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Abstract. Nowadays, most of sensitive applications over insecure network are protected by some au-
thenticated secure channel which is highly relies on specific authenticated key exchange (AKE) protocol.
Nevertheless, the leakage of authentication credential used in AKE protocol somehow result in unau-
thorized exploitation of credential information via identity impersonation (IDI) attack. To address the
problem of IDI, we introduce a new dynamic authentication factor for AKE protocols, i.e., the secret
execution states, to either prevent IDI attack by detecting attempts thereof, or limit its consequences by
on-line detecting situations of previously unidentified IDI. In this paper, we model the security for au-
thenticated key exchange with synchronized states (AKESS) based on Bellare-Rogaway model, and we
particularly formalize the IDI and IDI detection. We propose a generic execution states synchronization
framework for AKE, in which we utilize the session key to generate the secret execution states on both
sides, and present a new AKESS protocol which is provably secure in the standard model. Our goal is
to enhance the security of existing authenticated key exchange with long-lived key (AKELL) protocols
by equipping them with the capabilities of both IDI prevention and detection without modifications on
those protocols.

Keywords: authenticated key exchange, impersonation detection, state synchronization,
security model

1 Introduction

Authenticated Key Exchange (AKE) protocols are foundation for building secure channel to protect
communication over insecure networks. Meantime the parties’ identity authentication always relies
on some credentials (e.g., password, private key of certificate, fingerprint), which are the primary
objectives of attacker. It is trivially to see that the compromised authentication secrets are easy to
be exploited by the adversary to launch identity impersonation (IDI) attack as the victim which
might result in privacy loss, financial loss, and public discredit etc. Unfortunately, many users
learn that their identity had been impersonated after some damage has been done. Whereas the
credential issuers always encourage user to armed with the knowledge of how to protect themselves
and take action to monitor their accounts periodically on a regular basis. Although that is quite
necessary to the users, the consequences of IDI attack might not be perceptible immediately if there
is no evident trail to track. Hence one of the motivations of this paper is to design new dynamic
authentication factor which is not only to prevent IDI attack by detecting attempts thereof, but
also to limit its consequences by on-line detecting events of previously unidentified IDI on protocol
level (i.e. automatically detect while executing the protocol).1

Consider a commonly used authentication and IDI detection scenario for two honest people in
real word, besides proving identity via public identification attributes (e.g., name, ID-number and
photo), each parties might require its peer to wisely present some ‘secret sign’ agreed during last
conversation that they involved together. Provide that one party failed to give the correct response,

1 We prefer the term ”identity impersonation” over ”identity theft” (IDT) or ”identity fraud”(IDF). Although the
term ”identity impersonation” might be consequence of identity theft, or even of form of fraud, the IDT and IDF
encompass wider scope of crimes concerning different identities which are not our focus.



then it might be either impersonated before or an impostor. This scheme is simple and effective,
which can be easily applied to cyberspace for automatically on-line detecting previous IDI, by
comparing some kind of shared secret states shared between parties. However, there are a number
of realistic problems that we need pay attention to, such as bootstrapping of the secret states,
resilience of adversary’s spy and interference, and synchronizing the secret states, etc. Meanwhile
no matter what kind of secret states are equipped, the most important issue should be addressed first
is that how to synchronize those secret states (i.e., set-up update strategy and timing), e.g., after
the authentication protocol instances have been successfully established or terminated. Therefore
the protocol instances always need extra confirmation steps to ensure the update conditions are
satisfied. If the most recent shared execution states between two parties are inconsistent then some
IDI events might have been occurred for either party. However, we cannot come to such conclusion
arbitrarily, since there are numerous factors resulting in state inconsistent. We believe the major
reasons that result in state out of synchronization between two parties, include the following:

1. Identity impersonation attack. At some point, the adversary who obtains the long-lived authen-
tication key impersonates the victim A to another honest party B.

2. Interference of adversary. The passive adversary without the long-lived secret is also able to
disorder the execution state by intervening the communication between honest party A and B,
e.g. drop the messages.

3. Other situations. For instances, due to the network failure or system crash, etc.

In particular, due to the interference of adversary, the state inconsistent of two parties seems
inevitable. Since a party A who sends the last message flow can’t know whether or not its last
message was received by its partner, so when A update its execution secrets states, it cannot know
(due to the above situations) whether or not its partner will do the same update. This asymmetry
is an inherent aspect of state synchronization protocols with a fixed number of moves, giving a
certain information benefit to the party who refrains from receiving the last confirmation mes-
sage. Thus, it is necessary to distinguish between illegal state inconstant (e.g., caused by identity
impersonation attack) and inevitable synchronization failure (e.g., network fault or missing con-
firmation message etc.). Besides the impersonation attack detection, another important issue is
how to recover the execution states from such legal (unavoidable) states inconsistent to normal
ones (i.e. re-synchronizing). Furthermore, we note that the existing pre-shared states mechanism
are not withstand the interference of adversary, which can be categorized as: (i) authentication
credential based (e.g. evolving authentication key for each protocol instance), (ii) sequential con-
stants. Since the information carried by those two scenarios is so limited, and the protocol would
be in-executable once those execution states come to out of synchronization due to synchronization
failures as aforementioned.

In this paper, we focus on generic execution states synchronization problem for AKE, which
cover the aspects of states’ representation, transition, synchronization and fault-tolerance. We also
strive to formalize the security of authenticated key exchange with synchronized states (AKESS)
and the validity of identity impersonation detection. Instead of designing a new infrastructure, we
provide a universal IDI detection solution for existing authenticated key exchange with long-lived
key (AKELL) protocols, i.e. it is neither AKELL protocol specified, nor restricted to applications.
From a practical standpoint, the synchronized secret execution states can be easily obtained from
any AKELL protocols without modification, and don’t rely on specific identification credentials
issued to parties. But the bootstrap problem of secret states is not our focus. Instead we assume
that the parties are able to agree upon the initial secret states (e.g. use out-of-band mechanisms),
and we focus on secret states’ generation and synchronization during the execution of each protocol
instances and the on-line IDI detection.
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1.1 Related Work

As for the prevention of static password’s exposure, the one-time password schemes, e.g., [13,10] are
introduced, which typically make use of randomness that can also be seen as a kind of authentication
key related execution state. In [16] Shin et al. dedicate to the immunity to the respective leakage of
stored authentication secrets (both low-entropy password and long-lived key) from a client side and
a server side. In their subsequent work [17], although they introduce a dynamically update solution
for authentication secret after establishing the session to provide security against the leakage of
stored secrets, they overlook the synchronization failures as mentioned above.

