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Abstract. Sorting is among the most fundamental and well-studied
problems within computer science and a core step of many algorithms. In
this article, we consider the problem of constructing a secure multi-party
computing (MPC) protocol for sorting, building on previous results in
the field of sorting networks.
Apart from the immediate uses for sorting, our protocol can be used as
a building-block in more complex algorithms. We present a weighted set
intersection algorithm, where each party inputs a set of weighted ele-
ments and the output consists of the input elements with their weights
summed. As a practical example, we apply our protocols in a network
security setting for aggregation of security incident reports from multi-
ple reporters, specifically to detect stealthy port scans in a distributed
but privacy preserving manner. Both sorting and weighted set inter-
section use O

`
n log2 n

´
comparisons in O

`
log2 n

´
rounds with practical

constants.
Our protocols can be built upon any secret sharing scheme supporting
multiplication and addition. We have implemented and evaluated the
performance of sorting on the Sharemind secure multi-party computa-
tion platform, demonstrating the real-world performance of our proposed
protocols.

Keywords. Secure multi-party computation; Sorting; Aggregation; Co-
operative anomaly detection

1 Introduction

Intrusion Detection Systems (IDS) [16] are commonly used to detect anoma-
lous and possibly malicious network traffic. Incidence reports and alerts from
such systems are generally kept private, although much could be gained by co-
operative sharing [30]. The primary obstacle against cooperative processing of
incidence logs is privacy: organizations are typically reluctant to disclose data
which potentially reveals information about themselves or their customers. Fo-
rums for sharing IDS logs already exist, as exemplified by the www.dshield.org
service operated by the Internet Storm Center, where firewall logs can be sub-
mitted and centrally processed. However, services of this kind can leak sensitive
internal information about the participating entities.

In this paper, we discuss an approach for provably secure processing of sensi-
tive IDS logs. Specifically, we construct secure multi-party computation (MPC)
sorting and aggregation protocols, and demonstrate their applicability to dis-
tributed anomaly detection.



1.1 Our Contribution

We make a number of contributions in this paper. First of all, we propose a
privacy preserving secure sorting protocol, based on sorting networks [2] and
generic MPC primitives, which guarantees that no single entity learns anything
about other parties’ inputs (contributions), apart from the length of the inputs.
Specifically, we implement a sorting network using a secure comparison protocol
[12,27] to construct comparison gates. We discuss some details on how to apply
a data-oblivious sorting algorithm (where the sequence of comparisons does not
depend on the input), giving an extension to hide the length of the inputs, albeit
at considerable cost.

The observation that sorting networks could be used to implement secure
sorting has previously been made [31,20]. They furthermore present a random-
ized version of the Shellsort algorithm, which sorts with running time O(n log n)
with very high probability. This is asymptotically faster than the algorithms we
present. However, the constants are slightly worse, such that it would not be
more efficient on the sizes we test when evaluating. We were not aware of this
work when originally writing this paper.

It would be interesting to evaluate randomized Shellsort on an MPC cluster
to demonstrate feasibility of MPC computations on even larger data sets than
we do in this paper. Our evaluation results indicate better performance (but
with weaker security guarantees) than the 2-party implementations presented in
[31].

Sorting is an important building block. One recent example of this is Damgård,
Meldgaard and Nielsen [15] who used sorting networks in the MPC setting to
implement Oblivious RAM.

We utilize the secure sorting protocol to construct a solution to the top-
k problem [9], that is, securely revealing the global k highest contributors to a
weighted set intersection of (key, weight) pairs. We consider the symmetric case,
where all participants receive the same output. Our algorithm is an approach to
solving the generalized set intersection problem, as discussed in the MPC context
by Many [26]. We then discuss how the secure top-k algorithm can be used to
securely share the k most likely suspects in a distributed intrusion detection
scenario.

The feasibility of the secure sorting protocol in a real-life scenario is demon-
strated by means of a prototype implementation on the Sharemind [6] MPC
platform, which supports three privacy peers. The system is secure against a
passive (honest-but-curious) adversary corrupting one of the three parties. We
emphasize that the protocols are not specific to the Sharemind platform. Rather,
our protocols are described as a sequence of computations on secret shared data,
taking input and producing output in secret shared form. This allows our pro-
tocols to be easily re-used as parts of other protocols and to be implemented on
other MPC platforms.

Our implementation sorts 214 elements in under 4 minutes on a three ma-
chine cluster run by the Sharemind team. The performance measurements are
preliminary and only intended to give a rough indication of feasibility, rather



than a basis for comparison with other solutions, as the Sharemind platform is
currently being actively developed and our protocols can certainly be optimized.
However, we conclude that this small experiment demonstrates the feasibility of
applying MPC-based methods to the problem of secure processing of incidence
reports. We reserve optimization and scaling issues for future work.

