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Abstract. In this work, we initially design a new authenticated data structure
for a dynamic table with n entries. We present the first dynamic authenticated
table that is update-optimal, using a lattice-based construction. In particular, the
update complexity is O(1), improving in this way the “a priori” O(logn) up-
date bounds of previous constructions, such as the Merkle tree. Moreover, the
space complexity of our authenticated data structure is O(n) and logarithmic
bounds hold for other performance measures, such as proof complexity (number
of group elements contained in the proof). To achieve this result, we establish
and exploit a property that we call repeated linearity of lattice-based hash func-
tions and show how the security of lattice-based digests can be guaranteed under
updates. An one-time preprocessing stage of O(n logn) complexity is also re-
quired at setup. This is the first construction achieving a constant update bound
without causing other complexities to increase beyond logarithmic. All previous
solutions enjoying such a complexity bound for updates enforce Ω(nε) proof
or query complexity. As an application, we provide the first construction of an
authenticated Bloom filter, an update-intensive data structure that falls into our
model.
We secondly observe that the repeated linearity of the used lattice-based cryp-
tographic primitive lends itself to a natural notion of parallelism: As such, we
describe parallel versions of our authenticated data structure algorithms, yield-
ing the first parallel online memory checker with O(1) query complexity using
O(logn) checkers in the CREW model and without using a secret key setting,
i.e., there is only need for small reliable but not secret memory. We base the se-
curity of our constructions on the difficulty of approximating the gap version of
the shortest vector problem in lattices (GAPSVP) within polynomial factors.
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1 Introduction
Increasing interest in online data storage and processing has recently led to the estab-
lishment of the field of cloud computing [17]. In such settings, verifying the validity
of remotely stored dynamic data structures and of queries executed on them is an im-
portant security property, or otherwise data can be tampered with by malicious entities.
In order to solve such problems efficiently, the model of authenticated data structures
(see, e.g., [20, 33]) has been developed, which is related to memory checking [6].

A typical setting where an authenticated data structure can be employed involves
three participating entities, usually referred to as three-party model [33]: A trusted party
called source, owns a data structure, that is replicated along with some cryptographic
information to one or more untrusted parties, called servers. Clients issue data structure
queries to the servers and wish to publicly verify the answers received by the servers,
based only on the trust they have in the source. This trust is conveyed through a time-
stamped signature on a digest of the data structure (a collision resistant succinct repre-
sentation of the data structure, e.g., the roothash of a Merkle tree), that is made avail-
able by the source. During an update, the source needs just to compute the new digest,
whereas the server needs to update the authenticated data structure as a whole. Vari-
ations of this model include the two-party model [26], where the source keeps only a
small state (i.e., the digest) and performs both the updates and the queries/verifications,
as well as the memory checking model [6], where a memory of n cells being accessed
through read/write operations is to be verified. However, the absence of the notion of
proof computation in memory checking as well as the requirement for public verifiabil-
ity1 in authenticated data structures make these two models fundamentally different.

An authenticated data structure should be firstly secure: A computationally-bounded
adversary should not be able to produce a valid proof for a false answer, under a well-
accepted assumption. Secondly, it should be efficient: Its algorithms should have low
complexity. Successfully combining both these goals comprises a challenging task, sub-
stantially depending on the underlying cryptography [8, 27, 28]. Under this premise, we
develop the first efficient authenticated data structure based on lattices, a mathematical
tool that has had many applications in cryptography after Ajtai’s seminal result [1].

This work combines the simplicity of a Merkle tree [21] with a special property of
lattice-based hash functions, which we establish and call repeated linearity. Roughly
speaking, this property allows using the output of one invocation of the hash function,
as an input to another invocation of the function, without losing “structure”. This obser-
vation, in the authenticated data structures setting, turns out to be crucial in achieving
constant update complexity, while keeping all the remaining complexity bounds log-
arithmic. This is a trade-off that, to the best of our knowledge, has not been achieved
so far in the literature—and is feasible due to the use of lattices: E.g., for a table data
structure of n entries, [3, 10, 27] haveO(1) update butΩ(nε) proof (or query) complex-
ity whereas [6, 15] impose O(log n) bounds on all the complexity measures (see lower
bound in [34]). Moreover, the repeated linearity of our lattice-based hash function lends
itself to a natural notion of parallelism, allowing us to give parallel versions of our al-
gorithms, yielding the first parallel online memory checker withO(1) query complexity
using O(log n) checkers and without a secret key setting (as opposed to [16]).

1 Memory checking might require secret memory, e.g., see the PRF construction in [6].



2 Papamanthou and Tamassia

The data structure we are considering in this paper is a dynamic table of size n,
read and written through indices 1, . . . , n. We base the security of our construction on
the hardness of the GAPSVP problem in lattices [22], which has its own significance
given recent attacks on collision-resistant functions such as MD-5 [32]. We note that
our construction requires an one-time O(n log n) preprocessing, which is is however
amortized—in comparison with other works (see Table 1)— after Ω(n log n) updates.
Authenticated data structure scheme. To formally describe our solutions and prove
their properties we use an authenticated data structure scheme, which is a collection of
algorithms {genkey, setup, update, refresh, query, verify} such that (a) genkey() pro-
duces the secret and public key; (b) setup() takes as input a plain data structure D and
outputs the authenticated data structure auth(D); (c) On input an update u, update()
updates the authenticated data structure digest (e.g., the roothash of a Merkle tree), so
that it could be used later for query verification. This algorithm has access to the secret
key; (d) On input an update u, refresh() updates the authenticated data structure as a
whole—so that it could be used later for query execution—, without having access to the
secret key; (e) query() computes cryptographic proofsΠ(q) for answers α(q) to certain
data structure queries q; (f) verify() processes the proof Π(q) and the answer α(q) and
either accepts or rejects the answer. Note that both query() and verify() are required to
have no access to the secret key. The formal definition of all the algorithms above and
the properties they should satisfy (correctness/security) are given in Definition 5. We
note that both a three-party protocol [33] and a two-party protocol [26] can be realized
via an authenticated data structure scheme. See Corollaries 4 and 5 respectively.
Overview of our solution. Our solution can be seen as a generalization of the Merkle
tree and related hierarchical hashing constructions [6, 15, 23]. By exploiting a property
of lattice-based hash functions, which we call repeated linearity, over a typical Merkle
tree, we depart from black-box use of generic collision-resistant hash functions (e.g.,
MD-5 or SHA-256) in the authenticated data structures setting. As a consequence, and
in the Merkle tree paradigm, the digest of a tree node v can be expressed as the “sum”
of well-defined functions (called partial digests) applied to data stored at the leaves of
v’s subtree (Theorem 3). Exploiting this property enables constant update complexity
as well as deriving parallel algorithms. It may also be of general interest and have other
applications. A comparison of our solution with existing work is given in Table 1.
Complexity model. In this work, and as it has already been adopted in the authen-
ticated data structures literature, we use the same complexity model as in memory
checking [6, 10]: The access complexity2 of an algorithm is defined as the number of
queries that this algorithm makes to the authenticated data structure (or parts thereof)
stored in an indexed memory of n cells, in order for the algorithm to complete its ex-
ecution. Each memory cell can store up to O(poly(log n)) bits, a word size also used
in memory checking literature [6, 10]. For example, a Merkle tree [21] has O(log n)
update access complexity since the update algorithm needs to read and write O(log n)
memory locations of the authenticated data structure, in order to execute. Similarly, the
group complexity of an object (e.g., proof group complexity) is defined as the number
of “group” elements (hash values, elements in Zp) contained in that object.

2 The term “access complexity” is used here instead of “query complexity”, so that to avoid
ambiguity when referring to the query() algorithm of the authenticated data structure.
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Table 1. Access and group complexities of various authenticated data structure schemes defined
by algorithms {genkey, setup, update, refresh, query, verify}, for a dynamic table of n entries.
Parameter 0 < ε < 1 is a constant, “D. Log” stands for “Discrete Logarithm”, “Generic CR”
stands for “Generic Collision Resistance” and GAPSVP is the gap shortest vector problem in
lattices (Definition 1). In all schemes, the authenticated structure has group complexity (i.e., size)
O(n) and genkey() has O(1) complexity. Π(q) denotes the proof for a query q.