In order to limit the damage consequences of long-lived key’s exposure in the public key
infrastructure, there are also many proposals including threshold cryptosystems [6], proactive cryp-
tosystems [11], proactive forward-secure schemes [1], key-insulated cryptosystems [9], etc. Although,
the schemes proposed in [11,1] involve the issue of secret synchronization (i.e., time-evolved update
strategy), they are unable to detect the previous unauthorized using of the key. It is also ques-
tionable if the renewed key is still ‘fresh’ (unknown) to adversary, once the adversary compromised
some old keys at some time (e.g., the secret factors of the RSA composite n are also compromised).

With respect to the problem related to identity impersonation detection, Van Oorschot and
Stubblebine [19] propose an identity theft detection scheme, whereby users’ identity claims are
corroborated with trusted claims of these users’ location. This scheme has limitations including
restriction to on-site (vs. on-line) transactions and loss of user location privacy (i.e., users are geo-
graphically tracked). In 2008, D. Nali and P.C. van Oorschot [15] propose a universal infrastructure
and protocol so-called CROO (Capture Resilient Online One-time Password) scheme, to either
prevent identity fraud (IDF) or identify the cases of previous IDF in the environment of on-line
transaction (i.e., between some client and server). This scheme highly depends on the sequential
one-time symmetric authentication keys (also severed as kind of execution state) used to generate
the one-time password, in which the j-th key is derived from j+1th key with some key derivation
function. Where the initial authentication key is issued by some trusted third party (TTP) which is
also in charge of verifying the corresponding j-th one-time password and detecting the IDF. How-
ever, the CROO scheme never addresses that how to synchronize the authentication keys between
the client device and the credential issuer, thus it is incapable of fault-tolerant in practice.

Other works, such as detecting double spending behavior in e-cash system [5]. However the
tracing of double-spender is designed for off-line application environment, thus such detection has
latency and is not efficient. By contrast, we focus on the issues of on-line mutual authentication
with synchronized states and IDI detection.

1.2 Contribution

In order to achieve the goals of both IDI attack prevention and on-line detection of previously
unidentified IDI, in this paper, we first formalize the execution states of AKE as a dynamic authenti-
cation factor. On the second we model the security of authenticated key exchange with synchronized
states (AKESS) based on the BR model, which enables us to prove the security of authentication
involving both long-lived key and synchronized states. In the security model, we also explicitly
formalize the issues on IDI and IDI detection that make us be able to evaluate the validity of the
IDI detection capability.

Moreover, we propose a generic framework for synchronizing execution states of AKE, which
include the execution secret states generation scheme (i.e., exploiting the session key generated
by AKELL protocol), an AKESS protocol and corresponding states synchronization rules. The
framework allows for a modular design of new AKESS protocols, using exiting protocols (e.g. TLS,
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IPSec IKE), in which the most important case is mutual authentication with synchronized states
(MASS) built on top of AKELL channel. This is possible since we require the session key generated
by AKELL protocol is secure against passive adversary. Thus the proposed AKESS protocol is able
to provide both IDI prevention and detection capability since to launch a IDI attack the adversary
need to learn the long-lived key to execute the AKELL protocol and previously established secret
states (which are dynamically updated in each protocol instances) to run the MASS protocol for
further authentication and IDI detection.
Notations and Terminology. We let κ denote the security parameter and 1κ the string that
consists of κ ones. The cryptographic primitives used in this paper include: pseudo-random function
and message authentication code. The details of their security definitions are presented in the
Appendix A.

2 Formalism of Execution States Synchronization for AKE

2.1 Execution States of AKE

We call each instances of an AKE protocol run at a party a session denoted as s for simple.
Technically, a session is an interactive subroutine executed inside a party. At the beginning, we
first classify the stage of states synchronization into three categories: init, established and reset ,
where

– the init stage denotes that the secret states need to be initiated between two parties.
– the established stage denotes some secret execution states have already been agreed upon at

some time,
– the reset stage denotes the secret states need to be re-established at next run.

In the subsequent description, we use macros (INIT,RES) to denote the corresponding stages
init and reset respectively (e.g., INIT := 0, RES := 1). Let I = I[κ] and S = S[κ] be polynomials
in the security parameter κ, where I be a set of identities which defines the parties who can
participate in the AKE protocol, and S be set of sessions. We assume each session maintains its
own internal states which comprise of two parts: (i) the current protocol execution states, and
(ii) the recorded knowledge of previous protocol execution states supposedly shared by the session
participants.

Definition 1 (Current Protocol Execution States). The current execution states for a session
s ∈ [S] executed by party A with its peer B are formed as a tuple CPES := (ESs, Ts, Λs), where
the implication of each elements are described below:

1. The variable ESs stores the current secret execution states of session s.
2. The variable Ts stores an ordered list of all messages received and sent by session s.
3. The variable Λs ∈ {accept-ll, accept-session, reject-session, reset,⊥} records the current execu-

tion status, in which
– the accept-ll denotes the acceptance of the authentication related to long-lived key.
– the accept-session denotes the acceptance of current session with valid states authentication.
– the reject-session denotes the current session aborts with rejection. This event might happen

at any point during the session execution.
– the reset denotes the incomplete states authentication process without rejection.
– the symbol ⊥ denotes the empty string and no state changes.

