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Abstract

We show how the study of the geometry of the nine flex tangerdscubic produces pseudo-
parameterizations, including the ones given by Icart, Kamam Lercier, Renault and Farashahi,
and infinitely many new ones.

To Jean-Jacques Quisquater, on the occasion of his éméritat

1 Introduction

Much attention has been focused recently on the problem of computing oirasgiven elliptic
curve over a finite field in deterministic polynomial time. This problem arises imanegtural man-
ner in many cryptographic protocols when one wants to encode messagéisergroup of points
of an elliptic curve. A good example of the algorithmic and cryptologic motivatiorimding these
parameterizations can be found in the identity-based encryption fronT.difficulty is to deter-
ministically find a field element such that some polynomial inis a square, see [14], Section 6.1.8.
For example, when the curve is given by a reduced Weierstrass equatienz> + ax + b, we
deterministically search such that:® + az + b is a square in the field.

In 2006, Shallue and Woestjine [20] proposed a first practical detettigimlgorithm. In 2009,
Icart [12] proposed another deterministic encoding for elliptic curves avieldk with ¢ elements,
wheng is congruent t® modulo3. Icart’s algorithm has quasi-quadratic complexityldg q. Kam-
merer, Lercier and Renault [13] proposed a different encodingeutice additional condition that
the elliptic curve has a rational point of ord&rand even for a special class of hyperelliptic curves.
Farashahi [8] found yet another parameterization for such ellipticesuto. A crucial point in
[12, 13, 8] is that the map — 23 is bijective for a finite fieldk having cardinality congruent to
2 modulo 3. Its inverse map i — xz¢ wheree mod ¢ — 1 is the inverse of3 mod ¢ — 1 and
0 < e < ¢ — 1. Exponentiation by can be computed in deterministic tinleg ¢)>+°(") using the
fast exponentiation algorithm. So in order to deterministically compute points efliptic curveC'
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over such a finite field, one can afford the usual field operations tageitte cubic roots. In other
words, one looks for a parameterization of the elliptic curve by cubic rediGuch a parameteriza-
tion will be called apseudo-parameterizatidn this article. Finding such a pseudo-parameterization
is a special case of the problem of finding parameterizations of curveximals [19].

We show how such pseudo-parameterizations can be obtained fromdigesthe dual curve of
the elliptic curveC'. In a nutshell, we produce points 6has intersection points betweéhand well
chosen lines. ID is a line in the projective plane, then the intersectioid’ consists of three points,
counting multiplicities. These three points can be computed by solving a culatieauWe recall
in Section 2 how to derive the Tartaglia-Cardan formulae for this purp&sxall these formulae
run in two steps. One first has to compute a square root of the discriminaathiide solutions are
then calculated using the field operations and cubic roots. Since cubicareat®t a problem in our
context, the only remaining difficulty is computing the square root of the discaimir5o we choose
the line D in such a way that the discriminant of the intersection is a square, and we assume that
we have an algebraic formula for its square root. More precisely, weidena lineD; depending
on a rational formal parameter This means that the coefficients in the projective equatiab,adre
polynomials in the indeterminate The discriminantA(¢) of the intersectiorl;.C' is then a rational
fraction int. We ask that this discriminant be a square:{m). We compute once for all a formal
square root(t) of A(t). For every value of we can then produce a point 6husing only the field
operations and cubic roots.

We recall in Section 3 that the projective linesFirmre parametrized by the dual plaheThe line
in P with projective equatiod/ X + VY + W Z = 0 is represented by the poifif : V : W] € P. A
rational family of linest — D; thus gives rise to a rational curdeinsidelP. Indeed, if the projective
equation ofD; isU () X +V (t)Y + W (t)Z = 0thenthe map — [U(t) : V(¢) : W(t)] parametrizes
a rational curve insid®. The discriminantA(t) vanishes wheneveb,.C' has a multiple root. This
happens if and only i, is tangentto C. Not every projective line is tangent t6. The subset of
PP corresponding to lines that are tangenttas a curve denoted’ and called thelual curve ofC.

So A(t) describes the intersection between the rational clireed the dual curv€’. And A(t) is

a square if and only if every point in the intersection betw&esnd C' has even multipicity. So we
will be interested in rational curvesin P that have even intersection with the dual curve to the cubic
curveC'. The connection between such curves and pseudo-parameterizatietailisd in Section 4.

Because the dual curvé plays such an important role we will study it in Section 3. This curve
has genud and9 singularities, all cusps. Indeed the nine cuspgaforrespond to the nine flex
tangents ta”, while the smooth points 06' parametrize the tangent lines @dthat are not flexes.
These nine points in the dual plane form an interresting configuration thatwdy in Section 5. We
are particularly interested in rational curvegassing through several among these nine points. We
will find that many such curveb have even intersection with. We will show in Section 6 that these
curves give rise to all the known pseudo-parameterizatiogsfotind by Icart, Farashahi, Kammerer,
Lercier, Renault, and to several new ones. It is then natural to asktamy rational curves ofi have
even intersection witl'. We shall see in Section 7 that there are infinitely many such rational gurves
giving rise to infinitely many inequivalent pseudo-parameterizations. él'basves lift to rational
curves on the degree two coveridgof the dual plane ramified along. This will lead us to the
classical and beautiful topic of rational curves & surfaces.