[6, 15, 20, 23] [3] [25] [8, 31] [14] [27] this work
setup() O(n) O(n) O(n) O(n) O(n) O(n) O(n logn)

update() O(logn) O(1) O(1) O(1) O(nε) O(1) O(1)

refresh() O(logn) O(1) O(n) O(n logn) O(nε) O(1) O(logn)

query() O(logn) O(n) O(1) O(1) O(nε) O(nε) O(logn)

verify() O(logn) O(n) O(1) O(1) O(1) O(1) O(logn)

proof Π(q) O(logn) O(n) O(1) O(1) O(1) O(1) O(logn)

assumption Generic CR D. Log Strong DH Strong RSA GAPSVP

Contributions. There are two main contributions in this paper: (1) We provide the first
authenticated table construction withO(1) update complexity andO(log n) complexity
for the remaining performance measures (Theorem 4 and Theorem 6 for the authenti-
cated Bloom filter). To achieve that, we establish and exploit the repeated linearity of
lattice-based hash functions, which other primitives such as generic collision-resistant
functions (used in [6, 15, 23]) and exponentiation functions (used in [3, 25, 27]) lack; (2)
We describe parallel versions of our authenticated data structures algorithms, yielding
the first parallel online memory checker (Theorem 5) with O(1) query complexity, us-
ingO(log n) checkers and only reliable (not secret) small memory (as opposed to [16]).
Related work. Lattice-based cryptography began with Ajtai’s construction of a one-
way hash function based on hard lattices problems [1]. Various generalizations and im-
provements have appeared since then [12, 13, 19, 22, 29]. Also, several authenticated
data structures based on cryptographic hashing have been developed [6, 15, 21, 23].
Lower bounds for hash-based authenticated data structures and memory checking are
given in [34] and [10, 24] respectively. Authenticated data structures using other cryp-
tographic primitives [2, 4, 8], achieving O(nε) bounds, are presented in [14, 27]. We
observe that all of the above constructions belong to one of the following two cate-
gories: either (1) they have logarithmic update complexity, with all the other complex-
ity measures being also logarithmic, e.g., [6, 15, 23]; or (2) they have sublogarithmic
update complexity (e.g., constant) but at least one of the other complexities is Ω(nε),
e.g., [3, 25, 27]. This work achieves the best of both worlds. Finally, a parallelizable
authentication tree, but in the symmetric key setting, has been developed in [16]. A
comparison of our construction with existing literature work (in the sequential model)
can be found in Table 1.

2 Lattices and authenticated data structures
We start with some basic definitions. In the following, k denotes the security parameter.
We use upper case bold letters to denote matrices, e.g., B, lower case bold letters to
denote vectors, e.g., b, and lower case italic letters to denote scalars. Finally, for a
vector x = [x1 x2 . . . xk]T , ‖x‖ denotes the Euclidean norm of x.
Lattices. Given the security parameter k, a full-rank k-dimensional lattice is defined as
the infinite-sized set of all vectors produced as the integer combinations {

∑k
i=1 xibi :
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xi ∈ Z, 1 ≤ i ≤ k}, where B = {b1,b2, . . . ,bk} is the basis of the lattice and
b1,b2, . . . ,bk are linearly independent, all belonging to Rk. We denote the lattice pro-
duced by B (i.e., the set of vectors) with L(B). A well-known difficult problem in lat-
tices is the approximation within a polynomial factor of the shortest vector in a lattice
(SVP problem). Namely, given a lattice L(B) produced by a basis B, approximate up to
a polynomial factor in k the shortest (in an Euclidean sense) vector in L(B), the length
of which we denote with λ(B). A similar problem in lattices is the “gap” version of the
shortest vector problem (GAPSVPγ), the difficulty of which is useful in our context:

Definition 1 (Problem GAPSVPγ) An input to GAPSVPγ is a k-dimensional lattice
basis B and a number d, where k is the security parameter. In YES inputs λ(B) ≤ d
and in NO inputs λ(B) > γ × d, where γ ≥ 1.
We note that, for exponential values of γ, i.e, γ = 2O(k), one can use the LLL al-
gorithm [18] and decide the above problem in polynomial time. The difficult version
of the problem arises for polynomial γ, for which no efficient algorithm is known to
date, even for factors slightly smaller than exponential [30], i.e., very big polynomials.
Moreover, for polynomial factors, there is no proof that this problem is NP-hard3, which
makes the polynomial approximation cryptographically interesting as well. Therefore,
a well-accepted assumption on which the security of our scheme is based is as follows:

Assumption 1 (Hardness of GAPSVPγ) Let GAPSVPγ be an instance of the gap ver-
sion of the shortest vector problem in lattices, as defined in Definition 1 and k be the
security parameter. There is no polynomial-time algorithm for solving GAPSVPγ for
γ = poly(k), except with negligible probability4.
Reductions. After Ajtai’s seminal work [1] where an one-way function based on hard
lattices problem is presented, Goldreich et al. [13] presented a variation of the function,
providing at the same time collision resistance. Based on this collision resistant hash
function, Micciancio [22] described a generalized version of it, a modification of which
we are using in our construction. The security of the hash function is based on the
difficulty of the small integer solution problem (SIS):

Definition 2 (Problem SISq,m,β) Given an integer q, a matrix M ∈ Zk×mq and a real
β, find a non-zero integer vector z ∈ Zm\{0} such that Mz = 0 mod q and ‖z‖ ≤ β.
Note that at least one solution to the above problem exists when β ≥

√
mqk/m and

m > k [22]. Moreover, if q ≥ 4
√
mk1.5β, we will see that such a solution is difficult

to find. We continue with the definition of SIS′, where the solution vector is required to
have at least one odd coordinate:

Definition 3 (Problem SIS′q,m,β) Given an integer q, a matrix M ∈ Zk×mq and a real
β, find an integer vector z ∈ Zm\2Zm such that Mz = 0 mod q and ‖z‖ ≤ β.
For odd q, there is a polynomial-time reduction from SIS′q,m,β to SISq,m,β [22]:

Lemma 1 (Reduction from SIS′q,m,β to SISq,m,β [22]) For any odd integer q ∈ 2Z +
1 and SIS′ instance I = (q,M, β), if I has a solution as an instance of SIS, then it has

3 In specific, as outlined in [30], the current state of knowledge indicates that for γ >
p
k/ log k,

it is unlikely that this problem is NP-hard and no efficient algorithm is known to date.
4 Let f : N → R. We say that f(k) is neg(k) iff for any nonzero polynomial p(k) there exits N

such that for all k > N it is f(k) < 1/p(k).
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a solution as an instance of SIS′. Moreover, there is a polynomial-time algorithm that
on input a solution to a SIS instance I , outputs a solution to the same SIS′ instance I .
As proved by Micciancio [22], by choosing certain parameters, GAPSVPγ can be re-
duced to SIS′ (derived by combining Lemma 5.22 and Theorem 5.23 of [22]):

Lemma 2 (Reduction from GAPSVPγ to SIS′q,m,β [22]) Let the quantities β,m, q =
kO(1) be polynomially-bounded, with q ≥ 4

√
mk1.5β and γ = 14π

√
kβ. Then there is

a probabilistic polynomial-time reduction from solving GAPSVPγ in the worst case to
solving SIS′q,m,β on the average with non-negligible probability.
A direct application of Lemma 1 and Lemma 2 gives the following result.

Theorem 1 Let q = kO(1) be an odd positive integer. For any polynomially bounded
β,m = kO(1), with q ≥ 4

√
mk1.5β and γ = 14π

√
kβ, there is a probabilistic

polynomial-time reduction from solving GAPSVPγ in the worst case to solving SISq,m,β
on the average with non-negligible probability.
Theorem 1 states that if there is an algorithm that solves an average (i.e., M ∈ Zk×mq

is chosen uniformly at random) instance of SISq,m,β , for an odd q, q ≥ 4
√
mk1.5β and

γ = 14π
√
kβ, then, this algorithm can be used to solve any instance of GAPSVPγ .

Lattice-based hash function. Let m = 2k log q and β = δ
√
m, where δ is poly(k).