Whereas, the knowledge of previous protocol execution states are used for authenticating
current session which are defined as following.
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Definition 2 (Protocol Execution States Record). The recorded execution states for parties
(A,B) ∈ I, are formed as a tuple PESR := (RSA,B, A, lST, lETA, SIA, B, lETB, SIB), where the
former party A in the list is always initiator and B is the responder in sessions executing between
the two parties (i.e., the PESR are identified via ordered parities’ identifier pair). The implications
of each element are described as below:

1. The variable RSA,B stores either a reset sign, or the recorded secret execution state used for
authentication in the established execution stage.

2. The variable lST stores the latest starting time of states synchronizing.
3. The variable SIA, SIB are secret indicators for recording the latest successful synchronization

process from party A or B respectively.
4. The variable lETA, lETB store the establish time of latest recorded (i.e. without rejection) secret

execution states SIA and SIB at party A and B, respectively.

Please note that each protocol execution states record (PESR) always describes the state
between two parties, since we here only consider the most recent execution states shared by the
corresponding parties. We further assume that every party keep a state list SL to record each
PESR. Without of loss of generality, we only allow a PESR to be processed by one instance
within a party at some point, namely the PESR need to be locked while corresponding instance
being activated (e.g., with ‘read-write’ lock) and any other requests on current locked PESR
have to wait until the previous operation is committed or expired.2 It’s ensure that the PESR is
exactly the one which the parties intend to synchronize, thus in the following we write PESRs,AA,B
to denote that it is locked by session s at party A. Since the execution stage of each PESR might
be disrupted (e.g., one party is in established and the other in reset stage), the SIA is used as a
witness to re-establish the secret execution.

After each protocol instances completed, the corresponding PESR need to be updated from
the previous secret states to recent ones in terms of CPES. The protocol execution stage transition
of PESR is informally depicted in figure 1.

Fig. 1: Execution stage transition diagram

As illustrating in figure 1, the regular transition route is denoted by the real line, whereas
the dash line routes mean that transition caused by some objective factors, e.g., PESR expired or

2 Note that, the SL itself could work as a table in a database, hence the PESR as a item in SL should be protected
by some concurrency control mechanism
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agreed by both parties at some point, etc. In normal situation, the states in PESR should be only
transferred within the established stage after it has been initiated. However, if a session terminates
with incomplete execution (e.g., missing confirmation messages) then the execution stage of its
PESR might turn into reset, but its peer might still keep in established stage. In order to deal
with different cases of state inconsistent, we formally give the definition of state synchronization
for two parties.

Definition 3 (Execution State Synchronization).
Let PESRA,B := (RSA,B, A, lST, lETA, SIA, B, lETB, SIB) be the latest protocol execution state
recorded at party A. Let PESR∗A,B := (RS∗A,B, A, lST

∗, lET ∗A, SI
∗
A, B, lET

∗
B, SI

∗
B) be the corre-

sponding matching protocol execution states record at B. Then the synchronization status of PESRA,B
and PESR∗A,B can be the following:

1. Complete In Synchronization (CIS). The PESRA,B is said to be fully synchronized with PESR∗A,B
if only if every elements in PESRA,B and PESR∗A,B are pair-wise equivalent.

2. Partial In Synchronization (PIS). We call PESR and PESR∗ are partially synchronized, if
RS∗A,B = RES and lST ≥ lST ∗ and one of the following conditions holds:

(a) lETA = lET ∗A and SIA = SI∗A.
(b) lETB = lET ∗B and SIB = SI∗B

3. Out Of Synchronization (OOS). We say that PESRA,B and PESR∗A,B are out of synchro-
nization, if the synchronization status of PESRA,B and PESR∗A,B satisfies neither CIS nor
PIS.

Please note that the lST is a very important criteria for identifying the PSS event, since the
reset execution stage of responder might result from the adversary’s impersonation behavior in
which case the lST is smaller than lST ∗.

2.2 Security Model for Authenticated Key Exchange with Synchronized States

Passive Security of AKELL. A (two-party) AKELL protocol is a protocol executed among
two parties A and B. At the end of the protocol, both parties output the same uniformly random
session key K0 ∈ {0, 1}lk where lk is the length of key space of the protocol in terms of the security
parameter.

Definition 4. We say that a AKELL protocol capture passive key exchange security if for all
polynomial-time adversary holds that |Pr[b = b′] − 1/2| ≤ ε for some negligible function ε in the
following experiment:

1. A challenger C generates the public parameters δ of the protocol (e.g. a generator describing a
group etc.), and a set of long-term keys for each party.

2. The adversary receives δ and the parties’ long-term key of as input. The adversary can run
protocol instances interacting with the challenger by sending messages on her choice. Meanwhile,
the adversary may query the challenger to obtain session key of some protocol instance run by
the challenger itself. Then, the challenger runs a protocol instance, and obtains the transcript
T of all messages exchanged during the protocol and a key K0. The challenger returns (T,K0).

3. At some point, the adversary outputs a test symbol >. Given >, the challenger runs a new
protocol instance itself, obtaining the transcript T and key K0, samples K1 uniformly at random
from key space, and tosses a fair coin b ∈ {0, 1}. Then it returns (T,Kb) to the adversary.

4. The adversary may continue making session establishing queries (as step 2) to the challenger.
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5. Finally, adversary A outputs a bit b′.

We say that the adversary wins the game, if b = b′.

The above passive security definition of AKELL protocols is easy to achieve (e.g., a signature
based Diffie-Hellman protocol under DDH assumption), and is the basic correctness and security
requirement for more complex key exchange with entities’ authentication using synchronized states.

Execution Environment for Active Adversary. In order to define the secure authenticated
key exchange with synchronized States (AKESS), the security model is required to model the
capabilities of active adversaries (especially for the adversary which is able to learn long-lived
key of a party). We must describe the attacks against which AKESS protocol should be secure,
and which outcome we expect if we run the protocol with the defined adversary. Following the
line of research for AKE security [4,7,12,14,8] initiated by Bellare and Rogaway [2], we model the
adversary by providing an execution environment, which emulates the real-world capabilities of an
active adversary.