Throughout the paper, we denote by field with characteristic different fromand3, by k& > k
an algebraic closure df, and by(s € k a primitive third root of unity. We se{/—3 = 2(3 + 1.

The Maple [17] code for the calculations in this article can be found on ttieesi web pages.



2 Solving cubic equations

In this section we recall the Tartaglia-Cardan formulae for solving cubi@tans by radicals. A
modern treatment can be found in [6]. We believe it is worth stating theséieqgsian an unambiguous
form, that is well adapted to our context, and does not make excessieé aglicals and roots of unity.
In other words we need regular and generic formulae i@} = 23 — s12% + sox — s3 be a degree
3 separable polynomial ik[z]. Callrg, 7; andr, the three roots ofi(z) in k. Set

6 =v/=3(r1 —ro)(ra — r1)(ro — 12)

andA = §2. Note thatA is the usual discriminant multiplied by3. We call it thetwisted discrimi-
nant Since it is a symmetric function of the roots, it can be expressed as a pabina s, sy and
s3. Indeed

A = 8153 — 5dszs159 — 35755 + 125753 + 1255,

In particularA lies ink. Letl = k((3,8) C k be the field obtained by adjoiningand a primitive
third root of unity tok. We setm = [(r1,r2,70).

If the extensiori C m is non-trivial then it is a cyclic cubic extension. Sinlceontains a primitive
third root of unity, this cubic extension is a Kummer extension: it is generatatieocubic root of
some element ih. Let o be the generator of the Galois group that sende r;; for i € {0, 1,2},
with the convention that indices make sense modul/e set

p=ro+ (' + (50

and we check that(p) = (3p. We setR = p* and we check thaR is invariant byo. So R is an
invariant for the alternate group acting ¢n, r2, 73} and it can be expressed as a polynomiadjin
s9, s3 andé. Indeed we find

27 9 3
R = p3 = 5‘;’ + 353 — 58182 — 55.
Similarly we set
p =10+ (ar1+ Gra
and we check that or 9 5
R =p%=s+ 5 53 T 55182 + 55-
We note thapp’ = rg +r? + 13 — ror1 — r1re — rar is invariant by the full symmetric group
and is indeed equal t& — 3s,. So bothp andy’ are computed by extracting a single cubic root.
Finally, the three rootsy, r1, 2 can be expressed in termsmby solving the linear system:

ro+11+ 12 = 5
ro+G i+ G = p
ro + (311 + Cglrz = 7
In particular the formula for the root
si+p+p
ro = S (1)

does not involves.



3 The dual curve of a cubic

In this section we review the properties of the dual of a cubic curve. Aotigir treatment of the
duality for plane curves can be found in [9] , [11] and [10]. Et= k3 and letE be the dual of
E. LetU = (1,0,0), V = (0,1,0) andW = (0,0,1). So(U,V,W) is the canonical basis df.
Let (X,Y, Z) be the dual basis di, V, W). LetP = Proj(E) = Proj k[X,Y, Z] be the projective
plane overk. LetP = Proj(E) = Proj k[U, V, W] be the dual projective plane. The main idea of
projective dualy is that points i parametrize lines if?, and conversely. The poifiy : V : W]in
[P corresponds to the line with equatiéhX + VY + WZ = 0 in P. And the poin{X : Y : Z]inP
parametrizes the in& U + YV + ZW = 0in P.

Now let C' C P be an absolutly integral curve with equatiéiiX,Y, Z) = 0. Let Fx = g—f;,
Fy = 2—5, F; = g—‘; be the three partial derivatives éf. The tangent ta”' at a smooth point
P =[Xp:Yp, Zp| has equation

Fx(Xp, Yp, ZP)U + Fy(Xp, Yp, ZP)V + Fz(Xp, Yp, Zp)W = 0.

The corresponding point it is [Fx(Xp,Yp,Zp) : Fy(Xp,Yp,Zp) : Fz(Xp,Yp,Zp)]. The
Zariski closure of the set of all such points is theal C of C'. SoC is the closure of the image of the
so called Gauss morphism

we - (smo

=

(XY : Z]——[Fx(X,Y,2),Fy(X,Y,Z2),Fz(X,Y, Z)],

whereC*™ is the locus of smooth points dri.

We assume that the characteristickas odd, and that not every point on the cu/as a flex or
a singular point (in particulaf’ is not a line). Thert is an absolutely integral curve. And the dual of
C'is C. This is the biduality theorem [11, Theorem 5.91]. Duality is very usefahhse it translates
properties ofC' into properties o' and conversely. In particular the Gauss napis a birational
map fromC to C. It maps the flexes af’ onto the cusps of .

The first non-trivial example of duality concerns conics (smooth plaoggtive curves of degree
2). The dual of conic is a conic.