Note that log δ = O(log k). We also require q ≥ 4
√
mk1.5β = 8k2.5δ log q. It is

easy to see that given k and δ there is always a q = O(k2.5δ log k) to satisfy the above
constraints—since δ is poly(k), the bit-size of q isO(log k). The collision resistant hash
function that we are using is a generalization of the function presented in [22], where
δ = O(1) (in the security parameter) is used instead. In our construction we use bigger
values for δ. Namely the value that we use to bound the norm of the solution vector
can be up to poly(k). This was observed in the original definition of Ajtai’s one-way
function [1], i.e., that the input vector can contain larger values (but not so large), and
was also noted in its extension that achieves collision resistance [13]. This remark is
very useful in our context and implies that, the larger value one picks for β, the larger
the modulus q should be so that security is guaranteed (still q’s bit size is O(log k)).

Let now M ∈ Zk×mq be a k×m matrix that is chosen uniformly at random. We can
define the function hM : Zm → Zkq as hM(x) = Mx mod q, where ‖x‖ ≤ β and the
modulo operation is taken component-wise. The above function is collision resistant
based on the difficulty of GAPSVP14π

√
kβ (see proof in the Appendix):

Theorem 2 (Strong collision resistance) Let m = 2k log q, β = δ
√
m and q be an

odd positive integer such that q ≥ 4
√
mk1.5β. Let also M ∈ Zk×mq be a k ×m matrix

that is chosen uniformly at random. If there is a polynomial-time algorithm that finds
two vectors x, y ∈ {0, 1, . . . , δ}m and x 6= y such that Mx = My mod q, then there
is a polynomial-time algorithm to solve any instance of GAPSVP14πδ

√
km.

Since δ = poly(k), γ is also poly(k) and therefore the presented hash function
is secure, by Assumption 1. We can now extend the function h to accept two inputs as
follows: Denote with Tδ,+ the set of allm×1 (m = 2k log q) vectors such that their last
k log q entries are zero and the remaining entries are in {0, 1, . . . , δ} and analogously
with Tδ,− the set of all m×1 vectors such that their first k log q entries are zero and the
remaining entries are in {0, 1, . . . , δ}:
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Definition 4 (Lattice-based hash function with two inputs) We define the function h :
Tδ,+ × Tδ,− → Zkq as hM,δ(x, y) = M(x + y) mod q, where x, y ∈ {0, 1, . . . , δ}m.

Note that we use both M and δ as subscripts for the function. Similarly as in The-
orem 2, this function is strong collision resistant, i.e., if there is a polynomial-time
algorithm that finds (x1, y1) ∈ (Tδ,+ × Tδ,−) and (x2, y2) ∈ (Tδ,+ × Tδ,−) with
(x1, y1) 6= (x2, y2) such that M(x1 + y1) = M(x2 + y2) mod q then there is a
polynomial-time algorithm that solves GAPSVPγ for polynomial γ. To see that, note
that the vector x1−x2 +y1−y2 has coordinates in {0, 1, . . . , δ}, since, by the definition
of Tδ,+ and Tδ,−, the entries of x1 − x2 and y1 − y2 do not overlap.
Authenticated data structures. We now continue with a formal definition of an au-
thenticated data structure scheme. Similar definitions have already appeared [28, 35].
We use the notation {O1, O2, . . . , Oo} ← alg(I1, I2, . . . , Ii) to denote that algorithm
alg has inputs I1, I2, . . . , Ii and outputs O1, O2, . . . , Oo. If an input I or an output
O appears as (I)∗ or (O)∗ (e.g., algorithm update()), this means that I or O are not
required as inputs or outputs but might appear depending on the realized scheme.
Definition 5 (Authenticated data structure scheme) LetD be any data structure sup-
porting queries q and updates u. We denote with auth(D) the authenticated data struc-
ture and with d the digest of the authenticated data structure, i.e., a constant-size de-
scription of D. An authenticated data structure scheme A is a collection of the follow-
ing six polynomial-time algorithms {genkey, setup, update, refresh, query, verify}: (1)
{sk, pk} ← genkey(1k): This algorithm outputs the secret key sk and the public key
pk, given the security parameter k; (2) {auth(D0), d0} ← setup(D0, sk, pk): This al-
gorithm computes the authenticated data structure auth(D0) and the respective digest
of it, d0, given a plain data structure D0, the secret key sk and the public key pk; (3)
{Dh+1, (auth(Dh+1))∗, dh+1} ← update(u,Dh, (auth(Dh))∗, dh, sk, pk): This algo-
rithm takes as input an update u, a data structure Dh, possibly an authenticated data
structure auth(Dh), the digest dh, and both the secret and the public keys. It outputs
the data structure Dh+1, possibly the authenticated data sturcture auth(Dh+1) and the
digest dh+1;5 (4) {Dh+1, auth(Dh+1), dh+1} ← refresh(u,Dh, auth(Dh), dh, pk):
This algorithm takes as input an update u, a data structure Dh, an authenticated
data structure auth(Dh), the digest dh and only the public key. It outputs Dh+1, the
authenticated data structure auth(Dh+1) and the digest dh+1;6 (5) {Π(q), α(q)} ←
query(q,Dh, auth(Dh), pk): On input a query q, a data structure Dh, an authenti-
cated data structure auth(Dh) and the public key pk, this algorithm returns the an-
swer to the query α(q), along with a respective proof Π(q); (6) {accept, reject} ←
verify(q, α(q), Π(q), dh, pk): This algorithm takes as input a query q, an answer α(q),
a proofΠ(q), a digest dh and the public key pk and outputs either “accept” or “reject”.

There are two properties that an authenticated data structure scheme should satisfy,
i.e., correctness and security (intuition follows from signature schemes definitions—see
Definitions 1, 2 in the Appendix). Roughly speaking, the correctness property requires
that if a proof Π(q) for an answer α(q) is computed by algorithm query() (i.e., faith-

5 Note that this algorithm is only required to output dh+1 and the Dh+1. Outputting the new
authenticated data structure auth(Dh+1) is not a requirement—this will be important in im-
proving the complexity of this algorithm. Also, the secret key is required for execution.

6 Note there that the secret key is not required for execution.
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fully), then verify(), on input Π(q), will only accept a correct answer α(q) correspond-
ing to queries q on an authenticated data structure auth(D) that is updated through
algorithm refresh(); the security property requires that a computationally-bounded ad-
versary should not be able (except with negligible probability) to produce verifying
proofs Π for incorrect answers α corresponding to queries q on an authenticated data
structure auth(D) whose digest (i.e., signature) is updated through adversarially chosen
oracle calls to algorithm update()—this is why update() has access to the secret key.

3 Main construction
In this section we present our update-optimal authenticated data structure scheme for a
dynamic table, i.e., the scheme LBT = {genkey, setup, update, refresh, query, verify}.
Data structure. We recall that the data structure for which we describe an authenticated
data structure scheme is a table A that consists of n indices 1, 2, . . . , n. In each index
i we can store a value from Zkq . Without loss of generality assume that n is a power of
two so that we can build a complete binary tree on top of the table. Our tableA supports
two operations, naturally defined for the dynamic table: (a) Queries q: Given an index
i, return the value A[i]; (b) Updates u: Given an index i and value y, set A[i] = y.

A direct solution for this problem would be to use a Merkle tree with some collision-
resistant hash function (e.g., SHA-2)—see first column of Table 1—, which would bear
logarithmic complexities in all the complexity measures—which also inherently en-
forces sequential computations. Here we build an authenticated structure for this data
structure that uses the lattice-based hash function introduced in Section 2 and also sup-
ports constant complexity updates, allowing at the same time a great deal of parallelism.
Algebraic tools. We now discuss some algebraic tools to be used in our construction.
Without loss of generality, assume that q, the modulus is a power of two:
Definition 6 (Binary representation) Define f(x) = [f0 f1 . . . flog q−1]T ∈ {0, 1}log q

to be the binary representation of x ∈ Zq . Namely, x =
∑log q−1
i=0 fi2i mod q.

Definition 7 (Radix-2 representation) Define g(x) = [f0 f1 . . . flog q−1]T ∈ Zlog q
q to

be some radix-2 representation of x ∈ Zq . Namely, x =
∑log q−1
i=0 fi2i mod q.