Informally speaking, the adversary has full control over the communication network, thus may
forward, interleave, or drop any message sent by the participants, or inject new messages on her own
choice. In our model, the adversary A is a probabilistic polynomial time (PPT) Turning Machine
which is equipped with a collection of oracles πs,ii,j , where i, j ∈ [I] and s ∈ [S]. An oracle πs,ii,j
models an party IDi running session s with party IDj in which party IDi is the initiator and IDj

is responder. All oracles formed as π·,ii,· share the same long-lived secrets of party IDi. We assume

each πs,ii,j will be automatically expired within the scheduled time te if meantime there is no message

is received, and the next process πs+1,i
i,j can be activated only if the πs,ii,j has been terminated. Assume

further, each process outputs the session key when its execution status Λ = accept-ll. An adversary
A is able to ask following types of queries:

– Send(πs,ii,j ,m). The adversary can issue this query to send any message m of her choice to oracle

πs,ii,j . The oracle will respond with the messages according to the protocol specification. If m is

empty and there is no process at party IDi locking PESRs,ii,j , then this query will active a new

process πs,ii,j with locking the PESRs,ii,j and respond with the first message of the protocol.

– Long-termKeyReveal(IDi). The adversary can issue this query to learn the long-term key
of specified party.

– SessionKeyReveal(πs,ii,j ). The adversary may learn the encryption key ke computed in process

πs,ii,j via this query. The adversary If process πs,ii,j has terminated in Λs ∈ {accept-session, reset},
the black-box responds with the key in πs,ii,j , otherwise some failure symbol ⊥ is returned.

– Test(πs,ii,j ): This query is only allowed be asked once throughout the experiment. If πs,ii,j ter-
minates in execution status Λs = accept-session, then this query tosses a fair coin b ∈ {0, 1},
otherwise it returns a failure symbol ⊥. If b = 0, the real encryption key ke is returned and a
random key k otherwise.

Secure Authenticated Key Exchange with Synchronized States. Informally speaking, an
authentication protocol using introduced PESR, is a protocol run between two processes πs,ii,j and

πt,ji,j of entites i and IDj , where the two processes mutually prove knowledge of every items in
corresponding PESR and both output execution status either “accept-session”, “reset” or “reject-
session” at the end of execution. The major goal of mutual authentication with synchronized states
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(MASS) is to mitigate the damage consequences due to the leakage of identity related long-lived
credentials. Comparing to those static long-lived key, the secret execution states serve as dynamical
authentication factor that record the party’s activity engaged in most recent established session,
for both purposes of IDI prevention and IDI detection.

We define security of an MASS protocol following the idea of matching sessions (conversations),
as introduced by Bellare and Rogaway [2]. However in contrast to BR model, we don’t require any
process terminates in acceptance, due to the interference of the adversary. In the sequel, let Ts,i
denote the transcript of all messages sent and received by process πs,ii,j , and let |T | denote the
number of its messages recorded. We say that two message list Ts,i and Tt,j are matched, written
Ts,i ∼= Tt,j , if the first t = min{|Ts,i|, |Tt,j |} messages of the two lists are pairwise equal. And we
let Ts,i ≡ Tt,j denote the two message list are complete equivalent, namely |Ts,i| = |Tt,j | and every
messages in the two lists are pairwise equal. Please notice a special case of the matched case that
two message lists can be said to be matched if one of them is empty, i.e. |T | = 0.

Definition 5 (Matching Sessions). We say two processes πs,ii,j and πt,ji,j have matching sessions
if one of the following conditions is satisfied:

– πt,ji,j updated by receiving a message, and it holds that Ts,i ≡ Tt,j.
– πs,ii,j updated by sending a message, and it holds that Ts,i ∼= Tt,j.

Definition 6 (Secure Mutual Authentication with Synchronized States). We say that an
mutual authentication protocol with synchronized states is secure, if for all probabilistic polynomial-
time (PPT) adversaries A, interacting with the black-box O(Π) as described above in the execu-
tion environment, it holds that: each process πs,ii,j of O(Π) terminates in execution status Λs ∈
{accept-session, reset} only if there exists a process πt,ji,j such that πs,ii,j and πt,ji,j have matching ses-
sions, except with negligible probability ε = ε(κ) in the security parameter.

Definition 7 (Secure Authenticated Key Exchange with Synchronized States). We say
that a authenticated key-exchange with synchronized states protocol Π is secure if

1. Π is a secure mutual authentication with synchronized states protocol according to Definition 6.
2. For all polynomial-time adversary A holds that |Pr[b = AO(Π)(1κ)]−1/2| ≤ ε for some negligible

function ε under the following conditions.
(a) A issued test query on a process πs,ii,j without failure.

(b) A doesn’t issue SessionKeyReveal(πs,ii,j ) query, or SessionKeyReveal(πt,ji,j ) query if πt,ji,j and

πs,ii,j have matching sessions.

Identity Impersonation and Detection. We here formally give the definition of IDI based on
the definition of matching sessions. We formalize IDI by extending the execution environment by
one more type of query, which may be asked by the adversary.

– PESR-Reveal(πs,ii,j ). The adversary may issue this query to learn the PESR which is used for

authenticating the session s. If the PESRs,ii,j is not locked, then the black-box responds with the

PESRs,ii,j . Note that, this query model the corresponding PESR was leaked from either party
IDi or IDj .

Definition 8 (Identity Impersonation). If a process πs,ii,j terminates in execution status Λs ∈
{accept-session, reset} but there is no process πt,ji,j such that πs,ii,j and πt,ji,j have matching sessions,
then we say the party IDj is impersonated.
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In order to evaluate the validity of the IDI detection capability, we require some additional defini-
tions on freshness of each oracle, and we here focus on the corruption of secret relationship (i.e.,
PESR) between parties.

Definition 9. We say an oracle πs,ii,j which terminates in Λs = {accept-session, reset} is fresh
(unopened) if that adversary didn’t make both queries on Long-termKeyReveal(IDj) and PESR-

Reveal (πs,ii,j ), otherwise from this point we call all oracles formed as π·,ii,j (including πs,ii,j ) and π·,ji,j
for executing subsequent sessions are opened (corrupted).