1.2 Related Work

Protocols to securely evaluate any function are given by Ben-Or, Goldwasser,
and Wigderson [5], and Chaum, Crépeau, and Damgård [11]. Both these results
present protocols for computing addition and multiplication (XOR and AND)
on values in (verifiable) secret shared form, and with results remaining secret
shared. As these primitives are complete, any function can then be evaluated
gate by gate.

Adding to these primitives, Damgård et al. [12] presented a generic compar-
ison protocol which can be used with most common secret sharing mechanisms.
Later, a more efficient protocol for comparison was proposed by Nishide and
Ohta [27]. Bogdanov et al. [7] gave efficient protocols specialized for the case
when exactly 3 parties participate in the computation.

A line of research has focused on developing efficient MPC protocols for spe-
cific functions. Among these are more specific applications, such as auctions [8],
and comparing gene sequences [21], but also more generic primitives such as set
operations [18,23], top-k queries [9], and weighted set intersection [26]. Find-
ing efficient algorithms for private sorting has been stated as an open problem
by Du and Atallah [17], and more recently by Burkhart and Dimitropoulos [9].
Goodrich [20] has proposed the randomized Shellsort algorithm which runs in
timeO(n log n) with high probability addressing the sorting problem.

A number of frameworks and specialized programming languages to imple-
ment and run secure multi-party computation protocols have been created. These
include FairplayMP [4], Sharemind [6], SEPIA [10], and VIFF [13]. FairplayMP
builds on the idea of “garbled circuits” [34,3], Sharemind uses additive sharing
over a ring, and the latter two systems build on Shamir’s secret sharing [28].
Despite these three different approaches to implementing a generic MPC frame-
work, they all support a similar set of primitives, including addition, multipli-
cation, comparisons and equality testing. However, the performance properties
of FairplayMP are different from the others, and we will focus on the latter
three. Programming on these platforms either uses a specialized language, or a
standard programming language and library calls, depending on the platform.

One of our proposed applications is a protocol for cooperative, but private,
processing of security-related information, shared between mutually distrustful
organizations. Secure sharing of server logs and incidents reports is discussed by
Lincoln et al. [25], Slagell et al. [30] and Xu et al. [32]. The common thread is that
sharing of incident logs can aid in early detection of anomalies, but that naive
merging of logs is not a feasible solution, as this may reveal sensitive internal
and customer information. The authors cited propose a variety of log sanitization



techniques to protect potentially sensitive information. In contrast, we propose
to use MPC protocols for privacy preserving cooperative log processing.

Katti et al. [22] perform empirical analysis on a large dataset obtained from
1700 IDS systems. They observe that coordinated attacks on multiple targets
are a large fraction of the total attacks observed. Further, such attacks are seen
to target small clusters of victims with relatively constant size and membership.
The clustering phenomenon is most likely due to the combination of software
run and services offered on the platforms under attack. The observations of
Katti et al. support the feasibility of cooperative anomaly detection using MPC
protocols, such as is the focus of our work.

Building on their SEPIA platform, Burkhart and Dimitropoulos [9] have
proposed an algorithm for aggregation and top-k queries, using hash tables and
secret sharing. Their motivation is secure aggregation of network flow records to
cooperatively reveal anomalies. In this paper, we present an alternate algorithm
for top-k queries based on sorting. We remark that their solution computes an
approximately correct value, while our proposed solution computes exact results.

Also building on the SEPIA platform, Many [26] in his Master’s thesis studied
a problem called weighted set intersection. In this problem, each participant gives
as input a list of (value, weight)-pairs, and only keys reported by some number of
peers and which have weights with sum greater than some threshold are output.
For this problem, we propose an alternate solution based on sorting.

We apply techniques from sorting networks in our primary building block, the
MPC sorting protocol. A sorting network is a circuit which uses a fixed number
of comparison gates to sort its inputs. A comparison gate is a gate with two
inputs a, b and two outputs, which output min(a, b) and max(a, b), respectively.
Another perspective is that a sorting network is a sorting algorithm with the
property that which elements it compares is independent of the input.