We now assume thaf is a smooth cubic. The@' has degre® and to each of the nine flexes
of C there corresponds an ordinary cusp@nSinceC' has geometric genusand arithmetic genus
10 = (6 — 1)(6 — 2)/2 we deduce that there is no other singularity on it than these nine cusps. For
example, ifC' has equatio'(X,Y, Z) = 0 where

F(X,Y,Z)=X*4+Y*+ 273 - 3aXY Z, 2)
then the dual curve has equatiGiiU, V, W) = 0 where

GU,V,W)=US + VS + Wb —6a®>(UVW + UVW + UVIW?) )
+(4a3 = 2)(UBV3 + UBW3 + V3W3) + (120 — 3¢ U VW2,

The equation of the dual is found by eliminatiag Y, andZ in the system

U = Fx(X,Y,2)
V = F(X,Y,2)
W = Fy(X,Y,2)
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The real loci of the two curve§’ and (' are represented in Figure 1 and Figure 2 respectively in the
caseq = 0.

Figure 1: The cubic with equatiok® + Y3 + Z3 =0

Figure 2: The dual curve with equatiérf + V¢ + W6 — 2U3V3 — 2V3W3 — 2U3W3 = 0

The equation of the dual curve arises naturally when one studies theetttersof the cubic”
with a projective lineD. Indeed such a lind C P meetsC in exactly three points unless it is a
tangent line taC (in which case we have one simple point and one double point) or even @rflex
which case we have one triple point). Assume thas the line with equation

UX+VY +WZ=0. (4)

The intersectionD.C' is described by the homogeneous system consisting of Equation (4) and the
equation of the cubi€’. We can use Equation (4) to eliminate one of the three variakle¥, Z

in the equation of”. We obtain a binary cubic homogeneous form in the two remaining variables,
whose twisted discriminanhk (U, V, W) is the equation of the dual curvé (up to a square). This is
because this discriminant cancels exactly when the intersebtibrhas multiplicities.

4 Pseudo-parameterizations

Let C be an absolutely integral plane projective curve over a field parameterizatiorof C is a
non-constant map frof' ontoC. In more concrete terms we have a paipt= [X (t) : Y (¢) : Z(t)]

on C, depending on one formal parametethe three projective coordinates beeing polynomials in
k[t]. Itis well known [19, theorem 4.11.] that a necessary condition foh suparameterization to
exist is thatC' has geometric genus zero. In particular this never happens for an elliptie. cOne
may relax the condition that the coordinat&$t), Y (¢) and Z(t) should lye ink[z] and allow for

5



more general algebraic functions. A typical restriction would be to askXHhaj, Y (¢) and Z(t)
should belong to a radicial extension/gt). In other words they should be rational fractions and
v/ R(t) for some positive integer and someR(t) in k(t). As explained in the introduction we will
be interested in the case whéhis a smooth cubick is a field with characteristic different from
and3, ande = 3. We want to parametrize plane cubics by cubic radicals. Such a pararagteriz
will be called apseudo-parameterizaticio avoid any confusion with rational parameterizations that
do not exist for genus one curves. We will assume hgt) is non-empty. This is not a restriction if
k is a finite field. We will even assume th@thas ak-rational flexO. This is not a restriction either,
because every cubic with a rational poinkigssomorphic to a plane cubic with a rational flex.

We sketched in the introduction how we claim to find pseudo-parameterizatiéasonsider a
line

D U)X +VER)Y +W({t)Z=0

in P, depending on one rational parameteSince every line if? corresponds to a point it we can
associate to the familp, a rational curve. C IP which is the image of the map

t [U(): V(L) : W) (5)

We saw in Section 3 that the intersecti@h.C is described by a cubic form whose twisted
discriminantA(t) is, up to a square, equal @(U(t), V(t), W(t)) whereG(U,V,W) = 0 is the
projective equation of the dual. So we look for polynomiald/(t), V(t) and W (t) such that
GU(t),V(t),W(t)) is a square irk(t). A geometric interpretation of the latter condition is that
the rational curvel. meets the dual’ with all even multiplicities. So we look for a rational curve
L c P that intersects the dual cur¢e with even multiplicities. Such a rational curve may be given
by its projective equation, or as the image of a parameterization as in (5).

One may wonder if every pseudo-parameterization occurs in that walgriéfly explain why this
is essentially the case. A pseudo-parameterizdtien P; is a surjective map from a cyclic covering
of P! ontoC. So we have two conjugated poin and P}’. SinceC has a rational flex), we have
a chord and tangent group law, denotedon it. We consider the su®; = P, & P/ @ P/’. This
is a point onC' defined ovelrk(t), or equivalently a map — ;. We saw that such a map must be
constant becaus€ has genug. SoP; @ P/ @ P/ is a constant poinl € C(k). If A is the origin
O then for every value of the parameterthe three points;, P, and P’ are colinear. They lye on
a line D, with equationU (t) X + V(t)Y + W (t)Z = 0 whereU(t), V(t) andW (¢) are ink[t]. So
the pseudo-parameterization— P, is of the type studied above. H is notO, we may look for
apointB € C(k) such thatB & B & B = A. Such a point always exists if is a finite field and
#C (k) is not divisible by3. Then we sel; = P, © B and check thaR; ® R, @ R/ = O. So the
pseudo-parameterization— P; is of the type studied above, up to translation by a constant factor. In
general, we sek; = P, & P, & P, © A and check thak; + R} + R} = O. Sot — P, is of the type
studied above, up to a translation and a multiplicatiot3 isogeny.