By “some” radix-2 representation we mean that the function g : Zq → Zlog q
q is

“one-to-many”. For example, for q = 16, x = 7, possible values for g(x) can be
[0 1 1 1]T (the usual binary representation), [0 − 2 0 − 1]T or [−2 2 0 − 1]T (and
many more). We now give an important result for our construction:
Lemma 3 For any x1, x2, . . . , xt ∈ Zq there exist a radix-2 representation g(.) such
that g(x1 + x2 + . . .+ xt mod q) = f(x1) + f(x2) + . . .+ f(xt) mod q. Moreover
it is g(x1 + x2 + . . .+ xt mod q) ∈ {0, . . . , t}log q .

Lemma 3 is useful in the following sense: Given two binary representations of x1

and x2, namely f1 and f2, a radix-2 representation of x1 + x2 is f1 + f2. Definitions 6
and 7 and also Lemma 3 (see Corollary 1) can be naturally extended for vectors x ∈ Zkq :
For i = 1, . . . , k, xi is mapped to the respective log q entries f(xi) (or g(xi)) in the
resulting vector f(x) (or g(x)). Therefore we have the following:
Corollary 1 For any x1, x2, . . . , xt ∈ Zkq there exist a radix-2 representation g(.) such
that g(x1 + x2 + . . .+ xt mod q) = f(x1) + f(x2) + . . .+ f(xt) mod q. Moreover
it is g(x1 + x2 + . . .+ xt mod q) ∈ {0, . . . , t}k log q .
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To constrain the inputs to our hash function, we need the following definition:
Definition 8 Let x ∈ Zkq . We say that the radix-2 representation g(x) ∈ Zk log q

q is
δ-admissible if and only if g(x) ∈ {0, 1, . . . , δ}k log q .
Algorithms of the scheme. We now describe the algorithms of the scheme LBT (see
Definition 5). All expressions below are reduced modulo q, i.e., we work in Zq:
Algorithm {sk, pk} ← genkey(1k): On input the security parameter k, this algorithm
computes an odd number q = O(k2.5δ log k), for some δ = n = poly(k). Namely we
set δ to be equal to the size of the table, n. Then it samples M ∈ Zk×mq uniformly at
random, where m = 2k log q. It sets sk = Ø and pk = {M, q}, i.e., there is no secret
(trapdoor information) in our scheme. The access complexity of this algorithm is O(1).
Lattice-based digests. Before we describe algorithm setup(), we describe how we de-
fine the lattice-based digests on the table A, by using the hash function of Definition 4.
Let D0 be the initial state of our table, storing values x1, x2, . . . , xn ∈ Zkq . Let T be the
binary tree of ` levels on top of the values x1, x2, . . . , xn—recall we have assumed that
n = 2`, and r be the root of tree T . By convention, the root of the tree lies at level 0
and the leaves of the tree lie at level `. For every leaf node vi of the tree, i = 1, . . . , n,
the digest d(vi) is defined as d(vi) = xi. Then, for any internal node u, with left child
v and right child w, by using the hash function hM,n(x, y) given in Definition 4 in a
recursive way, the digest d(u) of node u can be defined as

d(u) = hM,n(Ug(d(v)),Dg(d(w))) = M [Ug(d(v)) + Dg(d(w))] , (1)

where g(d(v)) and g(d(w)) are some n-admissible radix-2 representations of d(v) and
d(w), i.e., by Definition 4, it must be g(d(v)), g(d(w)) ∈ {0, 1, . . . , n}k log q .

In the above relations, matrices U and D are special matrices such that multiplying
matrices U and D with a vector in {0, 1, . . . , n}k log q doubles the dimension of the
vector by shifting its entries accordingly and by filling the vacant entries with zeros.
This operation is used to prepare the vectors in the appropriate input format for the hash
function. More formally, U = [Ik log q Ok log q]T and D = [Ok log q Ik log q]T , where Il
denotes the square identity matrix of dimension l and Ol denotes the square zero matrix
of dimension l. Indeed, it easy to see that for all x ∈ {0, 1, . . . , n}k log q it is Ux ∈ Tn,+
and Dx ∈ Tn,−, where Tn,+ and Tn,+ are defined in Section 2.

The computation in Relation 1 is as follows (see Appendix, Figure 1): Suppose a
node u ∈ T has children v and w of digests d(v), d(w) ∈ Zkq . Applying g(.) transforms
d(v), d(w) into vectors of k log q small entries (admissible radix-2 representations).
Multiplying with U and D prepares g(d(v)), g(d(w)) to be input to the hash function. 7

Partial digests. Here we show how to express the digest d(u) (computed in Relation 1)
for every node u ∈ T somehow differently, which is crucial for deriving our final re-
sults. To simplify some notation, we set MU = L and MD = R (stand for left/right)—
note that L,R ∈ Zk×k log q

q . Let also range(u) be the range of successive indices corre-
sponding to the leaves of the subtree of T rooted on u. E.g., in Figure 1 in the Appendix,
it is range(r11) = {1, 2, 3, 4}. For every node u ∈ T and for every i ∈ range(u) we
define the partial digest of u with reference to xi:

7 The procedure so far is the same with a Merkle tree construction that uses a collision-resistant
function such as SHA-2, i.e., recursive computation over the nodes of a tree.
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Definition 9 (Partial digest of a node u) For a leaf node u ∈ T storing value xi, the
partial digest of u with reference to xi is defined as d(u, xi) = xi. Else, for every
other node u of T , with left child v and right child w, and for every i ∈ range(u),
the partial digest d(u, xi) of u with reference to xi is recursively defined as d(u, xi) =
Lf(d(v, xi)), if xi belongs to the left subtree of u; Else, d(u, xi) = Rf(d(w, xi)).

E.g., in Figure 1 of the Appendix, the partial digests of root r with reference to x2

and x3 are d(r, x2) = Rf(Rf(Lf(x2))) and d(r, x3) = Rf(Lf(Rf(x3))) respectively
(f(z) is z’s binary representation). We now give the main result of this section.
Theorem 3 The digest d(u) of node u ∈ T in Relation 1 can be expressed as d(u) =∑
i∈range(u) d(u, xi), where d(u, xi) is the partial digest of node u with reference to xi.

Proof. (Sketch) Apply Corollary 1 repeatedly. By induction, the digest can be expressed
as in Relation 1 (full proof in the Appendix). �
Algorithm {auth(D0), d0} ← setup(D0, sk, pk): Let D0 be the initial table, storing
values x1, x2, . . . , xn ∈ Zkq . The algorithm computes the digests of the nodes: It sets
d(u) = xi for all leaf nodes u storing value xi and d(u) = M [Ug(d(v)) + Dg(d(w))]
(application of the hash function in Definition 4) for all internal nodes u with left child
v and right child w, where g(d(v)) and g(d(w)), i.e., the radix-2 representations of the
children digests, are computed according to the following definition8:
Definition 10 The radix-2 representation of d(u) of node u ∈ T is computed as the sum
of |range(u)| binary representations, i.e., g(d(u)) =

∑
i∈range(u) f(d(u, xi)), where

d(u, xi) is the partial digest of node u with reference to xi.
By combining Theorem 3 and Definition 10, by Corollary 1, we have:
Corollary 2 Let u be an internal node of tree T . The g(.) representation of d(u) defined
in Definition 10 is an n-admissible radix-2 representation of d(u).
This concludes the description of setup(). The algorithm outputs d0 = d(r), where r
is the root of T (i.e., the digest of the data structure is the digest of the root of the tree)
and also it outputs auth(D0) to be a structure that contains: (a) Tree T ; (b) g(d(u))
for all nodes u of T as computed in Definition 10. The complexity of the algorithm is
O(n log n), since the computation of g(d(u)) involves a linear number of operations
per tree level, and there are O(log n) levels in total (full proof in the Appendix).