Definition 10. We say a mutual authentication with synchronized states (MASS) protocol Π pro-
vides valid identity impersonation detection capability within time tidi, if

1. Π is secure MASS protocol in the sense of Definition 6,

2. If for all polynomial-time adversary only has negligible advantage in winning the following ex-
periment:

(a) A challenger C generates the public parameters δ of the protocol.

(b) The adversary A receives δ as input, and may query the challenger interacting with the
black-box O(Π) as described above in the execution environment.

(c) Eventually, the adversary A terminates after time tidi. Meanwhile, A might impersonate
arbitrary parties and run protocol instances on behalf of corresponding opened oracles.

(d) C runs (a new round) matching sessions between opened oracles and corresponding partners,
with existing passive adversary B who is only allowed to have access to the Send query.

(e) At the end of the experiment, we say the A or B wins if there exists some opened oracles
terminates in Λ ∈ {accept-session, reset}.

In the experiment, the time tidi models the longest time interval of a party executing two protocol
instances with specific partner in real world. As to the IDI detection step 2d of the experiment, we
require there exists only passive adversary since the active adversary who corrupted the oracles is
able to prevent being detected via further IDI attacks.

3 Generic Execution States Synchronization Framework for AKE

The generic execution states synchronization framework (ESSF) contains three components: the
execution secret (ES) state generation, the authenticated key exchange with synchronized states
(AKESS) protocol and corresponding states synchronization rules. Let us first describe the following
building blocks for our ESSF:

– An authenticated key exchange with (only) long-lived key (AKELL), which is only required to
be secure in the sense of Definition 4.

– Three pseudo-random functions F1 and F2 with output length lk and le respectively.

– A message authentication code scheme MAC.

– A deterministic algorithm: Identify : {0, 1}lr × {0, 1}lr → {CIS, PIS,OOS}. This algorithm
is a PESR synchronization status identification algorithm (where the lr is the length of the
PESR).
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3.1 A Generic ES Generation Scheme for AKE

An important property that we want of a protocol with some synchronized secret execution states
that the compromise of one PESR should have minimal consequences overall. For example, its
revelation should not allow one to subvert subsequent authentication, nor should it leak information
about other (as yet uncompromised) secret execution states. In practical, we are also required to
integrate the proposed ESSF with an existing AKELL protocol π (such as SSL/TLS or IPSec/IKE)
without any modification on π. To capture those requirement, we only need the protocol π to
provide an interface to access the image of its session key and communication transcript T , e.g.,
k0 := F (k, 1κ) where F is a pseudo-random function. Now we can give a generic ES generation
scheme for AKE protocols based on the k0. The ES generation scheme for a session is described as
following:

1. Run the AKELL protocol, and both parties compute session key image k0.
2. Compute a new encryption key ke := F1(k0, ”ENC”), the MAC key km := F1(k0, ”MAC”),

and the corresponding execution secret state ES := F1(k0, ”ES”).

3.2 An Authenticated Key Exchange with Synchronized States Protocol

Preliminary. Let ′‖′ be the operation of messages concatenation. Let s be a AKE session held
by an honest party A with some honest party B, which has the corresponding latest protocol
execution states record PESRs,AA,B := (RSA,B, A, lST, lETA, SIA, B, lETB, SIB). Let t held by B be

the matching session of s, which has PESRt,BA,B := (RS∗A,B, A, lST
∗, lET ∗A, SI

∗
A, B, lET

∗
B, SI

∗
B). Let

(ESs, ESt) denote the current established execution secret states selected by s and t respectively,
and (ETA, ETB) denote the current established time of s and t respectively. Let ST be the starting
time of current authentication with synchronized states which is equal to ETA. Now let us show
how to compile an AKELL protocol into an authenticated key exchange with synchronized states
(AKESS) protocol. The AKESS protocol between two parties A and B proceed as follows (also
informally depicted in figure 2).

Definition 11 (AKESS protocol).

1. A and B execute the AKELL protocol instances s and t respectively, which are supposed to be
matching. At the end of the (AKELL) protocol run, both sessions output the image of the session
key k0, record a transcript Ts and Tt and execution status Λt = accept-ll. The key k0 is used to
derive the new encryption key, MAC key and the ES as described in section 3.1.

2. A retrieve and locks the latest PESR identified by (A,B) from SL, and does the following:

(a) Set transcript record TA1 := Ts||A||ST ||lST ||ETA||lETA||B||lETB.
(b) Compute c1s := F2(km⊕RSA,B, TA1 ), c2s := F2(km⊕SIA, TA1 ) and c3s := F2(km⊕SIB, TA1 ).
(c) Compute M1 := MACkm(′1′||TA1 ||c1s||c2s||c3s).
(d) Prepare messages mesg1 := M1||ETA||lETA||lETB||c1s||c2s||c3s, and send it to B
(e) Set a temp PESR ps := (c1s, A, lST, lETA, c2s, B, lETB, c3s).

3. Upon receiving mesgB1 , B retrieve and locks the latest PESR identified by (A,B) from SL and
does the following:

(a) Set transcript record TB1 := Tt||A||lST ∗||ETA||lETA||B||lETB obtained from mesgB1 .
(b) Compute M ′1 = MACkm(′1′||TB1 ||c1s||c2s||c3s), and reject the session t if M ′1 6= M1.
(c) Compute c1t := F2(km ⊕RS∗A,B, TB1 ) if RS∗A,B 6= RES, otherwise set c1t := RES.

(d) Compute c2t := F2(km ⊕ SI∗A, TB1 ) and c3t := F2(km ⊕ SI∗B, TB1 ).
(e) Set a temp PESR pt := (c1t, A, lST

∗, lET ∗A, c2t, B, lET
∗
B, c3t).
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(f) Reject if Identify(ps, pt) /∈ {CIS, PIS}.
(g) Set transcript record TB2 = M1||A||lST ∗||ETA||lET ∗A||B||ETB||lET ∗B.

(h) Compute c1t := F2(km ⊕RS∗A,B, TB2 ) if RS∗A,B 6= RES, otherwise set c1t := RES.