We will say that two pseudo-parameterizatioans> P, andt — @, areequivalentf there exists
a birational fractions(t) such tha); = P, ;). We may wonder if two different families of projective
linest — D; andt — F; can give rise to equivalent pseudo-parameterizdtion P, andt — Q;. In
that casePy;) = @ lies in the intersection ab, ;) and E;. If these two lines are distinct then their
intersection consists of a single poiRt,) = Q; defined overk(t). Since every:(t)-rational point
on (' is constant we deduce th&t and(@); are constant. A contradiction. 39, = E; and the two
families correspond by a change of variable. In particular the two asedaiational curves in the
dual plane are the same.



The conclusion is that finding pseudo-parameterizations boils down to dgimdtronal curved.
in the dual plané® having even intersection with'. It is natural to study first rational curves going
through several cusps 6f, because the multiplicity intersection at a singular point is greater than and
generically equal t@. In the next section we look for such rational curves with a low degree.

5 The geometry of flexes

Let C' C PP be a smooth plane projective cubic. The nine flex point€'afefine a configuration in
the planeP. More interestingly, the nine flex tangents correspond to nine points in tilepthnel?.

We study the latter configuration. We are particularly interested in low degtemal curves going
through many of these nine cusps@f Remind arational curve is a curve with geometric genus
0 and a rational point. This is equivalent to the existence of a rationaineeaization, see [19],
theorem 4.11. We will first assume th@tis the Hessian plane cubic given by Equation (2). Indeed,
any smooth plane cubic can be mapped onto such an Hessian cubic bydiyedjeear transform,
possibly after replacing by a finite extension of it. The modular invariant@fis

L 21a%(a+ 2)*(a® — 2a + 4)?
)= a1y

The nine flexes of” are the three points in the orbit 6f = (0 : —1 : 1) under the action ofs, plus
the six points in the orbit of—1 : (3 : 0) under the action ofs. Let

we:(X:Y:2)— (X?—aYZ:Y? —aXZ: 2% - aXY)

be the Gauss map associated withThe images bw¢ of the nine flexes are the three points in the
orbitof (a : 1 : 1) under the action af; plus the six points in the orbit ¢t 3 : (5 : a) under the action
of S3. Figure 3 lists these flexes and their images by the Gauss map. \We=sety = (0: —1: 1)
andO = By = (a:1:1).

Flex of C Cusp onC'
Ap=(0:-1:1) | Bp=(a:1:1)
Ar=(-1:1:0) | Bi=(1:1:q)
Ay =(1:0:-1) | Ba=(1:a:1)
A3 =(-1:G:0) | B3 =((:¢3:a)
Ay=(G:0:-1) | By=(G:a: ()
As=(0:—1:Gy) | By=(a:(3: o)
Aﬁ—(C:),:—l:O) BGZ(C3:C§ZCL)
A7=(-1:0:(3) | Br=(:a:¢)
As=(0:G:~1) | Bs=(a:¢:(3)

Figure 3: Flexes of” and the corresponding cusps on its dual

These nine points in the dual plane form an interesting configurationndeqeon the single
parameter.

Position with respect to lines One can first check, e.g. by exhaustive search, that no three among
these nine cusps in the dual plane are colinear unless the modular invedan. See the proof of
Proposition 1 in Section 7.2 of [5]. So the nine points in the dual plane @onekng to the nine flex
lines are in general position with respect to lines. We deduce the following |dgrdaality.
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Lemma 1 A smooth plane projective cubic over a field with prime to six characteristimbabree
concurrent tangent flexes, unless its modular invariant is zero.

Position with respect to conics We now consider the configuration of the nine flex tangents from
the point of view of pencils of conics. Remember that six points in genesdipo do not lie on any
conic. Six pairwise distinct points lying on a conic are said t@bdeonic Six pairwise distinct lines
are said to beoconicif they all are tangent to a smooth conic.

Lemma 2 Consider a smooth plane projective cubic over a field with prime to six cheniatic and
assume that its modular invariant is not zero. Remdeelinear flex points. The six tangents at the
six remaining flexes are coconic. There are twelve such configuradfaiz coconic flex tangents.

Note that we claim that the six flex tangents are coconic. Not the six flex p&qgtsvalently we
claim that the six points in the dual plane corresponding to the six flex tangent®conic.

We first note that the conic with equatiéfiV — aV? = 0 meetsC at (a : 1 : 1), (1 : 1 : a),
(GG :¢:a)(a:C:0)(G:¢:a)and(a: (3 ¢3). The three remaining flexes ik are
(1:0:-1),(¢3:0:—1)and(1:0:¢3) and they lie on the line with equatidn = 0. The action of
S3 produces two more similar conics.

The conic with equatio®/? + V2 + W? + (a + 1)(UV + UW + VW) = 0 meetsC at the
six points in the orbit of¢2 : (3 : a) under the action 0f3. The three remaining flexes ih are
(0:—=1:1),(=1:1:0),and(1:0:—1). They lie on the line with equatioX + Y + Z = 0.