We continue by noting that Theorem 3 allows us to express d(r) as a sum of well-
defined functions of the leaves, namely the partial digests of the root r with reference
to values in the table. This allows us to achieve our desired complexity bounds:
Corollary 3 Let x1, x2, . . . , xn be the values stored in our table. Then the digest d(r)
of the root r of the tree T can be expressed as d(r) =

∑n
i=1 d(r, xi), where d(r, xi) is

the partial digest of the root r with reference to xi.
We observe that computing the partial digest d(r, xi) requires one query to the authenti-
cated data structure, i.e., a query for value xi, therefore yielding O(1) access complex-
ity. Matrices L and R, both used for its computation (Definition 9) are not part of the
authenticated data structure (they are fixed by setup() as public information) and ac-
cessing them any number of times does not add to the access complexity. We continue
with describing the remaining algorithms of our authenticated data structure scheme:

8 Note here that the binary representations f(d(v)), f(d(w)) could be used instead; However,
in lieu of achieving our efficiency goals, the algorithm uses Definition 10.
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Algorithm {dh+1, Dh+1} ← update(u,Dh, dh, sk, pk): Let the update u be “setA[i] =
x′i” and let the value of A[i] before the update be xi. Then the algorithm sets dh+1 =
dh − d(r, xi) + d(r, x′i), where d(r, xi) and d(r, x′i) are the partial digests of r with
reference to xi and x′i, defined in Definition 9. Due to Corollary 3, dh+1 is the correct
updated digest. Since the computation of partial digests has constant access complexity,
algorithm update() has O(1) access complexity, since it involves two operations in Zkq .
The algorithm outputs dh+1 as well as the updated table Dh+1:
Lemma 4 Algorithm update() has O(1) access complexity.
Algorithm {Dh+1, auth(Dh+1), dh+1} ← refresh(u,Dh, auth(Dh), dh, pk): This al-
gorithm updates the authenticated auth(Dh). Let the update u be “set A[i] = x′i” and
let the value of A[i] before the update be xi. Suppose v`, v`−1, . . . , v1 is the path from
the node of index i to the child v1 of the root of the tree. The algorithm should update
the values g(d(vj)) for j = `, `−1, . . . , 1. This is achieved via Definition 10, by setting
g(d′(vj)) = g(d(vj))−f(d(vj , xi))+f(d(vj , x′i)), (the invariant of Definition 10 must
be maintained) for j = `, ` − 1, . . . , 1 and where d(vj , xi), d(vj , x′i) are the partial di-
gests of node vj with reference to xi and x′i. The algorithm outputs Dh+1, auth(Dh+1)
(i.e., the g(d′(.)) representations) and dh+1 as in update().
Lemma 5 Algorithm refresh() has O(log n) access complexity. Moreover, it is paral-
lelizable with O(1) access complexity using O(log n) processors in the CREW model.
Proof. (Sketch) Note that the binary representations f(d(vj , xi)), f(d(vj , x′i)) used in
the update relations can be computed in O(1) access complexity, since they are func-
tions of only xi and x′i respectively. Since ` = O(log n) the result follows. For the
parallel implementation, note that for each j = `, `− 1, . . . , 1, the updates at each node
vj are independent from one another9. Therefore, by allowing concurrent read (values
xi and x′i must be read concurrently by O(log n) processors) and exclusive write (each
processor writes the outputs on a separate tree node), the result follows. �
Algorithm {Π(q), α(q)} ← query(q,Dh, auth(Dh), pk): Let the query q be “return
the value stored at index i”. Suppose v`, v`−1, . . . , v1 is the path from the node of index
i to the child v1 of the root of the tree. The algorithm sets α(q) = A[i] and sets the proof
Π(q) to be the array π of g(.) representations such that πi = (g(d(vi)), g(d(sib(vi)))),
for i = `, `−1, . . . , 1, where sib(u) denotes the sibling of a node u in tree T . Since ` =
O(log n), the access complexity of the algorithm is O(log n). Also it is parallelizable
in the EREW model with O(1) access complexity and O(log n) processors.
Algorithm {accept, reject} ← verify(q, α(q), Π(q), dh, pk): Let the query q be “return
the value at index i”, y = α(q), and Π(q) = π such that πj = (αj , βj) (j = `, ` −
1, . . . , 1). For j = `, `− 1, . . . , 1 the algorithm performs the following:
1. If g(y) 6= αj or αj , βj are not n-admissible g(.) representations, output “reject”;
2. Set y = M(Uαj +Dβj) if vj is vj−1’s left child, or y = M(Dαj +Uβj) otherwise.

After the loop terminates, if y 6= dh, “reject” is output, else, “accept” is output. Our
final result is as follows (note also Theorem 6 for the Bloom filter in the Appendix):
Theorem 4 Let k be the security parameter. Then there exists an authenticated data
structure scheme LBT = {genkey, setup, update, refresh, query, verify} for a dynamic

9 This is not the case for a typical Merkle tree update: In order to compute the hash at node vj ,
the hash of node vj+1 is required, making such a procedure inherently sequential.
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table D of n entries such that: (1) It is correct and secure according to Definitions 1, 2
respectively and assuming the hardness of GAPSVPγ for γ = O(nk

√
log n+ log k);

(2) The access complexity of (i) setup() is O(n log n) or O(n) using O(log n) pro-
cessors in the CREW model; (ii) update() is O(1); (iii) refresh() is O(log n) or O(1)
using O(log n) processors in the CREW model; (iv) query() is O(log n) or O(1) us-
ing O(log n) processors in the EREW model; (v) verify() is O(log n) or O(1) using
O(log n) processors in the ERCW model; (3) The group complexity of (i) the proof
Π(q) for a query q is O(log n); (ii) the authenticated data structure auth(D) is O(n).
A note on repeated linearity. We note here that the fact that the used hash function is
additive, i.e., it is Mx + My = M(x + y), is not enough for deriving our results. This
is the reason that other homomorphic collision-resistant hash functions (e.g., exponen-
tiation with secret factorization) could not be employed instead. The crucial property
we can exhibit here, which is what we call repeated linearity, is a means of “feeding”
the output of the function again as an input, so that certain homomorphic properties are
still satisfied—and in specific the properties of Corollary 1. Therefore, it might be the
case that other functions could be also used instead, would they satisfy such a property.

4 Parallel online memory checking
In this section, we establish our results concerning parallel online memory checking10.
The online memory checking model [6] can be (informally) described as follows: Sup-
pose M is an unreliable (malicious) memory of O(n) cells. A user U wants to read
(through operation read(i)) or write (through operation write(i, x), where x is the new
content) a cell i ∈ {1, 2, . . . , n}. However, his requests go through a checker C. The
checker is supposed to read cells from the unreliable memory C and also some reliable
(and possibly secret) information s of sublinear size and output either the correct an-
swer (i.e., the latest content of cell i) or BUGGY, if the content of cell i is corrupted.
The probability of returning the corrupted content of a cell as correct should be negli-
gible. The checker is called non-adaptive, if, given an index i, the set and the order of
the cells accessed in order to output the answer is deterministic. In this paper we are
considering such checkers. For the formal definition, see Definition 11 in the Appendix.

In online memory checking settings, the complexity measure we are interested in
minimizing is the query complexity, which is defined as the sum of the number of re-
quests that the checker makes to the unreliable memoryM during a read(i) operation
plus the number of requests that the checker makes to the unreliable memoryM during
a write(i, x) operation [24]. So far in the literature, and in the computational model,
checkers withO(log n) [6] orO(logd n) [10] query complexity have appeared. Specifi-
cally for these checkers, we can distinguish two cases: (a) In the secret key setting, i.e.,
when there is requirement for both reliable and secret small memory s, these check-
ers have been shown to be parallelizable, e.g., [16], as well as the construction based
on PRFs [6]—although this has not been reported in the literature11; (b) In the non-
secret key setting, i.e., when there is requirement for only reliable memory (e.g., the