(i) Compute c2t := F2(km ⊕ SI∗A, TB2 ) and c3t := F2(km ⊕ SI∗B, TB2 ).

(j) Compute M2 := MACkm(′2′||TB2 ||c1t||c2t||c3t).
(k) Set Λt = reset.

(l) Prepare messages mesg2 := M2||lST ∗||lET ∗A||ETB||lET ∗B||c1t||c2t||c3t, and send it to A

4. Upon receiving mesgA2 , A does the following:

(a) Set transcript record TA2 = M1||A||ETA||lET ∗A||B||lET ∗B.

(b) Compute M ′2 := MACkm(′2′||TA2 ||c1t||c2t||c3t), and reject if M ′2 6= M2.

(c) Compute c1s := F2(km ⊕RSA,B, TA2 ) if c1t 6= RES, otherwise set c1s := RES.

(d) Compute c2s := F2(km ⊕ SIA, TA2 ), c3s := F2(km ⊕ SIB, TA2 ), and update ps.

(e) Reject if Identify(ps, pt) /∈ {CIS, PIS}.
(f) Set transcript record TA3 := M1||ETA||ETB||M2.

(g) Compute M3 := MACkm(′3′||TA3 ), and send mesg3 = M3 to hatB.

(h) Accept the session with Λs := accept-session.

5. Upon receiving mesgB3 , B does the following:

(a) Set transcript record TB3 := M1||ETA||ETB||M2.

(b) Compute M ′3 := MACkm(′3′||TB3 ).

(c) If M ′3 6= M3 then abort the session with Λt := reset, otherwise accept the session with
Λt := accept-session.

6. In additional, the verification steps need to ensure the established time of session s and t are
valid.

A B

←−
AKELL

−−−−−−−−−−−−−−−−−−→
TA
1 := Ts||A||ST ||lST ||ETA||lETA||B||lETB

c1s := F2(km ⊕RSA,B , T
A
1 )

c2s := F2(km ⊕ SIA, TA
1 ),

c3s := F2(km ⊕ SIB , TA
1 )

M1 := MACkm (′1′||TA
1 ||c1s||c2s||c3s)

mesg1 :=M1||ETA||lETA||lETB ||c1s||c2s||c3s
−

mesg1
−−−−−−−−−−−−−−−−−−→

TB
2 :=M1||A||lST ∗||ETA||lET ∗A||B||ETB ||lET

∗
B

c1t := F2(km ⊕RS∗A,B , T
B
2 )

c2t := F2(km ⊕ SI∗A, T
B
2 )

c3t := F2(km ⊕ SI∗B , T
B
2 )

M2 := MACkm (′2′||TB
2 ||c1t||c2t||c3t)

mesg2 :=M2||lET ∗A||ETB ||lET
∗
B ||c1t||c2t||c3t

←−
mesg2

−−−−−−−−−−−−−−−−−−
TA
3 :=M1||ETA||ETB ||M2

M3 := MACkm (′3′||TA
3 )

mesg3 :=M3

−
mesg3

−−−−−−−−−−−−−−−−−−→

Fig. 2: AKESS protocol: an authenticated key exchange with synchronized states protocol

Please note that a session s terminates in acceptance, if only if it received the last intended
message and all verifications (incl. the synchronized states) are valid, then the protocol execution
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state record should be fully updated (i.e., all items of PESR), otherwise the s is called incomplete
execution and only partial states of PESR might be updated. In the following, we formally present
the definition of the rules for synchronizing and recording the secret states.

Definition 12 (Execution States Synchronization Rules). The states synchronization rules
of PESR for a two-party protocol between A and B are described as following:

1. For a session s of initiator A:
(a) If Λs = accept-session, then A updates the PESRs,AA,B as following:

i. If Identify(PESRs,AA,B, PESR
t,B
A,B) = CIS, then A does the following:

A. Set RSA,B := F2(ESs ⊕RSA,B, 1κ), lST := ST , lETA := ETA and lETB := ETB.
B. Set SIA := F2(RSA,B, ETA) and SIB := F2(RSA,B, ETB).

ii. If Identify(ps, pt) = PIS, then A does the following:
A. If SI∗A := SIA set RSA,B := F2(SIA ⊕ ESs, 1κ), otherwise set RSA,B := F2(SIB ⊕

ESs, 1
κ).

B. Set lST := ST , lETA := ETA and lETB := ETB.
C. Set SIA := F2(RSA,B, ETA) and SIB := F2(RSA,B, ETB).

(b) Otherwise, A only set lST := ST .
(c) Store the updated PESRs,AA,B into SL and unlock it.

2. For the responder B in t which is matching to s:
(a) If Λt = accept-session, then B updates PESRt as following:

i. If Identify(ps, pt) = CIS, then B does the following:
A. Set RS∗A,B := F2(ESt ⊕RS∗A,B, 1κ), lST ∗ := ST , lET ∗B := ETB and lET ∗A := ETA.
B. Set SI∗A := F2(RS

∗
A,B, ETA) and SI∗B := F2(RS

∗
A,B, ETB).

ii. If Identify(ps, pt) = PIS, then B does the following:
A. If SI∗A := SIA set RS∗A,B := F2(ESt ⊕ SI∗A, 1κ), otherwise set RS∗A,B := F2(ESt ⊕

SI∗B, 1
κ).

B. Set lST ∗ = ST , lET ∗A := ETA and lET ∗B := ETB.
C. Set SI∗A := F2(RS

∗
A,B, ETA) and SI∗B := F2(RS

∗
A,B, ETB).

(b) Else If Λt = reset, then B updates the PESRt,BA,B as following:
i. If Identify(ps, pt) = CIS, then B sets lST ∗ := ST , lET ∗A := ETA and SI∗A :=
F2(F2(ESt ⊕RS∗A,B, 1κ), ETA).

ii. Set RS∗A,B := RES.
iii. If Identify(ps, pt) = PIS, then B does the following:

A. Set lST ∗ := ST and lET ∗A := ETA
B. If SI∗A := SIA set SI∗A := F2(F2(SI

∗
A⊕ESt, 1κ), ETA), otherwise set SI∗A := F2(F2(SI

∗
B⊕

ESt, 1
κ), ETA).

