Ca₂SnO₄:Tb³⁺绿色荧光粉的制备及光致发光研究

邱桂明1,许成科2,黄 翀1

1. 汕头大学理学院物理系,广东 汕头 515063
2. 衡阳师范学院物理与电子信息科学系,湖南 衡阳 421008

摘 要 采用高温固相法合成了 $Ca_2 SnO_4 : Tb^{3+}$ 绿色荧光粉。利用 X 射线衍射分析了 $Ca_2 SnO_4 : Tb^{3+}$ 物相 的形成。测量了 $Ca_2 SnO_4 : Tb^{3+}$ 的激发和发射光谱,激发光谱由一个宽激发峰组成,研究了 Tb^{3+} 浓度对样 品激发光谱的影响,结果显示,随 Tb^{3+} 浓度增大,宽带激发峰发生了红移。发射光谱由四个主要发射峰组 成,峰值分别位于 491,543,588 和 623 nm 处, Tb^{3+} 以 5D_4 — 7F_5 (543 nm)跃迁发射最强,低掺杂浓度下, Tb^{3+} 的⁷ F_6 能级出现斯托克劈裂,劈裂峰(481 nm 处)随 Tb^{3+} 浓度增加,先增强然后减弱;在发光强度方 面,随 Tb^{3+} 浓度的增大呈现先增大后减小的趋势,当 Tb^{3+} 摩尔浓度为 9%时,发光强度最大,根据 Dexter 理论,确定了在 $Ca_2 SnO_4$ 基质中 Tb^{3+} 自身浓度猝灭机理。荧光寿命测试表明 Tb^{3+} 在 $Ca_2 SnO_4$ 基质中 Tb^{3+} 自身浓度猝灭机理。荧光寿命测试表明 Tb^{3+} 在 $Ca_2 SnO_4$ 基质中荧光 衰减平均寿命为 4.4 ms。

关键词 Ca₂SnO₄: Tb³⁺; 荧光粉; 光致发光; 荧光寿命
中图分类号: O482.3 文献标识码: A DOI: 10.3964/j.issn. 1000-0593(2011)11-2906-04

引 言

稀土发光材料是由基质化合物与作为激活剂的少量稀土 离子所组成的。稀土离子具有 4f 电子, 性质独特, 研究稀土 离子掺杂于各种基质材料中的发光行为具有重要的现实意 义^[1,2]。Danielson 等^[3,4]利用组合化学法首次制备了高效的 蓝色发光材料 Sr_2CeO_4 。由于 Sr_2CeO_4 独特的晶体结构和高 效的发光特性,引起了人们的广泛关注,揣晓红等[5], Nag^[6],石士考等^[7]分别对这种发光体的制备方法、发光性 质和发光机理作了进一步的研究。Ca2SnO4 与 Sr2CeO4 同 构,具有稳定的晶体结构和优良的物理、化学性能,是一种 很好的基质材料。杨红梅^[8]等发现 Eu³⁺掺杂的 Ca₂ SnO₄ 发 光体在紫外光的激发下产生非常强的红光发射。付晓燕等制 备了纳米级锡酸盐发光材料,并对其发光性质进行了研究。 符史流等^[9]发现 Ce⁴⁺在 Ca₂ SnO₄ 一维结构基质中有着非常 强的蓝光发射,后来又研制出发光颜色可调的 Eu³⁺和 Ce⁴⁺ 共掺杂的 Ca₂ SnO₄ 发光材料^[10]。而以 Ca₂ SnO₄ 为基质的绿 色发光材料未见报道。本文利用高温固相法制备了 Tb³⁺ 掺 杂的 Ca₂ SnO₄ 荧光粉, 对其光谱特性进行了研究, 发现存在 较强绿光发射,在等离子平板显示和发光二极管领域具有应 用潜力。