Two performance metrics are of importance in the sorting network literature,
as well as in our application: the number of comparison gates, and the depth of
the circuit. Batcher [2] presented two famous sorting networks, odd-even merge
sort and bitonic sort. Both algorithms have depth O

(
log2 n

)
using O

(
n log2 n

)
gates and are efficient in practice. The Shell sort [29] algorithm can also be
implemented as a sorting network with the same asymptotic performance. Ajtai,
Komlós, and Szemerédi [1] constructed the AKS sorting network which achieves
the theoretically optimal O(log n) depth with O(n log n) gates, but the constant
hidden in the ordo notation makes the algorithm inefficient for practical input
sizes. Leighton and Plaxton [24] have proposed a sorting network with optimal
asymptotic performance and practical constants, but which do not sort correctly
for a small fraction of inputs.

2 Preliminaries and Notation

We denote a sequence of elements by a bold letter, like a, and use the same letter
with an index to denote the elements in the sequence, so ai is the ith element
of the sequence a. When we treat sequences of pairs, we explicitly associate



two new letters with the first and second item of the pair. Thus, for a vector b
consisting of pairs (xi, yi), we write the element bj = (xj , yj).

2.1 Secure Multi-Party Computation

The aim of secure multi-party computation techniques is to enable joint com-
putation of some function f by n mutually distrustful entities, in such a man-
ner that no collusion (below some threshold) of parties learns anything beyond
what they can deduce from their own inputs and observing the output. MPC
techniques were first introduced by Yao [33] in 1982 and have been extensively
studied since.

The most common paradigm for MPC is that of computing on shared secrets
[5,11]. In this paradigm, parties use secret sharing to share their private inputs
among all participants in the computation. They then execute protocols which
operate on secret shared inputs and return the output in secret shared form.
Finally, the shares of the output are combined to recover the output of the
function.

Our protocols are based on a small number of primitives, which we assume
to be securely implemented. These operations are addition, multiplication, com-
parison and equality testing on secret shared inputs. The values operated on are
in a finite ring or field, which is known to all parties. We denote the ring or field
by Zk. In Table 1, we list the primitives and the notation we use. All arithmetic
operations are in Zk.

Notation Operation
[x] The value x shared between the parties
[a] The sequence a shared element-wise between the parties
[x] + [y] Computation of the value x + y shared by the parties
c · [x] Computation of x multiplied by a public constant
[x] · [y] Computation of the product of two secret shared values
[x < y] The value 1 if x is strictly smaller than y, 0 otherwise
[x = y] The value 1 if x is equal to y, 0 otherwise

Table 1. List of MPC primitives used

Several of our algorithms operate on sequences. When sharing a sequence,
it is shared element-wise. Thus, the notation [a] for a of length m means that
the parties have shares [a1], [a2], . . . , [am]. We remark that sharing a sequence
reveals the length of the sequence to all parties. Similarly, when sharing pairs we
share them element-wise. Thus, for a sequence b of length m consisting of pairs
(xi, yi), [b] means that parties have shares [x1], [y1], [x2], [y2], . . . , [xm], [ym].

The computational and communication cost of the different primitives varies
significantly. Addition of two shares, as well as multiplication by a constant,
can be performed locally by all participants in the protocol. Computing the less-
than function or equality is done by computing a large number of multiplications,



the exact number depending on the protocol used and on the bit length of the
elements. For instance, the protocol by Nishide and Ohta [27] uses 15 rounds
and 279`+ 5 multiplications to compare two elements where ` is the number of
bits needed to represent an element in Zk, i.e. dlog2 ke. All operations in Table 1
use a constant number of rounds. For fixed k, the communication is also O(1).

As in other areas of computer science, MPC protocols benefit from paralleliza-
tion. Therefore, when designing and implementing a protocol, it is important to
keep not only the number of operations, but also the number of rounds as low
as possible. In Section 6, we demonstrate the importance of parallelization by
comparing the run time of a parallelized and non-parallelized version of bubble
sort.

In the context of MPC, different notions of what a party is has been dis-
cussed. Traditionally, the model has been that all parties contributing input also
participate in the secure computation. However, as performance of MPC proto-
cols does not scale well to a large number n of participants, a different model
has been proposed [14]. In this model, a large number of peers3 collect data and
send it in secret shared form to a relatively small number of privacy peers. The
privacy peers then run the protocol to perform the secure computation on the
inputs. Most often when designing protocols, the distinction between the two
models is not important. However, as we discuss in Section 3, for one of our
sorting protocols, it does make a difference.