The conic with equatio®/? + (3V2 + (W2 + (a + 1)(GUV + GUW + VW) = 0 meetsC
at the three points in the orbit ¢& : 1 : 1) under the action ofs;. And also at the three points in
the orbit of (¢2 : (3 : a) under the action of3. The three remaining flexes ihare (0 : (3 : —1),
(¢3: —1:0),and(—1:0: (3). They lie on the line with equatioX + (3Y + (3Z = 0. The action
of S3 produces one more such conic.

The conic with equatiogsU? + V2 + (W2 + (a + (2)(UV + GUW + VW) = 0 meetsC at
(@:1:1),(1:1:a),(3:a:¢3),(a:C3:(), (CG:C3a), (¢ a: (). The three remaining
flexes inPare(1 : 0 : —1), (—1 : ¢3 : 0), and(0 : {3 : —1). They lie on the line with equation
(3sX +Y + (37 = 0. The action ofS3 produces five more conics.

We thus obtain twelve smooth conics that cross the dual aliraesix out of its nine cusps. Each
of these conics is associated with one of the twelve triples of colinear flexes. O

Four among these twelve conics are especially interesting because thatiorgulo not involve
(3. We note that three among these four conics are clearly rationakovebecause they have an evi-
dentk(a) rational point. The last one is rational also because its quotient by thenéaigi®morphism
of order3 is P! overk(a).

Position with respect to cubics Next we study the pencil of cubics going through the nine points in
the dual plane associated with the nine flex tangents. It has projective dimeeso in general. The
cubic with equation

a(U3+V34+W?3) = (a®+2UVW

goes through all these nine points in the dual plane. This cubic is in gem@radingular. So it is not
particularly interesting for our purpose.



Position with respect to quartics We now consider curves of degrdein the dual plane. The
projective dimension of the space of plane quartics4is So we can force a quartic to meet the
9 points we are interested in and there remdindegrees of freedom. Since we are particularly
interested in rational curves we use these remaining degrees of fréedmpose a big singularity at
O=B)= (a:1:1). Indeed, two degrees of freedom suffice to cancel the ddgoee in the Taylor
expansion aD. And three more degrees of freedom suffice to cancel the degres also. We find

a rational quarti@ in P passing through the nine cusps@fand having intersection multiplicity at
least two at each of them (because they are cusps) and at least sixcasfi®). The equation of this
rational quartia? is

U+ a(VE+ W = 2a(UPV + UPW + VW + VIV?) — (® + 1)U (VE + W?)
+3a2U2(VE+ W) + (a* + 20)V2W2 + (1 — X UVW(V + W) = 0.
This quartic is irreducible as soon as the modular invariar® @§ non-zero, which we assume

from now on. Computing the intersection with all lines throughve find the following parameteri-
zation of this quartic

Ut) = a*t* —2at® + (a® +2)t* — 2d*t + a,
V() = a*t'+ (1 —3a®)t® 4 3d*t% — 2at + 1,
W) = at*— (a®+ Dt* + 3d*t? — 2at + 1.

Substitutingl/, V, andW by U(t), V (t), andWW (t) in the equation of”' we find the degree4
polynomial

O+ 12t —t+1)%(at —2)%((a + Dt — 1)?((a® — a + 1)t2 + (1 — 2a)t + 1)?(a*t> + 1 — at)?.

We check that) has two branches &. One branch corresponds to= 0, and it has intersection
multiplicity 6 with C. The other branch correspondsite- 2/a, and it has intersection multiplicity
with C. This is illustrated by Figure 4 where the real locug’bis in black and the real locus 6f is
in red. So the total multiplicity of).C atO is 8. And the intersectio).C' only consists of cusps of
C; one with multiplicity 8 and the eight others with multiplicitg. The real part of this intersection
locus is visible on Figure 4.

Lemma 3 Consider a smooth plane projective culdicover a field with prime to six characteristic
and assume that its modular invariant is not zero. Lebe the dual ofC. Let O be one of the
nine cusps of’. There exists a rational quarti€ in the dual plane, such that the intersectionC'
has multiplicity8 at O and 2 at each of the eight remaining cusps. In particufgrC is an even
combination of cusps .

We stress that the definition of the quarficinvolves one flex on the one hand, and the eight
remaining flexes on the other hand. So we can define this quartic for &itytwaving a rational flex,
that is for any elliptic curve (and this makes a difference with the four cartostructed earlier, that
distinguish a triple of colinear flexes, and therefore cannot alwaystieed| over the base field.)

