, (a;) }r_,

to the server. Since the encryption is homomorphic, the server can evéaluat¢(s;)) for eachs; € S
independenity from the client. Then, the server retd(snc(r; - f(s;) +s;), Enc(r}- f(s;) +data;))}?_,

to the client where'; andr; are fresh random numbers for each inpuSSinClient, for each returned pair
(er, er), decryptse; by computinge = Decg (e;). Then if¢ € C, the client continues to decrypt
and gets the associated data. Otherwise, the client only gets some rariderané moves onto the next
returned pair. In order to speed up the performance, FNP04 can uliBadd|lGamal encryption instead
of Paillier. Specifically, the client useg' instead ofa; as the input to the EIGamal encryption where
is a generator with ordey modulop. And when it decrypts;, it recoversg®. Client can still decide
whether¢’ e C by comparingg® to ¢%,Ve; € C. In terms of data, the server can choose a random key
g% and uses it to symmetrically encrygtta;. Then the server send$Enc(r; - f(s;) + s;), Ene(r’; -

f(sj) + k:j),Encgkj (data;))}{_, to the client. If the client can recovels, it can also decryptlata,.

24


http://crypto.stanford.edu/pbc/
http://crypto.stanford.edu/pbc/
http://philosecurity.org/2009/09/07/what-does-dhs-know-about-you
http://www.openssl.org
http://www.openssl.org

Using balanced bucket allocation to speed up operations, client odeihdaminated by) (v + w) |q|-bit
modp exponentiations (in EIGamal). Whereas, server overhead is dominate(iblpg log v) |¢|-bit mod
p exponentiations.

KSO05. Kissner and Song [37] also use oblivious polynomial evaluation to caristrvariety of set opera-
tions. However, their solution is designed for mutual intersection ouéti-setthat may contain duplicate
elements, and it is unclear how to adapt it to transfer associated datathdsdechnique incurs quadratic
(O(vw)) computation (but linear communication) overhead. As we use a differethbiciéo handle multi-
sets (see Section 5) and we only consider one-way PSI, we do nadeoKsS05 any further.

DT10-1. De Cristofaro and Tsudik present an unlinkable PSI-DT protocol (€iguin [19]) with linear
computation and communication complexities. This protocol, denoted as Ddieihtes as follows: The
setup phase yields primege.g. 1024 bits) and (e.g. 160 bits), s.tg|p — 1, and a generatay with order

g modulop. In the following, we assume computation is done mpodrirst, the client sends to the server
X = [(TTi=, H(c:)) - %] whereR.. is randomly selected frorfi,. Also, for eachl < i < v, the client
sendsy; = [([[,..; H(a)) - g7*?], where theR..;’s are random irZ,. The server picks a rando; in Z,
and replies withZ = ¢t andy, = yf”s (for everyy; it received). Also, for each item; (1 < j < w), it
computess.; = (X/H(s;)), and sends thiagt; = H;(Ks.;) with the associated data record encrypted
underk; = Ho(K,.;). The client, for each of its elements, compui€s; = y/ - ZF . Z~ =i and the tag

t; = Hi(K.;). Only if ¢; is in the intersection (i.e., there exists an elemgnt= ¢;), the client finds a
pair of matching tagst’, ¢;). Besides learning the elements intersection, the client can decrypt dsdocia
data records by key/s(K..;). Client overhead amounts 1(v) |¢|-bit modulop exponentiations and
multiplications and server overheaddv + w) |g|-bit modulop exponentiations.

A.2 PSI-DT with Pre-distribution

JL09. Jarecki and Liu [33] (following the idea in [31]) give a PSI-DT basedablivious PRF (OPRF) [25].
We denote this protocol as JLO9 (and present the improved OPRF atimstrdiscussed in [4]). Recall
that an OPRF is a two-party protocol that securely computes a pseddaongfunction fx(-), on keyk
contributed by a server and inputcontributed by a client, such that the server learns nothing about
while the client learng;,(z). The main idea is the following: For every itesn € S, the server publishes
a set of paif{ H1(fx(s;)), Encu,(s,(s;)) (data;)}. Then, the client, for every itemy € C, obtainsfy(c;)
by OPRF with the server. As a result, the client can B5€f(c;)) to check ifc; € C NS and if so
then it usess(fx(c;)) to recoverdata;. JLO9 incursO(w + v) server exponentiations, ade(v) client
exponentiations. Exponentiations afé|-bit modulo N2, whereN is the RSA modulus.