(c) In other case B does nothing.
(d) Store the updated PESRt,BA,B into SL and unlock it.

3. Meanwhile, we require the whole PESR update procedure described above is atomic. The ps and
pt are temp images of PESRs,AA,B and PESRt,BA,B used by AKESS protocol as Definition 11.

4 Security Analysis

Theorem 1. If the AKELL protocol satisfy passive KE security as Definition 4, and the pseudo-
random functions (F1, F2) and the message authentication code (MAC) are secure with respect to the
definitions in Appendix A, then the proposed AKESS protocol is a secure in the sense of Definition
7.
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We prove the above theorem by two lemmas. Lemma 1 states that the AKE protocol meets property
1) of Definition 7, Lemma 2 states that it meets property 2) of Definition 7.

Lemma 1. If the AKELL protocol satisfy passive KE security as Definition 4, and the pseudo-
random function and the message authentication code are secure with respect to the definitions in
Appendix A, then the proposed AKESS protocol meets Property 1 of Definition 7.

Proof. The proof proceeds in a sequence of games, following [3,18]. The first game is the real secu-
rity experiment. By assumption there exists an adversary A that breaks the security of the above
protocol. We then describe several intermediate games that step-wisely modify the original game.
Next we show that in the final security game the adversary has only negligible advantage in break-
ing the security of the protocol. Finally we prove that (under the stated security assumptions) no
adversary can distinguish Game i+ 1 from Game i. Let Gi be the event that A wins in Game i. In
the following let negl(κ) be some (unspecified) negligible function in the security parameter κ.
Game 0. This is the original security game, in which the simulator init I[κ]× (I[κ]− 1) uniformly
random PESRs. Assume an adversary A breaking Property 1 of Definition 7 with probability ε.
In the sequel we will show that ε is negligible for any algorithm A.

Game 1. This game proceeds exactly like the previous game, except that the simulator chooses
a uniformly random key k̃0 for those processes which have matching sessions when their Λ =
{accept− ll}, to derive ke, km and ES as ke := F1(k̃0, ”ENC”), km := F1(k̃0, ”MAC”) and ES :=
F1(k̃0, ”ES”). We abort if one of the following conditions holds:

– if B terminates a process in execution status Λ ∈ {reset}, and TA1 6= TB1 .

– if A or B terminates a process in execution status Λ ∈ {accept-session}, and either TA1 6= TB1 ,
TA2 6= TB2 or TA3 6= TB3 .

We claim that

|Pr[G1]− Pr[G0]| ≤ negl(κ)

by the passive KE security of AKELL protocol. This implies that the adversary forwards all mes-
sages during key exchange without altering anything. We can thus use an adversary distinguishing
Game 1 from Game 0 to break the KE security of AKELL protocol against passive adversaries.

Game 2. This game proceeds exactly like the previous game, except that the simulator chooses a
uniformly random keys k̃e, k̃m and ẼS for those processes which have matching sessions when their
Λ = {accept− ll}. The secrets k̃e, k̃m and ẼS are used to compute the corresponding authentication
messages c1s, c2s, c3s and MACs. We claim that

|Pr[G2]− Pr[G1]| ≤ negl(κ)

by the security of the pseudo-random function F1. In the proof we exploit that we have exchanged
the real key computed in AKELL with a random key k̃0 in Game 1.

Game 3. This game proceeds exactly like the previous game, except that the simulator replace
the function F2(·, ·) with three random functions RF1, RF2 and RF3 (used to compute the temp
PESR for authentication). It is feasible because the seeds of F2 (i.e., RS ⊕ES and SI ⊕ES) are
computed by (uniformly random) secrets from CPESs and PESRs which are not both compro-
mised by adversary. With respect to the opened processes, we compute the F2 honestly. Therefore

13



an algorithm distinguishing Game 3 from Game 2 can be used to construct an algorithm breaking
the security of the pseudo-random function F2. We claim that

|Pr[G3]− Pr[G2]| ≤ negl(κ)

Game 4. In this game, the protocol’s authentication messages in the first two moves of protocol
(e.g., c1s, c2s and c3s) are computed by evaluating three truly random function due to Game 3,
to show that any adversary has only a negligible probability of making an oracle accept without a
partner oracle having matching session. Thus, this game proceeds exactly like the previous game,
except that the challenger now raises event Abortns and aborts if an process πs,ii,j terminates in

Λs ∈ {accept-session, reset}, but there is no process πt,jj,i having matching session to πs,ii,j . We claim
that

|Pr[G4]− Pr[G3]| ≤ negl(κ)

by the security of the pseudo-random function F2. The truly random function RF1, RF2 and RF3

which are only accessible to the partner oracles sharing CPES, and the full transcript containing
all previous messages is used to compute the authentication messages. If there is no process having
matching session to πs,ii,j , the adversary receives no information about RF sx(Ts)(resp. RF tx(Tt))
where x ∈ {1, 2, 3}.

Lemma 2. If the AKELL protocol satisfy passive KE security as Definition 4, and the pseudo-
random functions (F1, F2), and the message authentication code are secure with respect to the defi-
nitions in Appendix A, then the proposed AKESS protocol meets Property 2 of Definition 7.

Proof. We consider the following two disjoint cases on a process πs,ii,j which terminates in execution
status Λ ∈ {accept-session, reset} (which cover the whole):

1. There is no process πt,ji,j , such that πs,ii,j and πt,ji,j have matching sessions. In this case, although

the adversary learns the session key of πs,ii,j (or πt,ji,j ), in order to make πs,ii,j (or πt,ji,j ) ‘accept’ or
‘reset’, she still need to break the security of pseudo-random function F2 as above Game 3 to
Game 4 in the proof of Lemma 1.

2. There exists a process πt,ji,j , such that πs,ii,j and πt,ji,j have matching sessions. The adversary needs
to break the passive KE security as above Game 1 to Game 2 in the proof of Lemma 1.