10 Our LBT scheme also yields a sequential memory checker of O(logn) query complexity.
11 The construction based on PRFs appearing in [6] is easily parallelizable since the PRF tag

computed on each node of the tree is not a function of the PRF tags of its children.
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construction using UOWHFs from [6] and Merkle tree constructions), these checkers
have appeared to be inherently sequential. However, here we establish the first parallel
online memory checker in the non-secret key setting (full proof in the Appendix):
Theorem 5 In the non-secret key setting and in the CREW model of parallel compu-
tation, there is a non-adaptive online memory checker for an unreliable memory of n
cells with O(1) query complexity, using O(log n) checkers and O(1) reliable memory.
Proof : (Sketch) Use the authenticated data structure scheme LBT of Theorem 4. The
checker will use algorithm query() to read a location i and algorithm refresh() to write
a location i. The reliable memory is the lattice digest d(r) of the root r of the tree. Since
both query() and refresh() are parallelizable, the result follows. �
Protocols. As we mentioned in the introduction, an authenticated data structure scheme
A may be used by a three-party protocol [33]: A trusted entity, called source, owns a
data structure Dh, but desires to outsource query answering, in a trustworthy (verifi-
able) way. The source runs genkey() and setup(), outputs the authenticated data struc-
ture auth(Dh) along with the digest dh. The source subsequently signs the digest dh,
and it outsources auth(Dh), Dh, the digest dh and its signature (which is forwarded
to the clients during verification) to some untrusted entities, called servers. On input a
data structure query q sent by the clients, the servers use auth(Dh) and Dh to compute
proofs Π(q), by running algorithm query(). Clients can verify these proofs Π(q) by
running algorithm verify(), and since they have access to the signature of dh. When
there is an update in the data structure—issued by the source—, the source uses algo-
rithm update() to produce the new digest d′h to be used for the next verification, while
the servers update the authenticated data structure through refresh(). Therefore:
Corollary 4 (Three-party model) Let k be the security parameter. There exists a three-
party authenticated data structures protocol involving a trusted source, an untrusted
server and a client for verifying queries on a table of n entries such that: (a) The
setup at the source has O(n log n) access complexity or O(n) using O(log n) proces-
sors in the CREW model; (b) The update at the source has O(1) access complexity;
(c) The space needed at the source has O(n) group complexity; (d) The communica-
tion between the source and the server has O(1) group complexity; (e) The update at
the server has O(log n) access complexity or O(1) using O(log n) processors in the
CREW model; (f) The query at the server has O(log n) access complexity or O(1) us-
ing O(log n) processors in the EREW model; (g) The space needed at the server has
O(n) group complexity; (h) The proof has O(log n) group complexity; (i) The verifica-
tion at the client has O(log n) access complexity or O(1) using O(log n) processors in
the CRCW model; (j) For a query q sent by the client to the server at any time (even
after updates), let α be an answer and let π be a proof returned by the server. With
probability Ω(1− neg(k)), the client accepts the answer α if and only if α is correct.

We note here that an authenticated data structure scheme A can also be used by
a two-party protocol [26] (Corollary 5 in the Appendix), yielding similar complexity
measures: In this case, the source issues both the updates and the queries but is required
to keep only constant state, i.e., the digest. Also the source, before updating, engages
in a protocol with the server (that may involve calls to algorithms query() and verify())
that will allow him to verify the portion of the data structure he is updating, and use it
in algorithm update() as input, which will output the new digest (e.g., see [26]).
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5 Appendix
5.1 Proof of Theorem 2
Suppose there is an algorithm that finds x, y ∈ {0, 1, . . . , δ}m with x 6= y such that
Mx = My mod q. Therefore the non-zero vector z = x − y, which also has norm
‖z‖ ≤ β, since its coordinates are between −δ and +δ, comprises a solution to the
problem SISq,m,β (note that matrix M by construction is chosen uniformly at random).
By Theorem 1, this can be used to solve GAPSVPγ for γ = 14π

√
kβ. Setting β =

δ
√
m we get the desired result. �

5.2 Correctness and security definitions
Definition 1 (Correctness of authenticated data structure scheme). LetA be an au-
thenticated data structure scheme defined by the collection of algorithms {genkey, setup,
update, refresh, query, verify}. We say that the authenticated data structure scheme
A is correct if, for all k ∈ N, for all {sk, pk} output by algorithm genkey(), for
all Dh, auth(Dh), dh output by one invocation of setup() followed by polynomially-
many invocations of refresh(), where h ≥ 0, for all queries q and for all Π(q), α(q)
output by query(q,Dh, auth(Dh), pk), with all but negligible probability, whenever
check(q, α(q), Dh) accepts, so does verify(q,Π(q), α(q), dh, pk).

Definition 2 (Security of authenticated data structure scheme). LetA be an authen-
ticated data structure scheme defined by the collection of algorithms {genkey, setup,
update, refresh, query, verify}, k be the security parameter and {sk, pk} ← genkey(1k).
Let also Adv be a polynomially-bounded adversary that is only given pk. The adversary
has unlimited access to all algorithms ofA, except for algorithms setup(), update() and
possibly algorithm verify(), to which he has only oracle access. The adversary picks an
initial state of the data structure D0 and computes D0, auth(D0), d0 through oracle
access to algorithm setup(). Then, for i = 0, . . . , h = poly(k), Adv issues an update
ui in the data structure Di and outputs Di+1 and di+1 through oracle access to algo-
rithm update(). Finally the adversary enters the attack stage where he picks an index
0 ≤ t ≤ h+ 1, a query Q, an answer α(Q) and a proof Π(Q). We say that the authen-
ticated data structure scheme A is secure if for all k ∈ N, for all {sk, pk} output by
algorithm genkey(), and for all polynomially-bounded adversaries Adv the probability

Pr
[
{Q,Π(Q), α(Q), t} ← Adv(1k, pk); accept← verify(Q,α(Q), Π(Q), dt, pk);

reject = check(Q,α(Q), Dt).

]
is neg(k).

5.3 Proof of Lemma 3
Let xi = f(xi) be the binary representation of xi for i = 1, . . . , t. Then

t∑
i=1

xi =

[
t∑
i=1

xi0
t∑
i=1

xi1 . . .
t∑
i=1

xi(k−1)

]T
mod q .

The resulting vector is a radix-2 representation of(
t∑
i=1

xi0

)
× 20 +

(
t∑
i=1

xi1

)
× 21 + . . .+

(
t∑
i=1

xi(k−1)

)
× 2k−1 mod q ,
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which can be written as
k−1∑
j=0

x1j × 2j +
k−1∑
j=0

x2j × 2j + . . .+
k−1∑
j=0

xtj × 2j = x1 + x2 + . . .+ xt mod q.

Therefore there exists a radix-2 representation g such that g(x1+x2+. . .+xt mod q) =
f(x1) + f(x2) + . . .+ f(xt) mod q. Finally note that since g(.) is the sum of t binary
representations, it cannot contain a entry that is greater than t. �

5.4 Proof of Theorem 3
We prove the claim by induction on the levels of the tree T . For any internal node u that
lies at level `− 1, there are only two nodes (that store for example values xi (left child)
and xj (right child) and belong to range(u)) in the subtree rooted on u. Therefore

d(u, xi) + d(u, xj) = Lf(xi) + Rf(xj) = MUf(xi) + MDf(xj)
= M [Ug(xi) + Dg(xj)] = d(u) .

This is due to Relation 1 and also due to the fact that g(.) can be picked to be f(.),
which is an n-admissible radix-2 representation, therefore satisfying the constraint of
the inputs of Definition 4. Hence the base case holds. Assume the theorem holds for
any internal node z that lies at level 0 < t+ 1 ≤ `. Therefore

d(z) =
∑

i∈range(z)

d(z, xi) .

Let u be an internal node that lies at level t and let i1, i2, . . . , iu be the indices in
range(u) in sorted order. Let v be the left child of u and w be the right child of u. Then,
by the definition of the partial digest of the node u (Definition 9) we

d(u) =
∑

i∈range(u)

d(u, xi) =
u/2∑
j=1

Lf(d(v, xj)) +
u∑

j=u/2+1

Rf(d(w, xj))

= MU
u/2∑
j=1

f(d(v, xj)) + MD
u∑

j=u/2+1

f(d(w, xj)) .

By Corollary 1 there exist g(.) representations whose entries are at most u/2 ≤ n such
that

d(u) = MUg

u/2∑
j=1

d(v, xj)

+ MDg

 u∑
j=u/2+1

d(w, xj)

 .

By the inductive step this can be written as

d(u) = M[Ug(d(v)) + Dg(d(w))] ,

where g(.) are radix-2 representations that are n-admissible, since they are the sum of at
most u/2 = n/2 binary representations. Therefore this satisfies Definition 1 and d(u)
is indeed the correct digest of any internal node u, as computed by Relation 1. This
completes the proof. �
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Fig. 1. Tree T built on top of a table with 8 values x1, x2, . . . , x8. After producing an n-admissible
radix-2 g(.) representation of the children digests, we multiply with either U or D, then we add
the two resulting digests and we compute the hash function on them by multiplying with M. At
the leaves of the tree we show the terms that correspond to each index, as computed by Theorem 3
(i.e., the partial digests of the root r with reference to every value at the table). The g(.) represen-
tation of the internal nodes are indicated with dashed lines (see Definition 10). Note that the g(.)
representations of the internal nodes are the sum of specific f(.) representations of the leaves, for
example, g(d(r12)) = f(Lf(Lf(x5)))+f(Lf(Rf(x6)))+f(Rf(Lf(x7)))+f(Rf(Rf(x8))),
where MU = L and MD = R.