1 实验部分

实验采用 CaCO₃, SnO₂, Tb₄O₇ 为原料,按 Ca_{2-x} Tb_xSnO₄ 中各物质的量比混合,加入适量无水乙醇作为分散 剂,混合均匀后在 80 ℃下烘烤 3 h,再经充分研磨得到前驱 体。将前驱体装入坩埚,置于马弗炉内,在空气气氛中进行 烧结,烧结温度为 1 250 ℃,时间为 10 h,经自然冷却至室 温得到样品。样品的晶体结构用日本 Shimadzu 公司的 XD-610 型 X 射线粉末衍射仪(XRD)测定,辐射源为 CuKa(λ = 0.154 05 nm)。采用 Edinburgh Instruments 公司的 FLS920 型荧光光谱仪测定荧光光谱(用 Xe 灯作激发光源)和荧光寿 命(激发源为 μ F920H 型微秒灯)。

2 结果与分析

2.1 样品结构

Ca₂SnO₄ 属正交晶系。在 Ca₂SnO₄ 晶格中, Ca²⁺和 Sn⁴⁺ 的半径分别为 0.099 和 0.071 nm, Tb³⁺的半径约为 0.092 nm, 其大小接近于 Ca²⁺, 因而在 Ca₂SnO₄ 中掺杂的 Tb³⁺将 替代 Ca²⁺的格位。图 1*a* 和 *b* 给出了 Ca_{1.91} Tb_{0.09} SnO₄ 在 1 200和 1 250 ℃温度下烧结 10 h 后的 XRD 图。与 Ca₂SnO₄

收稿日期: 2010-10-03,修订日期: 2011-01-05 基金项目:国家自然科学基金项目(60778032)资助 作者简介:邱桂明,1962年生,汕头大学物理系副教授 e-mail: 标准谱(JCPDS46—0112) [见图 1c]比较可知,上述两种样品 均反应生成了 Ca₂ SnO₄ 相。此外,在图 1a 和b 的样品中均出 现明显的 CaSnO₃ 杂相(JCPDS77—1797),但随着烧结温度 的升高,杂相衍射峰强度明显减弱。这说明适当提高烧结温 度有助于提升 Tb³⁺在 Ca₂ SnO₄ 晶格中的掺杂量。

(c): JCPDS card for Ca₂SnO₄

2.2 样品的光谱特性

2.2.1 Ca2-x Tbx SnO4 的激发光谱

Tb³⁺掺杂的 Ca₂SnO₄ 荧光粉在紫外光的激发下产生明 显的绿光发射。图 2 给出了各种不同掺杂浓度的 Ca_{2-x} Tb_xSnO₄ 样品的激发光谱,其中发射监控波长 λ_{em} =543 nm, 测量在室温条件下进行。由图可见, Ca_{2-x}Tb_xSnO₄ 样品在 紫外短波区出现一个吸收宽带,范围为 200~300 nm 左右。 这条吸收带对应于 Tb³⁺ 4*f*—5*d* 能级的吸收跃迁,其激发峰 较宽。从图中发现,激发光谱的峰值位置与 Tb³⁺的掺杂浓度 有关,当 Tb³⁺掺杂浓度较低时(见图 2*a*),峰值位于 254 nm 左右;而当 Tb³⁺掺杂浓度较高时(图 2*b* n*c*),其峰值红移至 260 nm 附近。发生红移现象的原因与 Tb³⁺所处的配体环境 有关,当 Tb³⁺处于晶体中时,由于 Tb³⁺的 5*d* 轨道裸露在 外,所以周围的晶体场对其外层的5*d*电子作用较大,这种

Fig. 2 Excitation spectra of $Ca_{2-x}Tb_xSnO_4$ phosphor (monitored at $\lambda_{em} = 543$ nm)