So we can take fof” an elliptic curve with Weierstrass equation

F(X,Y,2)=Y?Z - X® —aXZ? - bZ°. (6)



Figure 4: The real part of the intersection@fandQ.
We assume # 0, so the modular invariant is non-zero either. The image of the ofigin (0 : 1 : 0)
by the Gauss map i@ = (0 : 0 : 1), and the quarti€) given by Lemma 3 has equation
Ut -3V 4+ 6UVZW =0,

and parameterization

Uit) = 6t2 (7)

6 Intersecting a cubic with lines

In this section we assume that the map- a3 from k to k is surjective. This is the caseffis the
field of real numbers for example. This is also the cagei#f a finite field withq elements whepg is
congruent t® modulo3. For every element in k£ we choose once and for all a cubic rapt of a.
This way we define a mag/ : k — k. We will use the general recipe in Section 4 and the rational
curves exhibited in Section 5 to produce several pseudo-parametarizatia plane cubi€'.

6.1 Intersecting the dual curve with a conic

We may first take. to be one of the twelve conics in Lemma 2. So we assume&thathe Hessian
cubic given by Equation (2) for somesuch thau® # 1. Four conics, among the twelve conics given
in Lemma 2, are rational ovér(a). The intersectior..C' has degreé2 and contains six among the
nine cusps of”', each with multiplicity2. So this intersection is exactly twice the sum of these six
cusps. If we take fol the conic with equatio® W — aV? = 0 then a convenient parameterization
is given byU (t) = 1, V(t) = —t andW (¢) = at?. The corresponding lin®; has equation

X —tY +at’Z = 0.
We substituteX by tY — at>Z in the Hessian Equation (2) and find the deggderm in Y andZ

(3 +1)Y3 = 3at(t® + 1)Y2Z + 3a** (3 + )Y Z2 + (1 — at%) 23

10



describing the intersectio. D;. We divide by (t3 + 1)Z3 and we obtain a cubic polynomial in
y = Y/Z whose twisted discriminant is

3131\ 2

We use the formulae and notation in Section 2. We have

s1 = 3at,
Sg = 3@2752,
_ adts — 1
§3 = a1 T
5 - 9(1 + at3)
1+t
adtd +1
R = —277153 T
R = 0.

So we find the solution

; sfadtd +1
= Qalt — —_—
Yy FERERE
adtd +1
=X/Z =ty —at’ = —t{| —5——
v / yoa 341"

This is the pseudo-parameterization found by Farashahi [8].

and we deduce

6.2 Intersecting the dual curve with a quartic

Assume now that we takeé to be the rational quarti®) in Lemma 3. All the multiplicities in the
intersection).C are even. So we expect the twisted discriminant to be a square. This time wasmay
well take forC' the Weierstrass cubic in Equation (6). The parameterizatiohgi¥en in Equation (7)
provides a one parameter family of lin€8; ), with equation

6t°X + 6t°Y + (3at* —1)Z = 0.

We divide byZ, we setr = X/Z, y = Y/Z and we substitutg by 1/(6t3) — at/2 — x/t in the
Weierstrass Equation (6). We find a cubic equatidn- s122 + sox — s3in x = X/Z, where

S1 = 1/t2,
S22 = 1/(3t4)7
s3 = (1/t% —6a/t*> — 36b+ 9a*t?)/36.

Using the formulae and notation in Section 2 we find

6 = (—1/t5—108b — 18a/t? + 27a%t?)/12,
R = 0,
R = (—1/t® —108b — 18a/t* + 27a*t?) /4.

11



So we find the solution

1 3] a2t? 1 a
X7 — 4~y
v=X/7 =35 +\/ 4 1086 612

and

1
y=Y/Z = o —at/2 —x/t.

This is the pseudo-parameterization found by Icart [12], up to the ehafhgariablet — —1/t.

6.3 Intersecting the dual curve with a line

Assume finally that we take fat a line passing through two rational cusps‘af So we assume that
C is the Hessian cubic given by Equation (2) for somie# 1. AssumeL is the unique line passing
through the two cuspBy = (a : 1 : 1) andBy = (1 : a : 1) of C. The intersectiorL..C' has degree
6. Since(a : 1: 1) and(1 : a : 1) each have intersection multiplicity 2, there remains at most two
intersection points. An illustration of this situation in the real projective plan&engn Figure 5.

Figure 5: The intersection &f and L

Not all the multiplicities in the intersectioh.C' are even, but only two multiplicities are odd. So
we expectA(t) to be a square times a degrzeolynomial in¢. Points onL C P represent a linear
pencil of lines inP generated by the tangentsdbat (0 : —1 : 1) and(1 : 0 : —1). The first tangent
has equatiom X + Y + Z = 0. The second tangent has equati®nt «Y + Z = 0. So lett be a
formal parameter and consider the libg with equation(at + 1) X + (t +a)Y + (t +1)Z = 0. The
tangentaf0 : —1 : 1) corresponds to the value= co. The tangent al : 0 : —1) corresponds to the
valuet = 0. The lineD, meets the fixed pointl : 1 : —a — 1) and the moving pointl, —¢,¢ — 1).
So a parametric description f; is given by

i—(i+1:i—t:t—1—(a+1)i).