The exact security guarantees achieved, as well as the constraints on the
execution environment, depend on the MPC framework on which our protocol
is implemented. The frameworks based on Shamir’s secret sharing are secure
against a passive adversary who can corrupt up to b(n−1)/2c nodes. These pro-
tocols require each pair of computing nodes to be connected by private channels.
The security guarantee still holds even if the adversary has unlimited compu-
tational power (information-theoretic security). The Sharemind framework is
implemented for n = 3 parties and provides security against a passive (honest-
but-curious) adversary corrupting any single node. By implementing the pro-
tocols using verifiable secret sharing, security against up to b(n − 1)/3c active
adversaries can be achieved. Of the sharing-based frameworks, only VIFF has
implemented verifiable secret sharing.

Informally, the security guarantees in the passive case say that no collusion
of parties (for collusions smaller than the security threshold) learn more than
what they do from their inputs and the output of the function. We refer to [19]
for the formal definitions.

2.2 Sorting Networks

A sorting network is a circuit with m inputs and m outputs4. The outputs take
the same values as the inputs, but in sorted order. The gates used to construct the

3 Here, we follow the terminology of [10]
4 More formally, it is a family of circuits for all sizes m, but we will ignore this
distinction.



circuit are so called comparison gates, which compare and sort a pair of elements.
We may view a sorting network as a sorting algorithm with the property that
the comparisons made are independent from the values to be sorted. Among the
well-known traditional sorting algorithms, bubble sort and Shell sort can both
be implemented in such a way that they have this property.

The viewpoint of a sorting network as a sorting algorithm with a fixed sets
of comparisons illuminates why such constructions can function as MPC sorting
algorithms. This means that given a design for a comparison gate, which takes
two inputs in secret shared form and sorts them (keeping them in secret shared
form), a sorting network can be implemented as an MPC computation. Further-
more, the performance metrics of a sorting network are the same as those we are
interested in optimizing in MPC; the circuit depth corresponds to the number of
rounds and the number of comparison gates used to the number of comparisons.

A comparison gate is a gate with two inputs a, b and two outputs, h, l such
that the output h takes value max(a, b) and the output l takes value min(a, b).
A comparison gate can be implemented as a multi-party computation by using
the following construction:

[h] = [a < b] · [b] + (1− [a < b]) · [a]
[l] = [a < b] · [a] + (1− [a < b]) · [b]

We define the function Compare-exchange(ai, aj) and assume sequences
are sorted in-place. This function compares the two elements ai, aj and swaps
them if needed such that after its execution, ai ≤ aj . The Compare-exchange
operation is implemented using the construction given above. We present the
algorithm later in Algorithm 3.

Sorting networks are comparison based, so the general Ω(m logm) lower
bound on the number of comparisons applies. The AKS sorting network [1]
matches this bound, but with such large constants that it is inefficient for prac-
tical input sizes. There are several sorting networks [2,29] with slightly worse
asymptotic performance, O

(
m log2m

)
comparisons and depth O

(
log2m

)
, but

with good constants. Of these, we will focus on the odd-even merge sort al-
gorithm by Batcher [2]. There is a also fast sorting network by Leighton and
Plaxton [24] with O(m logm) comparisons, but which does not correctly sort
the output for a very small fraction of the possible inputs. In the context of
MPC, we feel that correctness outweighs performance. As we show in Section 6,
an MPC implementation of odd-even merge sort achieves good performance even
on reasonably large data sets.

As the name implies, odd-even merge sort is based on the well-known merge
sort algorithm. The overall structure is the same, splitting the input in two
halves, recursively sorting each half, and then merging. The difference compared
to the standard merge sort algorithm lies in the merge step, which we describe in
Algorithm 1. For completeness, we give a full description of the whole algorithm
in Algorithm 2. With some abuse of notation, we write Function(a1, a2, . . . , am)
to call Function with the sequence a = a1, a2, . . . , am when Function takes



a single sequence as argument. We describe the algorithms as operating on a
sequence, the length of which is a power of 2, but it is easy to modify to ar-
bitrary input lengths by omitting some comparisons. We conclude this section
by restating the correctness and performance analysis from [2] of the odd-even
merge sort algorithm as a theorem.

Algorithm 1 Odd-even merge [2]
Input: Sequence a whose two halves a1, a2, . . . am/2 and am/2+1, am/2+2, . . . , am are
sorted. Length m is a power of 2.
Output: Sequence a is modified in-place to be sorted.
if m > 2 then

Odd-even merge(a1, a3, a5, . . . , am−1)
Odd-even merge(a2, a4, a6, . . . , am)
for i ∈ {2, 4, . . . , m− 2} do

Compare-exchange(ai, ai+1)
end for

else
Compare-exchange(a1, a2)

end if

Algorithm 2 Odd-even merge sort [2]
Input: Sequence a of length m (a power of 2).
Output: Sequence a is modified in-place to be sorted.
if m > 1 then

Odd-even merge sort(a1, a2, . . . , am/2)
Odd-even merge sort(am/2+1, am/2+2, . . . , am)
Odd-even merge(a)

end if

Theorem 1 ([2]). The Odd-even merge algorithm uses O(m logm) com-
parisons with depth O(logm). Odd-even merge sort correctly sorts using
O
(
m log2m

)
comparisons with depth O

(
log2m

)
.