5.5 Proof of Theorem 4

Correctness. Let A = D0 be any table of n entries. Fix the security parameter k and
output sk and pk = (M, q) by calling algorithm genkey(). Then output an authenticated
data structure auth(D0) and the respective digest d0, by calling algorithm setup(). Pick
a polynomial number of updates—namely, pick a polynomial number of pairs of in-
dices and values to be written on the respective indices—and update auth(D0) and
d0 by calling algorithm refresh(). Let Dh be the final table A, auth(Dh) be the pro-
duced authenticated data structure and dh be the final digest. Let i be an index and
let y = A[i]. Output a proof Π(q) for index i and answer y by calling query(). Π(q)
contains pairs (g(d(vj)), g(d(sib(vj)))) (j = `, `− 1, . . . , 1) of n-admissible represen-
tations, where v`, v`−1, . . . , v1 are the nodes on the path from index i (i.e., node v`) to
the first child v1 of the root of the root of the tree T . For the elements of the proof,
the following are true: (a) g(d(v`)) = f(y) (definition of a leaf digest); (b) d(vj−1) =
M(Ug(d(vj)) + Dg(d(sib(vj)))) or d(vj−1) = M(Dg(d(vj)) + Ug(d(sib(vj))))—
according to left child or right child relation—, for j = `, ` − 1, . . . , 1 and where
v0 is the root of the tree (by Relation 1); (c) The g(.) representations in Π(q) are al-
ways n-admissible, i.e., they are maintained to be n-admissible during updates, since
refresh() always updates the g(.) representations so that Definition 10 is satisfied, which
by Corollary 2 gives n-admissible representations. Based on (a), (b) and (c) and the code
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of verify() from Section 3, we conclude that verify() always accepts a proof for index i
(of answer y = A[i]) computed by query().
Security. Fix the security parameter k and output sk and pk = (M, q) by calling
algorithm genkey(). Let Adv be a polynomially-bounded adversary. Adv picks an ini-
tial table A = D0 of n entries and outputs authenticated data structure auth(D0), the
respective digest d0, tree T of ` levels, by calling algorithm setup() through oracle ac-
cess. Then Adv picks a polynomial number of updates—namely, he picks a polynomial
number of pairs of indices and values to be written on the respective indices: Let Dh

be the final table A, and dh be the final digest as produced by the adversary through
oracle access to algorithm update(). Let i be an index, y = A[i] be the value stored in
this index and vl, vl−1, . . . , v0 be the path of T from the node referring to index i to the
root of T . The adversary Adv outputs an incorrect answer α(q) 6= y and also a proof
Πi = (πl, πl−1, . . . , π1) (l = O(log n)) where πj = (αj , βj) (see algorithm query()).
We define now the following events, related to the choice of the proof above made by the
adversary. Our goal will be to the express the probability that verify(i, α(q), Πi, dh, pk)
accepts while α(q) 6= y as a function of the following events. Note that dh is the correct
digest of the authenticated data structure:
1. El,0: The value αl picked by Adv is such that αl is not an n-admissible g(.) repre-

sentation of y;
2. Ej : For j = l−1, . . . , 1, the values αj and αj+1, βj+1 ∈ {0, 1, . . . , n}k log q picked

by Adv are such that αj is an n-admissible g(.) representation of

M(Uαj+1 + Dβj+1) .

Assume, without loss of generality that a convenient index i = 0 is used so that
the order of U and D is always the same. This event can be partitioned into two
mutually exclusive events, i.e., Ej = Ej,0 ∪ Ej,1 such that

– Ej,0: Value αj is not an n-admissible g(.) representation of the digest of node
vj , as defined in Relation 1;

– Ej,1: Value αj is an n-admissible g(.) representation of the digest of node vj ,
as defined in Relation 1.

3. E0,1: The values α1 ∈ {0, 1, . . . , n}k log q and β1 ∈ {0, 1, . . . , n}k log q picked by
Adv are such that

dh = M(Uα1 + Dβ1).

The probability that verify() accepts, while αl is not an n-admissible g(.) representation
of y is the probability

Pr[El,0 ∩ El−1 ∩ El−2 ∩ . . . ∩ E0,1]
= Pr[El,0 ∩ (El−1,0 ∪ El−1,1) ∩ (E2,0 ∪ E2,1) ∩ . . . ∩ E0,1]
≤ Pr[El,0|El−1,1] + Pr[El−1,0|El−2,1] + Pr[El−2,0|El−3,1] + . . .+ Pr[E1,0|E0,1]

=
l∑

j=1

Pr[Ej,0|Ej−1,1] .

Note that the event Ej,0|Ej−1,1 is equivalent with the event value “value αj is not an
n-admissible g(.) representation of the digest of node vj (as defined in Relation 1)
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given that: (a) value αj−1 is an n-admissible g(.) representation of the digest d(vj−1)
of node vj−1; (b) d(vj−1) = M(Uαj + Dβj). However, from Relation 1, it should be
that d(vj−1) = M(Ug(d(vj))+Dg(d(sib(vj)))), where g(d(vj)) and g(d(sib(vj))) are
the digests of nodes vj and sib(vj) respectively. Therefore (αj , βj) is a collision with
(g(d(vj)), g(d(sib(vj)))). By Theorem 2—which gives γ = O(nk

√
log n+ log k) =

poly(k) since q = O(k2.5δ log k) and δ = n—and Assumption 1, Pr[Ej,0|Ej−1,1] is
neg(k), for all j = l, l − 1, . . . , 1. Therefore the sum

l∑
j=1

Pr[Ej,0|Ej−1,1]

is also neg(k), since l = O(log n) = O(log k). This concludes the proof.

Algorithm setup() and group complexity of auth(D). The algorithm needs to com-
pute the n-admissible radix-2 representations g(d(u)) of digests d(u) for every internal
node u of the tree T . Note that by Definition 10, there are n/2, n/4, n/8, . . . , 2 such
representations that need to be computed for levels `−1, `−2, `−3, . . . , 1 respectively,
each one being the sum of 2, 4, 8 . . . , n/2 binary representations respectively, i.e.,

g(d(u)) =
∑

i∈range(u)

f(d(u, xi)) .

Since computing f(d(u, xi)) has access complexity O(1) (they are just functions of
specific values), it follows that the computation of the g(.) representations for all the
internal nodes of the tree requires access complexity

n

2
× 2 +

n

4
× 4 +

n

8
× 8 + . . .+ 2× n

2
= O(n log n) .

Note now in the CREW model, we can use O(log n) processors, i.e., one processor
for each level of the tree. By reading the values xi concurrently and writing the values
g(d(u)) at different memory locations, it follows that each processor will have to do
O(n) work in the CREW model. Finally, we note that the output authenticated data
structure stores with each internal node u of the tree T the respective n-admissible
radix-2 representations g(d(u)). Therefore the group complexity of auth(D) is O(n).
This completes the proof.

Algorithm update(). For each update from xi to x′i, the algorithm sets dh+1 = dh −
d(r, xi)+d(r, x′i), where d(r, xi) and d(r, x′i) are the partial digests of the root r, defined
in Definition 9. Therefore the access complexity is O(1).

Algorithm refresh(). For each update from xi to x′i, the algorithm should update the
values g(d(vj)) for j = `, `− 1, . . . , 1. This is achieved via Definition 10, by setting

g(d′(vj)) = g(d(vj))− f(d(vj , xi)) + f(d(vj , x′i)) , (2)

(the invariant of Definition 10 must be maintained) for j = `, ` − 1, . . . , 1 and where
d(vj , xi), d(vj , x′i) are the partial digests of node vj with reference to xi and x′i respec-
tively. Since ` = O(log n) the result follows. Note also that the update Relations 2 are
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independent from one another. In the CREW model, we can use O(log n) processors,
i.e., one processor for each level of the tree. By reading the values xi concurrently and
writing the values g(d(u)) at different memory locations, it follows that each processor
will have to do O(1) work in the CREW model.

