文章编号:100026893(2003)0620537204

-种改进的 PGA 最大似然相位估计法

钟 睿,毛士艺

(北京航空航天大学 203 教研室, 北京 100083)

A Modified PGA ML Phase Estimation Method

Zhong Rui, Mao Sh2yi

(Faculty 203, Beijing University of Aeronautics and Astronautics, Beijing 100083, China)

摘 要:讨论了合成孔径雷达(Synthetic Aperture Radar) SAR)成像处理过程中一种不需要直接求解矩阵特征值及其特征向量,但仍然基于最大似然估计的应用于相位梯度自聚焦算法(Phase Gradient Algorithm) PGA)中的相位估计方法,且主要从计算量及数据处理精度等方面与传统的特征向量方法相比较。结果表明,这种基于迭代方法计算特征向量相位的算法在 SAR 成像自聚焦过程中具有实用意义。

关键词: SAR; 自聚焦; 相位梯度; 最大似然; 特征向量

中图分类号: V243 文献标识码: A

Abstract: The method of phase estimation in SAR motion compensation is presented, which, based on the eigen2 vector method, eliminates the solution of eigen2 values and the correspondence eigen2 vectors. Some comparisons has been made with the traditional eigen2 vector method on operation intensity and processing precision. The results ind 2 cate that this iterated phase estimator is practical in SAR autofocus procedure.

Key words: SAR; autofocus; PGA; ML; eigenvector

SAR 图像聚焦处理过程本质上是调整回波 信号各成份的相位使之相干叠加的过程,这一过 程的严格执行需要各点目标回波的精确相位知 识。自聚焦算法主要是对基于运动传感器的运动 粗补偿以后的残留相位误差以及其他原因造成的 相位误差所进行的补偿。PGA 算法由 Eichel 等 人在 1989 年提出, PGA 算法能够估计任意阶相 位误差,这主要归功于它估计的相位误差不是基 于模型的,而且利用了方位向相位误差的冗余性。 PGA 算法对误差相位的估计优于或等同于任何 其他可能估计方法所得到的结果,原理上算法性 能与所处理的图像场景无关、大量的数值实验也 表明 PGA 具有很好的鲁棒性。因此, PGA 算法 在SAR 成像技术中得到了广泛的应用,比如 1999 年美国 Sandia 国家实验室的 Lynx 高分辨率 实时 SAR 处理机中所用的自聚焦算法即为 PGA 算法^[1]。PGA 算法对误差相位的逼近需要在图 像和相位之间进行多次迭代来实现,每一次迭代 中对误差相位的估计可采用不同的相位估计算 子。最常见的是线性无偏估计算子,相位估计运 算只需要乘除法和 FFT 操作, 适合实时处理。而 二阶最大似然估计经实际计算验证, 具有较高的 精度,但是涉及到进行求复数幅角带来的较复杂 的运算。更高阶的最大似然估计虽然具有更高的 精度,但是应用很少,主要因为: ¹ 高阶无法得到 解析解形式,一般用最大特征值所对应的特征向 量相位来近似替代,这种替代在理论上并不严格; ° 求取矩阵特征向量过程需涉及比较复杂的运 算,抵消了高阶算法的优越性。

1 信号模型与传统处理方法

假设在方位向上有单一的点目标,所有距离 向上的点目标都位于方位中心,并且目标反射系 数分布遵循相互独立的零均值高斯分布,二维杂 波也遵循独立的零均值高斯分布。则在多普勒) 距离压缩域回波表示如下

 $x(m, n) = a(n)e^{jU(m)} + c(m, n)$ (1) 其中: x(m, n)为未经方位向压缩的原始图像数 据; a(n)为点目标的回波反射系数; U(m)为待 估计的误差相位; c(m, n)为回波中的杂波分量。 而误差相位估计即是要在已知 x(m, n)条件下 估计出 U(m)。

在传统的 PGA 方法中相位梯度估计算子基 于相邻的相位历程(Phase history)数据,其中应用 最为广泛的估计算子是^[2]

收稿日期:200221213;修订日期:2003202220

文章网址: http://www.hkxb.net.cn/hkxb/2003/06/0537/ © 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

$$\mathfrak{W}(t) = \frac{\underline{E} \operatorname{Im}(\operatorname{xc}(t) \operatorname{x}^{*}(t))}{\underline{E} |\operatorname{x}(t)|^{2}} \qquad (2)$$