JL10. Another recent work by Jarecki and Liu [34] (denoted as JL10)r&yes an idea similar to JLO9
[33] to achieve PSI-DT. Instead of using OPRF, JL10 uses the newlydincedParallel Oblivious Unpre-
dictable Functio(POUF), f(x) = (H(z)* mod p), in the Random Oracle Model. In order to obliviously
computefy(z), the client first picks a random exponenand sendg; = H(c;)“ to the server. The server
replies to the client withy; = (y;)*. Then the client recoverg,(z) = z'/. The computational com-
plexity of this protocol amounts t©(v) online exponentiations for both server and client, as the server can
pre-process (offline) it® (w) exponentiations. Exponentiations greit modulop, similar to DT10-1.

DT10-2. In Figure 4 of [19], De Cristofaro and Tsudik present a PSI-DT Baseblind-RSA signatures
in the Random Oracle Model (ROM). We denote this protocol as DT10kHe protocol uses the hash of
RSA signatures as a PRF in ROM and achieves the same asymptotic complexiti€$G& and JL10,
but (1) the server now computes RSA signatures (e.g., 1024-bit ewpiatiens), and (2) client workload is
reduced to only multiplications if the RSA public key,is chosen short enough (e.g+= 3).

In summary, we consider JL09, JL10 and DT10-2 in the context of PISWIth pre-distribution. Note
that, although faster than protocols without pre-distribution, these piistdomot achieve Server Unlink-
ability.

25



w/o Pre-Distribution w/ Pre-Distribution

PSI-DT FNPO4 ([26]), JL09 ([33]), JL10 ([34)),
DT10-1 (Fig.3in/[19]) DT10-2 (Fig.4 in[19])

APSI-DT | DT10-APSI (Fig.2in[[19])| IBE-APSI (Fig.5in[17])

Table 9: Candidate PSI-DT and APSI-DT protocols.
A.3 APSI-DT without Pre-distribution

DT10-APSI. In Figure 2 of [19], De Cristofaro and Tsudik also present an APBit&hnique mirroring

its PSI-DT counterpart, DT10-1. We denote this protocol as DT10-ARP8perates as follows: the client
first obtains authorization from the court for its elementvhere an authorization corresponds to an RSA-
signature:o; = H(c;)%. Then, the client sends the seniér= [([];_, o;) - g for a randomR,.. Then,

for each element;, it sendsy; = [(H@@ o) - %<1, where theR..;'s are additional random values. The

server picks a random valu®;, and replies withZ = g¢fs, ! = yfRS (for each received;;). Also,

for each element;, she computes(,.; = (X°¢/H(s;))%:, and sends théagt; = H;(K,;) and the
associated data record encrypted under thetkey H,(K.;). Client, for each of its elements, computes
K. = vy, Z% . Z7Fei and the tag), = H;(K..). Client can find a pair of matching tdg., ¢;) only if

¢; is in the intersection and; is a valid signature on;, Besides learning the elements in the intersection,
the client can decrypt associated data records. The computation agesi®(v) exponentiations for the
client, andO (v +w) — for the server. Exponentiations aré|-bit moduloN, whereN is the RSA modulus.

CZ09. Camenisch and Zaverucha [11] provide mutual set intersection with @dtion on both parties’
input. The proposed protocol builds upon oblivious polynomial evaluatimhhas quadratic computation
and communication overhead. Also, it does not provide data transfer.

As aresult, we only consider the DT10-APSI protocol in the context GIABT withoutpre-distribution.
Note that DT10-APSI provides both Server and Client Unlinkability, as as&Forward Security.

A.4 APSI-DT with Pre-distribution

IBE-APSI. The protocol in Figure 5 of [17] presents a protocol based on Bémeahklin Identity-based
Encryption [7], which can be adapted to APSI-DT with pre-distribution. d&aote this protocol as IBE-
APSI. Note that such a construct is described in the context of a diff@rémitive — Privacy-Preserving
Information Transfer (PPIT). However, it can be converted to ADEI-

First, the authorization authority (acting as the IBE PKG) generates a gritm® groupsGy, Gy of order

g, a bilinear mape : Gy x Go — G;. Arandoms € Z, is selected as a secret master key. Then, a
random generatoP € Gy is chosen, and) is set such thaf) = s - P. (P, Q) are public parameters.
Client obtains authorization for an elements an IBE secret key,; = s - H(¢;). In the pre-distribution
phase, the server first selects a randora G and then, for eaclis;, data;), publishes(;, e;) where

t; = Hi(e(Q, H(s;))?) ande; is the IBE encryption otlata; under identifiers;. Then, the server gives
the clientR = zP and the client computel§ = H;(e(R,0;)). For anyt}, s.t. t; = t;, the client can
decrypte;. The protocol can be speeded up by encryptingnder symmetric keyls(e(Q, H(s;))?). The
computation overhead for the client amount&X@) pairing operations, while there is no online overhead
for the server.