We proceed in a sequence of games which is very similar to the sequence of games.
Game 0. This is the original security game. We assume an adversary A breaking Property 2 of
Definition 7 with probability 1/2+ε. In the sequel we will show that ε is negligible for any algorithm
A in security parameter.
Game 1. In this game, we make the same modifications as in Games 1 to 4 in the proof of Lemma 1.
With the same arguments as before, we have

|Pr[G1]− Pr[G0]| ≤ negl(κ).

Collect probabilities from Game 0 to 1 we obtain that Game 1 is indistinguishable from Game 0
(except for some negligible probability), which proves indistinguishability of real from random keys.
Thus, the protocol meets Property 2 of Definition 7.

Theorem 2. If the AKELL protocol satisfy passive KE security as Definition 4, and the pseudo-
random functions (F1, F2) and the message authentication code (MAC) are secure with respect to the
definitions in Appendix A, then the proposed AKESS protocol provides valid identity impersonation
detection capability in the sense of Definition 10.
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Proof. With respect to the passive adversary B, its advantage of winning the IDI detection (IDID)
experiment is negligible due to the security of MASS protocol since B has to forge the authentication
messages. We evaluate the advantage of active adversary A in the IDID experiment. In order to
impersonate a party, an active adversary has to corrupt corresponding oracle (i.e. learn both the
PESR and CPES). Assume the PESR for an opened oracle πs,ii,j is PESRs,ii,j and for its partner

oracle πt,ji,j is PESRt,ji,j . Let qes be the number of adversary adaptively selecting the ES for a session
s within session expiration time te. Hence there are at most qin = tidi/te such time blocks, i.e.
adversary runs at least qin opened processes. In order not to be detected, A has to result in the
subsequent PESRs,ii,j and PESRt,ji,j such that Identify(PESRs,ii,j , PESR

t,j
i,j) ∈ {CIS, PIS} after

launching identity impersonation attack, and we denote this target event as TE. Let the event TEj
denotes that the adversary wins in j-th opened process.

Please first recall that the definitions of CIS or PIS, besides the secret states RS and SIs, two
parties have to synchronize the last synchronization time lST and established time lET s. Therefore,
the adversary has to launch IDI attacks on both parties at the same time who supposedly shared
the same PESRi,j . In each opened sessions, both the adversary and the simulator contribute to
the randomness used to generate the session keys and the ES, which are independent to the secret
states in other sessions. Thus the advantage of A winning the IDID experiment in j-th opened

session is bounded by birthday paradox: Pr[TEj ] ≤ q2es
2le−1 . We have the overall advantage of A for

time range tidi in terms of the binomial distribution

AdvAIDID,AKESS(tidi) ≤
qinq

2
es

2le−1
.

The result shows that the advantage of adversary is proportional to qes and qin which are related
to the te and tidi respectively. Therefore from the protocol perspective to reduce the odd of IDI
detection failure could decrease expiration time te, and at the same time encourage users to execute
the AKESS protocol as often as possible, namely decreasing the tidi.

5 Closing Remark

We have formally modeled the authenticated key exchange with synchronized states and proposed
a generic framework to synchronize the execution states of AKE. Although we have analyzed the
security and validity of proposed framework, the obligations of parties should be specified before
it was put into practical application. For example, once the IDI was detected, who should take
responsibility for consequences of IDI? Add digital signatures on the proofs of PESR (e.g., the
c1t, c2t and c3t) in the AKESS protocol could be a possible solution to help figure out which parties’
long-term key are exposed. Whereas the secret states also should be stored honestly, namely a party
should not arbitrarily modify the stored secret states by himself other than correctly executing the
AKESS protocol. Moreover, we encourage further exploration in the applications of synchronized
states, e.g. enhance the security of password based authentication schemes to be secure against
off-line guessing attack, or phishing attacks etc.
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A Security Definitions

A.1 Pseudo-Random Functions

A pseudo-random function is an algorithm PRF. This algorithm implements a deterministic function
z = PRF(k, x), taking as input a key k ∈ {0, 1}κ and some bit string x, and returning a string
z ∈ {0, 1}κ. Consider the following security experiment played between a challenger C and an
adversary A.

1. The challenger samples k
$← {0, 1}κ uniformly random.

2. The adversary may query arbitrary values xi to the challenger. The challenger replies each
query with zi = PRF(k, xi). Here i is an index, ranging between 1 ≤ i ≤ q for some polynomial
q = q(·). Queries can be made adaptively.

3. Eventually, the adversary outputs value x and a special symbol ⊥. The challenger sets z0 =

PRF(k, x) and samples z1
$← {0, 1} uniformly random. Then it tosses a coin b

$← {0, 1}, and
returns zb to the adversary.

4. Finally, the adversary outputs a guess b′ ∈ {0, 1}.
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Definition 13. We say that PRF is a secure pseudo-random function, if

Pr
[
b = b′

]
≤ 1

2
+ ε

for all probabilistic polynomial-time (in κ) adversaries A, where ε is some negligible function in the
security parameter.

A.2 Message Authentication Codes

A message authentication code is an algorithm MAC. This algorithm implements a deterministic
function w = MAC(Km,m), taking as input a key km ∈ {0, 1}κ and a message m, and returning a
string w. Consider the following security experiment played between a challenger C and an adversary
A.

1. The challenger samples km
$← {0, 1}κ uniformly random.

2. The adversary may query arbitrary messages mi to the challenger. The challenger replies each
query with wi = MAC(km,mi). Here i is an index, ranging between 1 ≤ i ≤ q for some polynomial
q = q(·). Queries can be made adaptively.

3. Eventually, the adversary outputs a pair (m,w).

Definition 14. We say that MAC is a secure message authentication code, if

Pr
[
(m,w)

$← AC(1κ) : w = MAC(km,m) and m 6∈ {m1, . . . ,mq}
]
≤ ε

for all probabilistic polynomial-time (in κ) adversaries A, where ε is some negligible function in the
security parameter.
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