可以证明上式中 & (t) 为相位梯度(微分)的线性 无偏估计算子^[3]。式中: x(t) 表示方位向的信号; xc(t) 表示对方位向信号求微分。在 SAR 的具体 实现中由于处理对象均为离散数据,连续时间域 上的微分无法直接求得,因此求 xc(t) 的一个方 法是利用离散傅立叶变换(DFT) 的性质

xc(t) = I DFT(j8 # F(x(t)))(3)其中: 8 为离散频率。若将式(2) 所述的相位估计 方法加以推广可以利用相位误差在距离向的冗余 性提高估计精度。若目标复反射系数和噪声均服 从零均值高斯分布,则对相位误差的最大似然估 计(ML) 可利用特征向量方法^[4],设 M= [e^{jU1} e^{jU2} e^{jU3} , e^{jU}]^T, M即为N 个连续的 误差相位历程所对应相位矢量,并且设 x 为N 个 连续方位相位历程数据组成的矢量。不失一般性, 可以设定 Ui 为 0,则对 M的 ML 估计即求解一组 相位值 0, U₂, , , U₄, 使得 Q = M($\stackrel{\scriptstyle M}{\underline{E}} x_k x_k^{\rm H}$) M 最大,其中 M 表示取多个距离压缩域(Range Compressed) 即经过距离压缩后的距离向数据以 利用相位误差在距离压缩域上的冗余。如果放松 条件限制,不是求解一组相位而是求解一矢量使 得 Q 最大, 则可容易利用求出 C = $E_{\mathbf{x}_k \mathbf{x}_k}^{\mathbf{H}}$ 最大 特征值所对应特征向量来得到。从直观可知取其 特征向量中诸分量的相位得到对误差相位的估计 即可接近最佳估计效果。但这种方法存在:(1)理 论上讲,只要最大特征值对应的特征向量中各复 数分量的模值不全部相等,则这种方法得不到最 优解,即其估计精度在理论上存在随机的系统误 差,亦无法在实际系统中控制其估计精度;(2)一 般情况下,矩阵特征向量的求出需要较大量的运 躗^[5]。

设矩阵的阶数为 N,则 Householder 变换的 所有计算总量为 $4N^3/3$, Householder 后的 QL 分 解所需的计算量为 $3N^3$,则为了算出特征值总共 所需的计算量为 $13N^3/3^{[5]}$,得到相应的特征向 量尚需额外的计算。而本算法每一次迭代所需的 计算为 N^2 ,数值试验表明迭代 N 次左右即可以 得到较高精度的结果,所以总共的计算量约为 N^3 ,相比较特征向量方法可以较大地节省了计算 开支。

2 自聚焦处理中迭代求解相位值方法

为了回避矩阵分解方法求解特征值过程的复杂性,并考虑到待求解矢量 M的各分量模均为 1, 仅需求解其相位,首先考虑直接微分以得到相位 梯度算子的方法。

设相位历程信号的自相关矩阵

$$C = \begin{bmatrix} a_{11} & a_{12} & , & a_{1n} \\ a_{21} & a_{22} & , & a_{2n} \\ & , & \\ a_{n1} & a_{n2} & , & a_{nn} \end{bmatrix} = \sum_{k=1}^{N} x_k x_k^{H},$$

则将 Q = M CM完全展开可以得到

$$Q = \prod_{i=1}^{N} \prod_{k=1}^{N} a_{ik} e^{-jU_{i}} e^{jU_{k}}$$
(4)

为了求出极值点,对各相位值求偏微分得到

$$\frac{9Q}{9U} = \frac{9(\sum_{k=1, k \le i}^{N} a_{ik} e^{jU_{k}} e^{jU_{k}} + \sum_{k=1, k \le i}^{N} a_{ki} e^{jU_{k}} e^{jU_{k}})}{9U} = -j\sum_{k=1, k \le i}^{N} a_{ik} e^{jU_{k}} e^{jU_{k}} + j\sum_{k=1, k \le i}^{N} a_{ki} e^{jU_{k}} e^{jU_{k}} = 2Im(\sum_{k=1, k \le i}^{N} a_{ik} e^{jU_{k}} e^{jU_{k}}) = 0$$
(5)

 $Im(\sum_{k=1, kX}^{N} a_{ik}e^{jU_{k}}e^{jU_{k}}) = Im(e^{-jU_{k}}\sum_{k=1, kX}^{N} a_{ik}e^{jU_{k}}) = 0$ 从而得到方程组

$$U_{1} = \arg(\sum_{k=2}^{N} a_{1k} e^{jU_{k}})$$

$$U_{2} = \arg(\sum_{k=1, k \times 2}^{N} a_{2k} e^{jU_{k}})$$
,
(6)

$$U_{N} = \arg\left(\sum_{k=1, kX}^{N} a_{Nk} e^{jU_{k}}\right)$$

上面方程组实际上仅有 N-1 个独立方程,因为 由式(4)得知

$$Q = \prod_{i=1}^{N} e^{-jU_{i}} \prod_{k=1}^{N} a_{ik} e^{jU_{k}} =$$

$$\prod_{i=1}^{N} e^{-jU_{i}} (\prod_{k=1, k \ge i}^{N} a_{ik} e^{jU_{k}} + a_{ii} e^{jU_{i}}) =$$

$$\prod_{i=1}^{N} (e^{-jU_{i}} \prod_{k=1, k \ge i}^{N} a_{ik} e^{jU_{k}}) + \prod_{i=1}^{N} a_{ii}$$
(7)