Remark that IBE-APSI has two drawbacks compared to APSI-DT: itigesvneither Server Unlinkability
nor Forward Security.

A.5 Benchmark of (A)PSI-DTs

In this section, we benchmark several (A)PSI-DT protocols and canibair performance through
experimental results. During the process, we try to identify the most effi@¢RSI-DT protocols (with or
without pre-distribution), and select the building blocks of our PSSI saiatio

Candidate Protocols.We discuss efficient implementation of (A)PSI-DT protocols listed in Table 9:

26



120

128-bit RC4 —6—
128-bit AES CBC =-=-¥---

10000

1000

100

Time (ms)

FNP04 —O—
DT10-1 ~r-@er

DT10-2 ¥
10 iL10

JL09
DT10-APSI =+ X-
IBE-APSI -+

. AN
0 2000 4000 6000 8000 10000
Data size (MB) Server Set Size (w)

Server Precomputation Time (ms)

Figure 15: Symmetric key en-/de-cryption Figure 16: Server pre-computation overhead.
performance.

100000

10000

JLO9 -
DT10-APS| -
IBE-APS| -+

1000

10000 10000

1000 1000 100

100 100

10

Client Online Computation Time (ms)

Client Online Computation Time (ms)

Server Online Computation Time (ms)

. - . . DTll)riIl?’OS%
1 IBE-APS| -+
1 0 2000 4000 6000 8000 10000 1 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Client Set Size (v) Server Set Size (W) Client Set Size (v)
Figure 17: Client onfine Figure 18: Client online Figure 19: Server online computation
computation w.r.t. client set size.computation w.r.t. server set size. w.r.t. client set size.

100000

JL09
DT10-APS| -
IBE-APSI B

10000

IBE-APSI B

Bandwidth Consumption (MB)
Bandwidth Consumption (MB)

Server Online Computation Time (ms)

1000 | ey gy @ e A TRETR TR 8
100 FNPOZ —— 6 xx—
DT10-1 - @--= -
DT10-2 . 4 LT
10 i e -
DT10-APS : 2 PO U
. o e Dt e e e e e g
0 0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Server Set Size (w) Client Set Size (v) Server Set Size (w)

Figure 20: server online computation Figure 21: Bandwidth consumption Figure 22: Bandwidth consumption
W.r.t. server set size. w.r.t. client set size. W.r.t. server set size.

For protocols supporting data transfer, data associated with eaclh slenveent can be arbitrarily long.
Also, performance of some protocols is dominated by each element’s dateadiies than set size (e.g., in
FNPO4). In order to obtain a fair comparison, we need to capture the 4ittioost of each protocol. To
this end, we employ the following strategy to eliminate data size effects: First, pncdticols, we encrypt
each element’s data with a distinct random symmetric key and consider thesaskéhe new associated
data. Assuming that a different key is selected at each interaction, thisgaehdoes not violate Server
Unlinkability. This way, the computation cost of each protocol is measursedban the same fixed-length
key, regardless of data size. In our experiments, we set symmetric leetp3iz8 bits.

As a result, each protocol execution involves additional overhead rafrgtric en-/de-cryption of
records. Figure 15 compares the resulting overhead (for variablsides, using either RC4 or AES-CBC
(with 128-bit keys). Therefore, to estimate the total cost of a protocelpeeds to combine: (1) symmetric
encryption overhead, (2) computation cost of each protocol, anca@)tchnsfer delay for transmitting the
encrypted data and PSI values.

We further assume that the client does not perform any pre- computafiile,the server performs as
much pre-computation on its input as possible. This reflects the reality wheneioput is (usually) de-
termined in real time, while server input is pre-determined. Figure 16 sh@yséicomputation overhead
for each protocol.

27



Next, we evaluate online computation overhead. Figures 17 and 18 potisen online computation
overhead with respect to client and server input sizes, respectiigiyres 19 and 20 show server online
computation overhead with respect to client and server input size cteshg

Furthermore, Figures 21 and|22 evaluate protocol bandwidth complexityresgect to client and
server input sizes. For protocols with pre-distribution, bandwidth aopsion (since the transfer of data-
base encryption is performed offline) does not include pre-distributiernead. Note that, in these figures,
we sometimes use the same marker for different protocols to indicate thatptfoéseols share the same
value. Client input size (resp., server input size) is fixed at5, 000 in figures where x-axis refers to the
server (resp., the client) input size.