作用不仅使 5*d* 电子的能级发生劈裂,而且会使 Tb³⁺ 4*f*^{N-1} 5*d* 组态能级重心下移^[11]。Tb³⁺ 掺杂在 Ca₂SnO₄ 晶体中,取 代的是 Ca²⁺ 的格位, Tb³⁺ 的半径小于 Ca²⁺ 的半径,随着 Tb³⁺ 掺杂浓度的增加, Ca₂SnO₄ 晶胞会逐渐收缩,晶体场的 作用加强,声子对 Tb³⁺ 的影响增大,这使得 Tb³⁺ 所处于 Ca₂SnO₄ 基质的晶体环境因子增大,稀土离子 5*d* 组态能级 重心随着环境因子的增大而降低^[12],从而导致 4*f*—5*d* 吸收 跃迁能量差减少,宽带吸收峰红移。

2.2.2 Ca_{2-x} Tb_x SnO₄ 的发射光谱

图 3 是 $Ca_{2-x}Tb_xSnO_4$ 样品的发射光谱图,图 3a 和 b 用 $\lambda_{ex} = 254 \text{ nm}$ 激发样品,图 3c, d 和 e 是用 $\lambda_{ex} = 260 \text{ nm}$ 激发 样品。由图可见, Tb^{3+} 的发射主要来自⁵ D_4 激发态能级, 包 括⁵ D_4 —⁷ F_6 (491 nm), ⁵ D_4 —⁷ F_5 (543 nm), ⁵ D_4 —⁷ F_4 (588 nm)和⁵ D_4 —⁷ F_3 (623 nm)跃迁发射,其中⁵ D_4 —⁷ F_5 跃迁发 射强度最大。比较图 3 中各掺杂浓度的发射光谱图, 在掺杂 浓度 x=0.01 和 x=0.03(见图 3a 和 b)的样品中,显示了 ⁵D₄—⁷F₆ 跃迁发射的发射峰劈裂成三个峰,其中以 481 nm 处的最为明显,在掺杂浓度超过 x=0.03 时, Tb³⁺的⁵D₄— ⁷F₆ 跃迁发射只有一个发射峰。⁵D₄一⁷F₆ 跃迁发射的劈裂现 象在 Tb³⁺掺杂各种基质的发光材料中少见报道, Tb³⁺的 ${}^{5}D_{4}$ — ${}^{7}F_{6}$ 能级劈裂与其所受掺杂 Ca₂SnO₄ 基质影响有关; 在 Ca₂ SnO₄ 晶体中, Ca²⁺具有 Cs 点群对称性, 在晶格中处 于低对称的格位, $Ca_2 SnO_4$ 中掺杂 Tb^{3+} , Tb^{3+} 占据 Ca^{2+} 的 位置处于低对称环境中,其5d电子处于外层电子轨道,受 环境因素影响比较大, Tb^{3+} 受到晶体场的微扰, 7F_6 能级简 并解除而产生斯托克劈裂,形成三条谱线,与 Gruber 等^[13] 的报道相吻合。

进一步比较⁵ D_4 —⁷ F_6 跃迁发射劈裂峰,观察到 481 nm 处的峰强随掺杂浓度的变化呈现先增大后减小的现象,并且 三个劈裂峰逐步合成一个主峰,⁷ F_6 能级斯托克劈裂消失。 分析其原因, Tb³⁺ 掺杂浓度增加,离子发光中心增多, ⁵ D_4 —⁷ F_6 的跃迁发射增强;继续增加 Tb³⁺ 掺杂浓度,由于 Tb³⁺ 半径小于 Ca²⁺ 半径,替代 Ca²⁺ 格位后,造成 Ca₂ SnO₄ 晶胞收缩,晶体场的作用增强,一方面可能使得激活剂 Tb³⁺的电子与声子发生耦合的几率增加,处在激发态能级的 Tb³⁺将通过非辐射弛豫损失部分能量,降低了⁵D₄—⁷F₆的 跃迁发射几率,增加了⁵D₄—⁷F₅的跃迁发射几率,从而导致 ⁵D₄—⁷F₆的跃迁发射强度降低;另一方面,晶体场的能级劈 裂能大小与晶体场强度有关系^[14],晶体场作用增强,使得晶体场能级劈裂能增大,⁷F₆能级受其微扰产生斯托克劈裂难 度加大,导致能级简并不能完全解除,最终⁵D₄—⁷F₆ 跃迁发 射在发射光谱图上形成 491 nm 的主发射峰。