所以由Q是实数这一事实得到方程组(6)中 仅需要满足N-1个方程即可导出自然满足第N 个方程,这与假设M中N-1个待定相位值是吻合

×。 ◎ 1994-2010 China Academic Journal Electronic Publishing House, SII Tights reserved. http://www.cnki.ne

$$M = \begin{bmatrix} e^{jU_{1}} = \sum_{k=2}^{N} a_{1k} e^{jU_{k}} \setminus \left| \sum_{k=2}^{N} a_{1k} e^{jU_{k}} \right| \\ e^{jU_{2}} = \sum_{k=1, k \times 2}^{N} a_{2k} e^{jU_{k}} \setminus \left| \sum_{k=1, k \times 2}^{N} a_{2k} e^{jU_{k}} \right| \\ , , , \end{bmatrix}$$
(8)

$$\left[e^{jU_{M}} = \sum_{k=1, k \le N}^{N} a_{Nk} e^{jU_{k}} \Big| \left| \sum_{k=1, k \le N}^{N} a_{Nk} e^{jU_{k}} \right| \right]$$

除非在矩阵为二阶情况下,式(8)所示非线 性方程组求解较为困难。这里考虑用迭代方法求 解。也就是当迭代次数 n = 1,2, 时,存在

$$\begin{bmatrix} e^{jU_{l,n}} = \sum_{k=2}^{N} a_{1k} e^{jU_{k,n-1}} \setminus \left| \sum_{k=2}^{N} a_{1k} e^{jU_{k,n-1}} \right| \\ e^{jU_{2,n}} = \sum_{k=l,k}^{N} a_{2k} e^{jU_{k,n-1}} \setminus \left| \sum_{k=l,k}^{N} a_{2k} e^{jU_{k,n-1}} \right| \\ & , , \\ & , \\ & , \end{pmatrix}$$

$$(9)$$

 $\left[e^{i U_{N,n}} = E_{k=1, kXN} a_{Nk} e^{i U_{k,n-1}} \right] \left[E_{k=1, kXN} a_{Nk} e^{i U_{k,n-1}} \right]$ 实际数值试验表明此迭代方程收敛速度很快并且对迭代初值不敏感, 一般可设初始相位全部为 0, 即设 M= $\begin{bmatrix} 1 & 1 & , 1 \end{bmatrix}^{T}$, 则根据式(8) 迭

代最后即可直接求解出相位矢量 M最后收敛判 决可由 + M- M₁+ < F决定, F取决于所需计 算精度。收敛结果即自聚焦算法中所需要的各方 位向上的误差相位值。

3 收敛性证明

为研究方便,可取其中一个相位 Uh,且 m I [0, N]。假设与 Uh 相位有关的Q 对应部分为 Qm,且在某次迭代中更新 Uh 为 Uh,则 Qm 更新 为 Qh。

$$Q_{\Phi} = \prod_{i=1, i \times m}^{N} a_{i, m} e^{-jU_{i}} e^{jU_{m}} + \prod_{k=1, k \times m}^{N} a_{m, k} e^{-jU_{m}} e^{jU_{k}} - a_{m, m} = 2Re\{\prod_{k=1, k \times m}^{N} e^{-jU_{m}} a_{m, k} e^{jU_{k}}\} - a_{m, m} = 2Re\{e^{-jU_{m}} \prod_{k=1, k \times m}^{N} a_{m, k} e^{jU_{k}}\} - a_{m, m} = 2Re\{e^{-jU_{m}} \prod_{k=1, k \times m}^{N} a_{m, k} e^{jU_{k}}\} - a_{m, m}$$
(10)
考虑到迭代操作使得

$$U_{m} = \arg(\sum_{k=1, kX m} a_{m, k} e^{jU_{k}})$$

$$it \qquad Q_{m} = 2 \Big|_{k=1, kX m} a_{m, k} e^{jU_{k}} \Big|_{-a_{m, m}} \setminus 2Re\{e^{-jU_{m}} \sum_{k=1, kX m}^{N} a_{m, k} e^{jU_{k}}\} - a_{m, m} = Q_{m}(11)$$