3 Secure Multi-Party Sorting

We construct a secure sorting network on secret shares by using a MPC protocol
for Compare-exchange. This allows us to leverage the long line of research in
sorting networks to construct efficient MPC sorting protocols. However, there
are a number of details which remain in constructing an MPC sorting algorithm
related to the input to the protocol which we proceed to discuss.



3.1 Problem Definition

When we discuss MPC sorting, there are actually two slightly different problems
which we tackle. The first is sorting as a stand-alone functionality, or as the first
step of an algorithm. In this usage, we may need to hide the number of items
which are contributed by each party. The second is using sorting as a step within
an algorithm, where the number of elements to be sorted is known. We give a
definition to capture this distinction.

Definition 1 (Multi-party sorting). n parties execute a multi-party sorting
protocol. Each party Pi gives as input a sequence ai of length mi. After the
protocol has executed, the parties learn the sorted sequence a, whose elements
are the concatenations of the sequences ai. We say that a sorting protocol is
composable if the parties learn the sorted output a in secret shared form and
the total length |a| =

∑n
i=1mi openly. If the parties learn the input lengths

contributed by other parties, we say that the protocol has public input lengths,
otherwise we say it has private input lengths.

Our protocols are given as standard MPC operations on secret shares, and
are thus composable. The intuition for the notion of public input lengths comes
from the fact that it is difficult to hide the size of inputs in the context of MPC
protocols. For sorting, we give a general, but somewhat costly, transformation
which transforms a protocol with public input lengths into a protocol with pri-
vate input lengths. We stress that even with public input lengths, which party
contributed what element of the sorted output remains secret.

3.2 Public and Private Input Lengths

Our transformation from public to private input lengths begins by the parties
computing the length of the output. This is easily done by each party secret
sharing the length of their input. The lengths are summed, and the result is
opened and revealed to all parties. Let the sum be m and 0 be the smallest
possible input. Each party then locally appends 0’s to their input until their
input is of length m. They then participate in sorting using this new, longer
input. The cost is that the sorting algorithm must be run on a sequence of length
mn (where n is the number of parties) instead of length m. One could consider
a middle ground between public and private input lengths where the parties
compute the maximum input length of any single party, and pad their input to
that length instead of the output length. This would increase the performance,
at the cost of revealing the maximum input length.

Here, we would like to tie back into the discussion on the roles of different
parties in the MPC context. This transformation is slightly at odds with the
privacy-peer view of MPC, as it requires one round of interaction between the
data reporting peers and the privacy-peers executing the MPC protocol, as the
peers must first contribute their number of shares, wait to receive the sum of
these numbers, and then contribute their actual input (appropriately padded).
However, we believe this limited interaction is acceptable in most applications



of MPC in a privacy-peer setting as the interaction is quick, very limited and
not computationally demanding for the data reporting peers.

A similar issue arises with regard to the domain in which the elements lie.
For our MPC protocol, we require the elements to be in Zk for some public
k. But how large is k? In most applications, an upper bound on k is known a
priori, for instance when operating on IP addresses which are of fixed length.
If no such bound is known from the applications, the parties can precede the
sorting protocol with a protocol computing the maximum element in the input
to some suitable degree of precision (e.g., the number of bits required to store
it) and then initialize the MPC framework with a ring or field of appropriate
size. In the remainder of this paper, we assume that the parties know a suitable
size a priori to present the main ideas more clearly.

3.3 Multi-party Sorting

We are now ready to present our protocol for MPC sorting. We begin by de-
scribing a comparison gate, Compare-exchange. We present the algorithm as
operating on key-value pairs in Algorithm 3. With some abuse of notation, we
call this function both when sorting key-value pairs and when sorting singleton
elements. In the algorithm, we use [s] and [t] as temporary variables for the
values that will go into outputs [x1] and [y1].