Algorithm query(). Since ` = O(log n) values have to be collected to construct the
proof, the result follows. Moreover, withO(log n) processors—one processor per node,
this algorithm is parallelizable in the EREW model, with O(1) complexity.

Algorithm verify(). Since ` = O(log n) values have to be processed to do the veri-
fication of the proof, the result follows. However, parallelizing the algorithm requires
concurrent write, since all the processors need to write on the same location either
“accept” or “reject”. �

5.6 An authenticated Bloom filter
In this paragraph we show how we can use the lattice-based hash function to authen-
ticate the Bloom filter functionality, a space-efficient dictionary, originally introduced
in [5]. The Bloom filter consists of an array (table) A[0 . . . n − 1] storing n bits. All
the bits are initially set to 0. Suppose one needs to store a set S of r elements. Then K
hash functions hi(.) with range {0, . . . , n−1} are used (these are not lattice-based hash
functions) and for each element s ∈ S we set the bits A[hi(s)] to 1, for i = 1, . . . ,K.
In this way, false positives can occur, i.e., an element that is not present might be rep-
resented in A. The probability of a false positive can be proved to be (1 − p)K , where
p = e−Kr/n, which is minimized for K = ln 2(n/r) [5].

The Bloom filter above supports only insertions though. A deletion (i.e., setting
some bits to 0) can cause the undesired deletion of many elements. To deal with this
problem, counting Bloom filters were introduced by Fan et al. [11]. In this solution, by
keeping a counter for each index of A (instead of just 0 or 1), we can tolerate deletions
by incrementing the counter during insertions and decrementing the counter during
deletions. However, the problem of overflow exists. As observed in [7], the overflow (at
least one counter goes over some value C) occurs with probability n(e ln 2/C)C , for a
certain set of r elements. Setting C = O(1) (e.g., C = 16) is suitable for most of the
applications [7].

By the above description, it is clear that we can use our lattice-based construction
to authenticate the Bloom filter functionality: Note that constant update complexity in
this application is very important given that a Bloom filter is an update-intensive data
structure (i.e., an insertion or deletion of an element involves K operations):
Theorem 6 Let k be the security parameter. Then there exists an authenticated data
structure scheme ABF = {genkey, setup, update, refresh, query, verify} for a Bloom
filter D of n entries, storing r elements and using K hash functions such that: (1) It is
correct and secure according to Definitions 1, 2 respectively and assuming the hardness
of GAPSVPγ for γ = O(nk

√
log n+ log k); (2) The access complexity of (i) setup()

is O(n log n) or O(n) using O(log n) processors in the CREW model; (ii) update() is
O(K); (iii) refresh() is O(K log n) or O(K) using O(log n) processors in the CREW
model; (iv) query() is O(K log n) or O(K) using O(log n) processors in the EREW
model; (v) verify() is O(K log n) or O(K) using O(log n) processors in the ERCW



22 Papamanthou and Tamassia

model; (3) The group complexity of (i) the proof Π(q) for a query q is O(K log n); (ii)
the authenticated data structure auth(D) is O(n).
Proof. The construction for an authenticated Bloom filter is the same with Theorem 4.
The extra K multiplicative factor in the complexities is due to the fact that one opera-
tion in the authenticated Bloom filter (insertion/deletion of an element) requires O(K)
operations on an authenticated table. This follows by the construction and the definition
of the Bloom filter data structure. �

5.7 Online memory checking definition
Definition 11 LetM be an n-cell unreliable memory. An online non-adaptive memory
checker C = (Σ,n, q, s) over an alphabet Σ having query complexity q and keeping
reliable (and possibly secret) memory s is a probabilistic Turing machine with five
tapes:

– A read-only input tape for receiving read/write requests from the user U to the
unreliable memoryM of n cells, indexed by 1, 2, . . . , n;

– A write-only output tape for sending responses back to the user;
– A read-write work tape, i.e., the (secret) reliable memory s;
– A write-only tape for sending read/write requests to the memoryM;
– A read only input tape for receivingM’s responses.

A checker is presented with write(i, x) and read(i) requests made by U to M, where
i ∈ {1, 2, . . . , n}. After each read request C returns an answer or outputs that M’s
operation is BUGGY. C’s operation should be both correct and secure:
1. Correctness: For any polynomially-large sequence of user requests, as long asM

answers all of C’s read requests correctly, C also answers all of the user’s read
requests correctly;

2. Security: For any any polynomially-large sequence of user requests, for any (even
incorrect or malicious) answers returned byM, the probability that C answers a
user request incorrectly is neg(k), where k is the security parameter. C may either
recover the correct answer independently or answer thatM is BUGGY, but it may
not answer a request incorrectly (beyond negligible probability).

5.8 Proof of Theorem 5
Let LBT = {genkey, setup, update, refresh, query, verify} be the authenticated data
structure scheme derived in Theorem 4. We show how to construct a parallel online
memory checker by using this scheme, in the non-secret key setting. Let M be the
unreliable memory accessed through indices 1, 2, . . . , n. Assume we can use O(log n)
checkers C1, C2, . . . , Cu where u = O(log n). The user U sends his requests to all the
chekers simultaneously and all the checkers have access to the unreliable memoryM
and to some reliable memory s. We work in the CREW model—i.e., all the checkers
can read simultaneously the same value but writing at the same location simultaneously
is not feasible. Let {sk, pk} ← genkey(), where sk = Ø. The checkers run the algo-
rithm {auth(M), d0} ← setup(M, pk) (since sk = Ø we do not use the secret key as
input from now on) in parallel, requiring O(n) access complexity in the CREW model
(Theorem 4). The authenticated structure auth(M) is stored in the unreliable memory
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(all its parts can be uniquely referenced) and d0 is stored in the small reliable memory,
i.e., s = d0. We have two cases:
1. User U sends the request read(i) to all checkers C1, C2, . . . , Cu. The checkers run

algorithm query(i,M, auth(M), pk) in parallel and output the answer M[i] and
the proof Π(i). This requires O(1) requests to the unreliable memory per checker
in the EREW model (Theorem 4). Then the algorithm verify(i,M[i], Π(i), s, pk)
is run by the checkers (note that running query() and verify() can be combined in
one algorithm). The algorithm writes eitherM[i] (in this case verify() accepts) or
BUGGY (in this case verify() rejects) in a location of the reliable memory. User
U reads that location and gets the result. We note here that the fact that verify() is
parallelizable in the ERCW model does not affect our complexity results since the
write part of the algorithm is done on the reliable memory—however, requests to
the reliable memory are not taken into account in query complexity (only requests
to the unreliable memory). Therefore the query complexity of the parallel checker
due to read operations is O(1) in EREW model;

2. User U sends the request write(i, x) to all checkers C1, C2, . . . , Cu. First the current
content of cell i is verified through a read(i) operation. If this verification succeeds
the checkers run algorithm {M′, auth(M′), s′} ← refresh(x,M, auth(M), s, pk)
in parallel. Note that this algorithm has O(1) access complexity using O(log n)
processors in the CREW model, by Theorem 4. We need concurrent read because
all the checkers should be able to read the same value of the old (verified) content
of cell i.

Finally, we note that the correctness and the security of the checker comes as a direct
result of the correctness and the security of the authenticated data structure scheme
LBT . Also, since our lattice-based construction does not use any secret key, it follows
that the construction we have described is in the non-secret key setting. This completes
the proof. �

5.9 Two-party model
Corollary 5 (Two-party model) Let k be the security parameter. There exists a two-
party authenticated data structures protocol involving a trusted source and an untrusted
server for verifying queries on a table of n entries such that: (a) The setup at the source
has O(n log n) access complexity or O(n) using O(log n) processors in the CREW
model; (b) The update at the source has O(1) access complexity; (c) The space needed
at the source has O(1) group complexity; (d) The update at the server has O(log n)
access complexity or O(1) using O(log n) processors in the CREW model; (e) The
query at the server has O(log n) access complexity or O(1) using O(log n) processors
in the EREW model; (f) The space needed at the server has O(n) group complexity;
(g) The proof has O(log n) group complexity; (h) The verification at the source has
O(log n) access complexity orO(1) usingO(log n) processors in the CRCW model; (i)
For a query q sent by the source to the server at any time (even after updates), let α be
an answer and let π be a proof returned by the server. With probability Ω(1− neg(k)),
the client accepts the answer α if and only if α is correct.
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