We substituteX by i+ 1, Y byi —tandZ byt — 1 — (a + 1)i in Equation (2) and divide by the
leading coefficient. We find the degree three polynomial

Sta+2)i  3t(1—1t)

h(i) = ® 8
(i) Z+a2+a+1 a?+a+1 ®
defining the intersectio,.C. The twisted discriminant of is
2 1)t? 4+ 2(2a + 1)(a? 2 1
A(75):817@9@ +a+ 1)t +22a+1)(a*+a+7)t+9(a* +a+ ). )

(a2 +a+1)3

12



This is not quite a square ik(a)(t). However, it only has two roots with odd multiplicity. So
if we substitutet by a well chosen rational fraction, we can tulninto a square. So we look for a
parameterization of the plane projective conic with equation

(a>+a+1)8?=9a*+a+1)T?+22a+1)(a®* +a+7)TK +9(a®* +a+1)K?  (10)

This conic has two eviderit-rational points, namely3 : 1 : 0) and(3 : 0 : 1). The line through
these two points has equation
—S+3T+3K =0.

The tangent at3 : 0 : 1) has equation
3a®+a+1)S—(2a+1)(a*+a+7)T —9(a®+a+ 1)K =0.
The generic line in the linear pencil generated by these two lines has equation
(Ba*+a+1)—)S+Bji—2a+1)(a*+a+7j)HT+ (35 —9a®*+a+1)j)K=0 (11)

wherej is a formal parameter.
Intersecting the conic in Equation (10) with the line in Equation (11) we find #inarpeterization

S(j) = 352-2(a+2)3+3(a+2)3(a®+a+1),
T() = 7 = 3(a* + a + 1)),
K(j) = (a2 +a+1)((a+2)3—37).

We now substitute by 7°(j) /K (5) in Equation (8) and find a cubic polynomial with coefficients
in the fieldk(a)(j). If we substitutet by T'(5j) /K (5) in Equation (9) we find thaf = §2(j) where
5(j) = 95(3j%2 —2(a+2)3 +3(a®> +a+1)(a+2)%)(3(a®* +a+ 1) — j)
o ((a+2)° = 3j)2(@> + a+ 1) |

We use the formulae and notation in Section 2. The polynomialEquation (8) has coefficients
1, —s1, s9 and—53 with

S1 = 0
3j(a+2)(3(a®> +a+1)—7)
(@@ +a+1)2((a+2)% - 3))
3j(3(a®> +a+1)—5)((a®> +a+1)(a+2)3 - 52
(a2 +a+1)3((a+2)3 — 3j)2 '
We deduce the following pseudo-parameterization of the atibic

52

53

275%2(3(a® +a+1) — j)
((a+2)3—=3j)(a®+a+1)3

p(j) = {/R>)

9j(a+2)(3(a®>+a+1)—7)
(a® +a+1)*((a+2)* = 35)p(j)
p(j) +0'(5)

3

i(3(a? +a+1) —j)
(a®+a+1)((a+2)3 —3y)
P(G) = (@()+1:i() —t(j)  t(J) — 1 = (a+ 1)i(5)).

13



whereP(5) is the point onC' associated with the parameter
We illustrate this situation on Figure 6 in the case= 2. The red segment corresponds to the
parametey taking values in the interva-4, —0.3]. We also note that the computation in Section 3.1

of [13] hides a similar geometric situation.

Figure 6: A pseudo-parameterization

7 Classifying pseudo-parameterization

We have seen many different pseudo-parameterizations of a plane eabitassociated with a ra-
tional curve inP having even intersection with the dual cur¢ein Equation (3). We may wonder
if there exist more such rational curves, leading to more pseudo-pard@agtms. We may also try
to put some structure on the set of such curves. This is our purposks aetttion. We assume that
the reader has some familiarity with algebraic surfaces as presented it,[22d particularly with
elliptic and K3 surfaces [18, 7, 3]. We shall not enter into the details. Atipmal curvel having
even intersection witkd! lifts to a rational curve on the degree two coverligf > branched along’.
To defineX we consider the function fieldl(a)(U/W, V/W) of P overk(a). We define a quadratic
extension of this field by adding a square rqatf G(U, V, W)/W6 whereG (U, V, W) is the equa-
tion of C. The normal closure dP insidek(a)(U/W, V/W,~) is £. It has nine singularities. One
above each of the nine cusps@f In order to obtain a smooth model f&, we first blow upP at
each of the cusps @f. We callIl the resulting surface. The inverse image’oby II — P consists
of one smooth genus one curve ghihtional curves tangent to it. We cdlthe normal closure dfl
in k(a)(U/W,V/W,~). This is a smooth surface, the minimal modebbf

We call o, the automorphism dP that mapsU : V : W] onto [V, W, U]. We callo, the auto-
morphism of that mapgU : V : W] onto[U, (3V, (3W]. We callos the automorphism of that
maps[U : V : W] onto[V, U, W]. We extend these three automorphisms @) (U/W, V/W,~) by
sendingy to itself. The resulting automorphisms are calggdos andos also. They induce automor-
phisms ofll, ¥ andS denotedr, 02 andos again. We calb, the unique non-trivial automorphism
of k(a)(U/W,V/W,~) overk(a)(U/W,V/W). It induces automorphisms &f and.S denoteds,.
The action ofr1, 02, 03 on theB; is given by the following three permutations of the indices

o1 = (0,1,2)(3,4,5)(6,7,8),
oo = (0,5,8)(1,3,6)(2,4,7),
03 = (07 2)(1)(376)(478)(577)'