Algorithm 3 Compare-exchange
Input: Two key-value pairs ([x1], [y1]), ([x2], [y2]) in secret shared form
Output: The pairs are swapped in-place such that the pair with the smallest key is
in the first position.
Compute [c]← [x1 < x2]
Let [s]← [c] · [x1] + (1− [c]) · [x2]
Let [t]← [c] · [y1] + (1− [c]) · [y2]
Let [x2]← (1− [c]) · [x1] + [c] · [x2]
Let [y2]← (1− [c]) · [y1] + [c] · [y2]
Let [x1]← [s]
Let [y1]← [t]

We include a full description of the protocol as Algorithm 4. The construction
used for private input lengths is general and can be used for any MPC sorting
protocol.

We remark that the users could sort their own contributed inputs locally.
Some sorting networks, in particular the odd-even merge sort network that we
presented as Algorithm 2, could be modified to make use of this to increase the
performance. However, we omit the details of such modifications.

Theorem 2. Algorithm 4 is correct and secure.



Algorithm 4 Multi-party sorting
Input: Each party Pi inputs sequence ai of length mi

Output: Sorted sequence a in secret shared form
if Private input lengths then

Each party Pi shares [mi]
Compute [m] =

Pn
i=1[mi]

Open [m] to all parties
Each party Pi forms bi by padding ai with m−mi 0 elements

else
Each party Pi sets bi ← ai

end if
Each party Pi shares bi element-wise
Let [b] be the concatenation of all [bi]
Sort [b] in-place using a sorting network
if Private input lengths then

return the last m elements of b
else

return b
end if

Proof (Sketch). Correctness of the algorithm follows directly from the correct-
ness of the sorting network implemented.

The security of the protocol relies on the security of the implementation
of the underlying MPC primitives for all MPC operations. In the case with
private input lengths, each party performs the same sequence of MPC operations
independent of their inputs. Without private input sizes, the only difference
between parties in the protocol is how many elements are shared by each party.
The only value opened to the parties is the size of the output, which is part of
the output in Definition 1. ut

4 Weighted Set Intersection and Aggregation

We now give our secure weighted set intersection protocol, which leverages our
sorting protocol from Section 3.

4.1 Problem Definition

We formally define our problem and refer to it as weighted set intersection. We
remark that this name was also used by Many [26] for their problem, which is
closely related but not exactly the same. In light of the application, we will refer
to weighted set intersection and the top-k problem as aggregation.

Definition 2 (Weighted Set Intersection, Top-k). In the Weighted Set In-
tersection problem, each party Pi gives as input a sequence ai of length mi con-
sisting of value-weight pairs, ai

j = (vi
j , w

i
j), with positive weights. The output is



a sequence of value-weight pairs such that element vj is in the output if it was
in the input of any party. Elements in the output are assigned weight as the sum
over the input weights of all parties. If the output is truncated to only include
the top k values, sorted by their aggregate weights, we say that it solves the top-k
problem.

In Section 3, we defined and discussed the notion of public or private input
lengths. A similar concern exists in our current setting. However, this time,
the padding idea we used in sorting does not work. The key difference between
sorting and aggregation is that with aggregation, it is difficult to compute the
length of the output without performing the actual aggregation. By applying
the same transformation as we did for sorting, we would get a protocol hiding
the number of items submitted by each party, but where the difference between
the length of the inputs and the output reveals how many key-value pairs were
reported by more than one party. Thus, we propose a protocol for aggregation
with public input lengths.

4.2 The Core Aggregation Step

In our algorithm, we sort the complete list of item-weight pairs, ordered by
item. Then an aggregation step is executed, which aggregates the weights of all
items. After the aggregation step, we want a single entry in the list for each
distinct item, its weight being the sum of its weights in the original input. This
means that some item-weight pairs need to be removed; “removal” of an item-
weight pair is performed by setting its weight to 0 which ensures its exclusion
from the output later in the algorithm. We begin our description by presenting in
Algorithm 5 an MPC algorithm, Aggregate-if-equal, for comparing two key-
value pairs and merging them if they have the same key, analogous in function
to Compare-exchange.

Algorithm 5 Aggregate-if-equal
Input: Two key-value pairs ([x1], [y1]), ([x2], [y2]) in secret shared form
Output: If the keys are equal, the values are merged in-place
Compute [c]← [x1 = x2]
Let [y1]← [y1] + [c] · [y2]
Let [y2]← (1− [c]) · [y2]

Returning to the original question: given a sorted list, how to aggregate
the weights for an item? A naive solution would be to use O

(
m2
)
calls to

Aggregate-if-equal, comparing each pair of items and summing weights ap-
propriately. However, we can do better. We present an algorithm which aggre-
gates m items using O(m logm) equality tests with a construction similar to
Batcher’s Odd-even merge algorithm. We call this algorithm Odd-even ag-
gregation and give the pseudo-code in Algorithm 6 and proof of correctness



in Theorem 3. As with sorting, we describe the algorithm for an input lengths
which is a power of 2, and the algorithm can easily be adapted to arbitrary input
lengths.