2.2.3 Tb³⁺浓度对 Ca₂SnO₄: Tb³⁺材料发光强度的影响 发光离子的掺入浓度对材料的发光性能有着重要的影 响,一般随掺杂离子浓度增加,发光体的发光强度先增大然 后降低,这种现象称为浓度猝灭现象。为了研究 Tb³⁺掺杂浓 度对样品发光强度的影响,实验中制备了一系列不同浓度的 样品,并在同一条件下进行测试,图 3*c*, *d* 和*e* 给出了浓度*x* =0.05, *x*=0.09 和 *x*=0.13 的发射光谱图,激发波长为 λ_{ex} =260 nm。从图 3 中可以看出,随 Tb³⁺ 浓度的增大, Ca₂SnO₄: Tb³⁺材料的发光强度呈现先增大然后减小的趋 势,当 Tb³⁺掺入浓度 *x*=0.09 时,发光强度最大,即存在浓 度猝灭效应。根据 Dexter 理论^[15],非导电性无机材料中激 活剂离子的浓度猝灭机理属于电多极相互作用,当激活剂离 子浓度足够大时,材料的发光强度 *I* 与浓度 *x* 的关系可表示 为^[16]

$\lg(I/x) = c - (\theta/3) \lg x$

式中 *x* 是激活剂离子浓度的摩尔分数, *c* 为常数, 当 $\theta = 6$, 8,10时,分别代表电偶极-偶极、电偶极-四极、电四极-四极 相互作用。我们以 377 nm 波长作激发源,测定 Tb³⁺摩尔浓 度大于 9%时,各浓度下 Ca₂SnO₄: Tb³⁺中 Tb³⁺的 543 nm 的发射强度 *I*,作出 lg(*I*/*x*)-lg*x* 的关系曲线,如图 4 所示。 由图中直线部分的斜率求得 $\theta = 5.35$,接近于 6,这说明 Tb³⁺浓度猝灭机理为电偶极-偶极相互作用。

Fig. 4 Curve for the relationship of lg(I/x) and lgx

2.3 荧光寿命分析

图 5 给出了 Ca2-x Tbx SnO4 (x=0.09) 荧光粉的荧光寿

命动态曲线,激发波长 $\lambda_{ex} = 260 \text{ nm}$,监测波长 $\lambda_{em} = 543 \text{ nm}$ 。 荧光寿命曲线用双指数公式 $I = A + B_1 e^{(-t/\tau_1)} + B_2 e^{(-t/\tau_2)}$ 进 行拟合,拟合效果很好(式中 τ_1 和 τ_2 是荧光寿命, A, B₁和 B_2 是拟合参数),结果如图 4 中实线所示,结果显示 Ca_{2-x} Tb_xSnO₄(x=0.09)荧光粉有两个荧光衰减寿命(1.8和8.6 ms),由平均寿命公式 $\tau = (B_1\tau_1^2 + B_2\tau_2^2)/(B_1\tau_1 + B_2\tau_2)$ 计算 可得到 Tb³⁺的⁵D₄—⁷F₅能级跃迁发射在荧光粉中的平均寿 命为 4.4 ms。对三价稀土离子掺杂的晶体,激活离子为4*f*— 4*f* 跃迁,属于禁戒跃迁,其辐射几率约为10³ s⁻¹,对应于几 百微秒 至 几 毫秒的荧光寿命测量所得到的毫秒级的荧光寿命, 印证了 Tb³⁺在晶体中的价态和跃迁类型。

Fig. 5 Decay curve for the luminescence of Tb^{3+} in $Ca_2 SnO_4$: $xTb^{3+}(x=0.09)$ phosphor powders