The group generated layy andos has order nine. It acts simply transitively on the nine cusps, and
also on the nine corresponding rational curves on the blowl.ug/e choose one of the two rational
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curves onS aboveBy and call itEy. Forl < ¢ < 9 we call E; the image ofEy by the unique
automorphism ik o1, o9 > that mapsB, onto B;. We call F; the image ofE; by o4. We thus obtain
eighteen rational curves of. Let H be the inverse image by — P of any line inP. The lattice
generated by thé;, F; and H in the Néron-Severi group has ram, and discriminan®.3”. The
intersection indices are

E,.F, = 1,
E? = -2
F} = -2
E;.E; = O0fori#j,
E;.F; = O0fori#j,
E,.H = 0,
F,.H = 0,
H?> = 2

Let D be a generic line it throughB,. The intersection oD.C' is 2B, plus an effective degree
four divisor. So the inverse image 6fin S is the union offy, Fj and a genus one curve with at least
two rational points : the intersection points witlhy and F,. Thus the inverse image k& — P of the
pencil of lines throughB, defines an elliptic fibratiorf : S — P! of S, with two sectionsF, and
Fo, soS is an elliptic K3 surface. The following lemma [15, 2.3] is usefull when lookioigrational
curves on a K3 surface.

Lemma 4 Let D be a class with self-intersection2 in the Néron-Severi group of a K3 surface. Then
either D or — D contains an effective divisor. If this divisor is irreducible then it is a smootiomnal
curve.

We may also look for singular rational curves in classes with positive stelfsaction. One can
even count rational curves in such classes [2, 16, 21]. Since treereamny of them, they are unlikely
to be defined over the base field. Indeed, all the rational curves in 8éctifi to smooth rational
curves onS having self-intersection-2. For example the conic i passing througty, B;, Ba, Bs,
By, Bs lifts to a rational curvelyiagss on S. We haveH . Iyi0345 = 2, Fo.lp19345 = F1.1p19345 =
FEs.Ig10345 = 1 andF3.1012345 = Fy.Ipio345 = F5.1p12345 = 1 and1012345 has zero intersection with
the remainingt; and F;. We deduce the following identity in the Néron-Severi group

3lo12345 = 3H —2(Eo + By + Eo) — (F1 + Fy + F3) — (E3 + Ey + E5) — 2(F3 + Fy + F3),
andly 12,345 has self-intersection-2. We find similarly, and with evident notation,

3lo,13478 =3H — 2(Ey + Es + E7) — (Fo + F3 + F7) — (E1 + Eq + Eg) — 2(Fy + Fy + Fy),
and

3o,1,3568 = 3H — 2(Eo + E5 + Eg) — (Fo + F5 + Fy) — (E1 + B3 + Eg) — 2(Fy + F3 + Fg).

The action of< o1, 09, 03,04 > produce4 similar smooth rational curves aghwith self intersec-
tion —2. This is the contribution of conics in Lemma 2.
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Now consider the quartic given by Lemma 3. It lifts to a rational cufyen .S, such that/y. H =
4, Jo.Ey =2, Jo.Fy =1, Jo.E; = 1, Jyo.F; = 0for 1 < i < 8. We have the following identity in the
Néron-Severi group

3Jo=6H —5Ey —4Fy— Y (2E;+ ).
1<i<8

The action of< o1,09,04 > producesl8 such rational curves with self intersectier®2. The
lattice generated by/, the nineE;, the nineF;, and the24 + 18 classes coming from conics and
guartics, has dimensiotd and discriminanb4. This is the full Néron-Severi group & whenk
has characteristic zero anmdis a transcendental. Using the knowledge of this Néron-Severi group
we can prove that there are infinitely many rational curve$ pleading to infinitely many pseudo-
parameterizations of the cubic. We consider an elliptic-fibration of, for example the fibration
f : S — P!introduced above. We choose the sectignas origin. The generic fiber of is an
elliptic curve over the function field(¢) of P'. Fibers of f map onto lines througl®, in P. The
height singular fibers of map onto the lined3yB; for 1 < i < 8. Each of them has Kodaira type
13, the three irreducible components beifig F;, and a third rational curvé&’; crossingEy and Fy.
Let 7" C NS(S) be the group generated by the zero secfigrand the fiber components;, F;, G;
for 1 < i < 8. The Mordell-Weil group of the generic fiber is isomorphic [18, TheofB8] to the
quotientNS(S)/T'. SinceE;+ F;+G; = H— Ey— Fy does not depend orfor 1 < ¢ < 8, the rank of
T is 18 and the rank oNS(.5) is one. So we have infinitely many sectionsfofThe images of these
sections all are rational curves with self intersecticgh We draw one of these rational curves (rather
its image inP) on Figure 7. In cas€ is the Weierstrass cubic in Equation (6), a parameterization of
this rational curve is

U(t) = 4at®+4t%/21, (12)
V() = t(4at® +4t?/27),
W(t) = at®+ 2at*/27 + 4bt° + 1/81.

Figure 7: One more rational curve having even intersection @ith
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