所以本迭代算法可至少收敛于局部最优值。

4 图像仿真

为比较各种算法的性能,文章中进行了直接 进行特征值求解和采用迭代算法的在相同仿真条 件下的相位估计性能比较,并且仿真了采用传统 PGA 算法以及经本文改进的 PGA 算法在雷达图 像数据的自聚焦处理。

411 相位估计仿真

(1) 仿真条件 假设真实相位值为从0开始,且误差相位为P/4到2P范围内的正弦函数, 共取16个点。噪声设为高斯白噪声,各距离门中 的反射点的反射系数同样设为高斯分布。取信噪 比SNR分别为-7dB和3dB。另外,迭代算法过 程的中止条件是本次估计的相位值矢量与上次估 计的相位值矢量间差值的范数小于等于10⁻¹⁰。

(2) 仿真结果 图例中/理想0表示真实相位 误差曲线,/传统0表示直接用矩阵进行特征值求 解方法得到的估计相位曲线,而/新0表示采用迭

Figl 2 The performance comparison between two

© 由此可见每一次相位更新均使得 Q 值递增. ◎ 1994-2010 China Academic Journa Electronic Publishing Housalgonthing when SIR =ve3dB http://www.cnki.net 代算法估计得到的相位估计曲线。

由图中可见当信噪比为2时,采用2种方法 所能够得到的相位估计性能几乎相同,并且与真 实相位几乎重合,但是当信噪比为1/5时,采用特 征值方法的估计偏差较大,真实值与估计值之间 最大误差达到015475,根据方位向上距离与相位 的关系 R = UK(4P),假设波长为0103m,则 得到此时对应的等效方位向扰动误差为010013m;采用迭代算法对应点部分的相位偏差 为010013m;采用迭代算法对应点部分的相位偏差 为011115,造成的方位向历程扰动误差为2166@ 10⁻⁴m,相对信号波长低了一个数量级,可以完成 较为准确的补偿。也就是说,采用迭代算法更能 够适用于信号质量比较恶劣的情况。

412 成像质量仿真

(1) 仿真条件 图 3 比较了真实的雷达回波

图 3 传统的相位估计算子所得成像结果 Figl 3 The imaging result after the compensation by traditional phase estimator

数据采用式(2) 所示的传统 PGA 相位估计算子和 利用本文提出的相位估计算子得到的最终图像。 其中雷达回波数据在本身相位误差基础上还叠加 了人为施加的正弦相位误差,误差相位幅度为 10rad,周期 T/4,为合成孔径时间,图 3、图 4 中横 向为方位向。

(2)仿真结果 从图中可见,整个成像的效果 采用迭代算法比传统相位估计来看更加清晰,尤 其是图中最左处所示的公路,中间所示的立交桥 以及最右端的强反射点等处。

得较好的图像聚焦效果,由此可见最终的效果体现 出对传统方法一定的优越性,主要基于3个原因: (1)本方法为相位误差 ML 估计的直接解,同样利 用了距离向数据在相位误差上的冗余性;(2)本方 法不但利用多个距离向的数据,同时在方位向上不 仅只利用相邻的方位数据计算相位梯度,而仅同时 采用多个方位数据来估计相位误差,从而获得在方 位向上的冗余;(3)本方法利用迭代的方法获得相 位误差,克服了特征值方法在阶次大于2时由于得 不到解析解而造成的系统误差,并且可以根据成像 质量的要求认为地改变估计的迭代次数。

参考文献

- T sunoda S I, Pace F, Stence J, et al. Lynx: A high2resolution synthetic aperture radar [A]. SPIE Aerosense [C]. 1999, 3704: 20- 27.
- [2] Eichel P H, Ghiglia D C, Jakowatz C V, A speckle processing method for synthetic aperture radar phase correction[J]. Opt2 cal Letters, 1989, 14(20): 1- 3.
- [3] Eichel P H. Phase gradient algorithms as an optimal estimator of phase derivative [J]. Optical Society of America, 1989, 14 (1): 1-3.
- [4] Jakowatz C V, Wahl D E. Eigenvector method for maximun2 likelihood estimation of phase errors in synthetic aperture radar imagery[J]. Optical Society of America, 1993, 10(12): 2539
 2596.
- [5] William H P. Numerical recipes in C: The art of scientific com2 puting[M]. Cambridge University Press, 1992. 469-481. 作者简介:

 钟 睿(1975-) 男,北京航空航天大学信息工程学院,博士生, 主要从事实时信号处理方面的研究。
 毛士艺(1935-) 男,北京航空航天大学信息工程学院,教授,博

土生导师。 (责任编辑: 俞 敏)

5 结 论

© 文中分析了相位梯度算子的迭代算法可以取 © 1994-2010 China Academic Fournal Electronic Publishing House. All rights reserved. http://www.cnki.net