Algorithm 6 Odd-even aggregation
Input: Sequence a of key-value pairs (xi, yi) which are sorted by the key values.
The length m of a is a power of 2.
Output: Sequence a is modified in-place to contain one key-value pair with non-zero
weight for each unique key. “Removed” entries have weight set to 0.
if m > 2 then

Odd-even aggregation(a1, a3, a5, . . . , am−1)
Odd-even aggregation(a2, a4, a6, . . . , am)
for i ∈ {1, 2, 3, . . . , m− 1} do

Aggregate-if-equal(ai, ai+1)
end for

else
Aggregate-if-equal(a1, a2)

end if

Theorem 3. Algorithm 6 correctly aggregates its input using O(m logm) equal-
ity tests in O(logm) rounds.

Proof (Sketch). We observe that on inputs of the same length, Odd-even ag-
gregation runs Aggregate-if-equal twice as many times as Odd-even
merge runs Compare-exchange. The performance follows from Theorem 1.

The proof of correctness is by induction on the input length. We claim that
the aggregated entry for a key x that occurs in the input with non-zero weight
will be stored at the first position where x occurred in the input, i.e. the smallest
i such that xi = x. The base case of input length 2 is easily verified.

We observe that since Aggregate-if-equal compares the keys of elements,
calling it on items with different keys does not cause problems. As it overwrites
the weight with 0 when merging, calling it on a position which has already been
aggregated is also harmless. Thus, our main concern is proving that all entries
with the same key will indeed be aggregated into the first entry with that key.

The two recursive calls (on the odd and even sub-sequences) are on sorted
sequences, so by induction the two sub-sequences are correctly aggregated. For
a key x occurring in the input, let i be the least even i such that xi = x, and
let j be the least odd j such that xj = x in the input. By induction, the weights
for x are aggregated into positions i and j. As the input was sorted by key, we
have |i − j| = 1, and thus the two entries are merged by the for-loop calling
Aggregate-if-equal. As this holds for any x, it concludes the proof. ut

4.3 Algorithm for Weighted Set Intersection

Given the algorithm for the aggregation step on a sorted list, the key building
blocks for the weighted set intersection algorithm are in place. To handle the “re-



moved” elements in the output after the aggregation step, we sort the aggregated
list and count the number of non-zero items in the list, which is the number of
elements to keep as output. We present the full algorithm in Algorithm 7.

Algorithm 7 MPC Weighted Set Intersection
Input: Party Pi contributes a list ai of item-weight pairs (xj , yj) of length mi.
Output: Sequence of item-weight pairs, sorted by value
Each party Pi shares its input element-wise, [ai] = [xi

1], [y
i
1], [x

i
2], [y

i
2], . . . [x

i
mi

], [yi
mi

]
Let a be the concatenation of the sequences ai

Odd-even merge sort(a), sorting on xj

Odd-even aggregation(a)
Odd-even merge sort(a), sorting on yj

[m]← 0
for i = 1 to |a| do

[m]← [m] + (1− [xi = 0])
end for
Open [m] to all parties
return The m last elements of a

Theorem 4. Algorithm 7 correctly and privately (with public input lengths)
solves the weighted set intersection problem using O

(
m log2m

)
comparisons and

O(m logm) equality tests in O
(
log2m

)
rounds.

Proof (Sketch). Correctness of the algorithm follows from Theorems 1 and 3
(correctness of sorting and aggregation).

The security of the protocol relies on the security of the implementation of
the underlying MPC primitives for all MPC operations. The number of elements
shared by each party reveals the length of their input. After contributing their
input, all parties perform the same operations. The only value opened to the
parties is the size of the output, which is part of the output. ut

5 Cooperative Anomaly Detection

Our motivating application is that of cooperative processing of anomaly logs
produced by intrusion detection systems (IDS). We consider a scenario where a
number of parties (organizations) collaborate on distributed intrusion detection
by contributing anomaly indications based on local IDS logs. The anomaly indi-
cations are (IP,weight) pairs of suspected attackers, where the weight indicates
the confidence in that rating. In our sample application, the weights are simple
counts that can indicate anomalies, such as the number of TCP SYN packets
observed from a given IP. More complex weights can be constructed from combi-
nations of multiple criteria. The cooperating parties are mutually distrustful and
reluctant to reveal any part of the characteristics of their IP traffic. However,
they recognize the benefits of sharing their anomaly data. Our top-k protocol



from Section 4 can be utilized to produce an indication of the k system-wide most
suspicious source IP addresses, while preserving the privacy of their inputs.