Finally, note that, in all experiments, we use a 1024-bit RSA modulus and &Hi02yclic-group
modulus with a 160-bit subgroup order. The purpose of this set oftpeaik is to compare performance
of different protocols. Therefore we do not test protocols undéerint key size as they exhibit the same
trend. All test results are averaged ovér independent runs. All protocols are instantiated under the
assumption oHonest-but-Curioug¢HbC) adversaries and in tiitandom Oracle Mod€¢ROM).

PSI-DT without pre-distribution. We now focus on the comparison between FNP04 and DT10-1. Figures
1722 show that that FNPO04 is much costlier than DT10-1 in terms of cliens@mver online computation

as well as bandwidth consumption. For each client set size, DT10-1 olierfhead ranges frod60m.s to
4,400ms, while FNP04 server overhead — betwdeB00ms and15,000ms. For each chosen server set
size, server overhead in DT10-1 is unde300ms, while in FNPO4 it exceedsb, 000ms.

PSI-DT with pre-distribution. Next, we compare JL09, JL10 and DT10-2, i.e., PSI-DTs with pre-
distribution. Recall that all protocols are instantiated in the HbC model, thuKZ&<&re not included
for JLO9 and JL10. Figures 117-22 show that DT10-2 incurs clienttmad almost two orders of magnitude
lower than JLO9 and JL10. Indeed, DT10-2 involves two client multiplicationgach item, while JLO9
performs two heavy homomorphic operations and JL10 — two exponentiatiod& 10, the server online
computation overhead results framl60-bit exponentiations, whereas, in DT10-2, it results froRSA
exponentiations. Since these exponentiations can be speeded up usihgse Remainder Theorem, the
gap (for server computation overhead) between JL10 and DT10-2yislonble. Summing up server and
client computation overhead, DT10-2 results to be the most efficient. In @frbendwidth consumption,
DT10-2 and JL10 are almost the same, while JLO9 is slightly more expensive.

APSI-DT without pre-distribution. The only protocol available in this context is DT10-APSI (as dis-
cussed in Appendix A.3). Figure 17-20 illustrates that client overheaétiermined only by client set
size, whereas, server overhead is determined by both client and setv@zes. Note that measurements
obtained for APSI-DT naturally mirror those of DT10-1, as the former sinaplgls authorization of client
inputs (by merging signatures into the protocol).

APSI-DT with pre-distribution. The only protocol we evaluate for APSI-DT with data pre-distribution
is IBE-APSI (as discussed in Appendix A.4). Figure[17-18 shows tiexitcoverhead increases linearly
with client set size and does not depend on server set size. RecalhttBE-APSI, the server needs to
compute pairing operations for each item, independent of client input. dMergsince these operations
can be pre-computed, server-side overhead and bandwidth consniaugtinegligible, as shown in Figures
19224

During the pre-computation phase, the server needs to compa@ing and exponentiations, which makes
pre-computation relatively expensive. Thus, note that, If Server Ualtiitiky is desired, server would need
to repeat, for every interaction, the operations otherwise performedianiyg pre-computation.

“In these figures, y-values for IBE-APSI are all 0 which is out of thapscof the y-axis.

28



	Introduction
	Preliminaries
	PPSSI Syntax & Notation
	Privacy Requirements
	Private Set Intersection (PSI)

	Related Work
	A Strawman Approach
	The First PPSSI Approach
	Database Encryption with counters
	Lookup with counters
	Example of Correctness
	Challenges Revisited
	Security Analysis of First PPSSI Approach
	Security against Honest-but-Curious/Malicious Client
	Security against Honest-but-Curious/Malicious Server


	The Second PPSSI Approach for Very Large Databases
	Introducing the ``Isolated Box''
	Database Encryption
	Query lookup
	Optimizations
	Challenges Revisited
	Discussion
	Security Analysis of Second PPSSI Approach
	Security against Honest-but-Curious/Malicious Isolated Box (IB)


	Performance Evaluation
	Benchmarking All PPSSI Components
	Cryptographic Operations
	PPSSI Operations

	First PPSSI Approach vs PIR
	Second PPSSI approach vs MySQL

	Conclusion
	Comparion of State-of-the-art PSI-DT
	PSI-DT without Pre-distribution
	PSI-DT with Pre-distribution
	APSI-DT without Pre-distribution
	APSI-DT with Pre-distribution
	Benchmark of (A)PSI-DTs