We use as our working example a slow port scan attack against multiple vic-
tims (our cooperating parties). In a slow scan, a relatively small set of attackers
port scans a large set of potential victims in a pattern, which is likely to evade
detection by the IDS systems of any single one, at least in terms of a strongly
positive result. However, the attack may well become obvious when observing
traffic aggregates.

We assume a system consisting of three privacy peers, consistent with the
Sharemind MPC platform. Each cooperating party submits a list of potentially
suspicious source addresses – (IP,weight) pairs – in secret shared form to the
three privacy peers. The processing is performed on the MPC platform, i.e. by the
three privacy peers, preserving the privacy of individual contributions. The final
top-k potential attackers are thus not traceable to any particular contributor,
but can be utilized to set policies to respond to the possible threats, e.g. by
pro-actively blocking suspicious IP addresses.

MPC protocols traditionally require highly connected networks and a high
messaging overhead. Thus, techniques of this sort have generally been dismissed
as being impractical for scalable real-world applications, such as the one consid-
ered here. However, the privacy peer paradigm, as well as the development of
general-purpose MPC platforms, such as Sharemind, mean that truly secure co-
operative log processing is becoming feasible. The phenomenon of victim cluster-
ing into relatively well-defined and static groups, as observed by Katti et al. [22],
further supports the feasibility of MPC techniques in real-life network security
applications.

6 Performance Evaluation

We demonstrate the feasibility of our secure sorting protocol from Section 3,
vectorized odd-even merge sort, in a real-life setting by a proof-of-concept im-
plementation on the Sharemind [6] secure multi-party computation platform.
Sharemind allows privacy preserving processing of inputs from three privacy
peers, secure against a corruption of any single one by a passive adversary.

The Sharemind framework has its own programming language, SecreC, which
we used to implement our sorting algorithm. For comparison purposes, we also
implemented MPC sorting based on bubble sort and evaluated its performance
on the same cluster. Both vectorized and serialized bubble sort implementations
were produced. Our implementations are fully unrolled, meaning that the SecreC
code contains the full program sequence without iterations or recursive calls.

Experiments were performed on a cluster operated by the Sharemind team,
consisting of 3 computers running version 2.0 of the Sharemind framework. The
computers were equipped with dual Intel X5670 2.93GHz CPUs and 48GB
RAM, and were interconnected by gigabit links.

In Figure 1, we show the total execution time of the three algorithms as a
function of n, the total number of items sorted. Our results show that 214 32-bit



values can be securely sorted in little more than 3.5 minutes using the algorithm
from Section 3. The implementation is only moderately optimized, allowing us to
conclude that the performance can be improved. The baseline implementation of
the non-vectorized bubble sort algorithm can sort 26 elements in a few minutes.
Parallelization of operations increases performance considerably, as expected,
allowing sorting of 210 elements within a similar time frame.

As expected, a faster sorting algorithm allows us to consider larger input
sizes. The performance of our odd-even merge sort implementation in this proof-
of-concept test leads us to conclude that MPC-based cooperative processing of
several thousands of reported events per minute can indeed be practical in a
real-world distributed IDS application.
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Fig. 1. Execution time (wall time) of the three compared sorting implementations.
Number of elements on x-axis on log-scale.

We only present experimental results of our sorting algorithm, but the results
are indicative for the feasibility of our proposed approach to cooperative anomaly
detection. In particular, the run-time of our weighted set intersection protocol
is dominated by sorting (twice), so its performance is closely connected to that
of sorting.

7 Conclusion

We give a MPC sorting algorithm, based on the principles of sorting networks and
generic MPC primitives, which preserves the privacy of individual contributors.
The performance and practicality of the algorithm was assessed using a proof-of-
concept implementation on the Sharemind MPC platform. Our results indicate
that our MPC sorting algorithm is practical for large inputs.

We describe an algorithm which utilizes MPC sorting to produce top-k ag-
gregates of weighted inputs. Further, we describe the application of the top-k



algorithm to distributed anomaly detection – the problem of secure aggregation
of anomaly reports from multiple cooperating, but mutually suspicious, parties.

In the context of intrusion detection, there is much to be gained by collabo-
rating. However, the sensitive nature of alerts from IDS systems makes it difficult
to do so. MPC protocols offer very strong security guarantees, and as we have
shown in our evaluation, are approaching practical performance for distributed
intrusion detection applications.
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