3 结 论

采用高温固相法首次制备了 Ca₂ SnO₄: Tb³⁺ 荧光粉, XRD 分析表明, 在1 250 ℃温度下灼烧 10 h 能得到 Ca₂ SnO₄ 物相。测得 $Ca_2 SnO_4$: Tb³⁺荧光粉的激发和发射光谱, 激发 光谱为单峰宽带结构,对应于 Tb³⁺的 4*f*—5*d* 能级跃迁,研 究发现激发峰随 Tb³⁺浓度增大而出现红移现象,其原因是 Ca₂SnO₄ 晶格场对 Tb³⁺ 能级的影响;发射光谱由四组峰构 成, ${}^{5}D_{4}$ — ${}^{7}F_{5}(543 \text{ nm})$ 跃迁发射最强,低掺入浓度下,Tb³⁺ 的⁷F₆能级出现斯托克能级劈裂,随掺杂浓度的增大,481 nm 处劈裂峰呈现先增强然后减弱的现象。研究发现,随 Tb^{3+} 浓度增大, Ca_2SnO_4 : Tb^{3+} 发光材料的发射光谱强度先 增大,在Tb³⁺摩尔浓度为9%时,发射峰强度最大,而后增 大 Tb³⁺浓度,发射峰强度减小,即存在浓度猝灭效应;根据 Dexter 理论确定 Tb³⁺ 自身猝灭机理为电偶极-偶极相互作 用。荧光寿命测试表明样品有两个荧光衰减寿命,其荧光平 均寿命为 4.4 ms, 这与 Tb³⁺ 在样品中的价态和跃迁类型相 对应。

References

- [1] YANG Xiu-jian, SHI Chao-shu, XU Xiao-liang(杨秀健, 施朝淑, 许小亮). Acta Phys. Sin. (物理学报), 2002, 51(12): 2871.
- [2] XIN Xian-shuan, ZHOU Bai-bin, LÜ Shu-chen, et al(辛显双,周百斌,吕树臣,等). Acta Phys. Sin. (物理学报), 2005, 54(4): 1859.
- $\left[\ 3 \ \right]$ Danielson E, Devenney M, Giaquinta D M, et al. J. Science, 1998, 279(6): 837.
- [4] Danielson E, Devenney M, Giaquinta D M, et al. J. Mol. Structure, 1998, 470: 229.
- [5] CHUAI Xiao-hong, ZHANG Hong-jie, LI Fu-shen, et al(描晓红,张洪杰,李福燊,等). Chin. J. Inorg. Chem. (无机化学学报), 2003, 19(5); 462.
- [6] Nag A, Narayanan Kutty T R. J. Mater. Chem. , 2003, 13: 370.
- [7] SHI Shi-kao, WANG Ji-ye, LI Jun-min, et al(石士考,王继业,栗俊敏,等). Journal of the Chinese Rare Earth Society(中国稀土学报), 2004, 22(6): 859.
- [8] Yang Hongmei, Shi Jianxin, Gong Menglian, et al. Journal of Solid State Chemistry, 2005, 178: 917.
- [9] FU Shi-liu, YIN Tao, CHAI Fei(符史流, 尹 涛, 柴 飞). Chinese Physics(中国物理), 2007, 16: 3129.
- [10] FU Shi-liu, CHAI Fei, ZHOU Tao, et al(符史流,柴 飞,周 涛,等). Chinese Journal of Inorganic Chemistry(无机化学学报), 2009, 25(1): 76.
- [11] ZHANG Si-yun(张思远). Spectroscopy of Rare-Earth Ions(稀土离子的光谱学). Beijing: Science Press(北京:科学出版社), 2008. 235.
- [12] Shi J S, Zhang S Y. J. Phys. Chem. B, 2004, 108: 18845.
- [13] Gruber J B, Nash K L, et al. Journal of Luminescence, 2008, 128: 1271.
- [14] QU Guang-yuan, DONG Ning, GUO Hai, et al(曲广媛, 董 宁, 郭 海, 等). Chin. J. Lumin. (发光学报), 2005, 26(2): 199.
- [15] Dexter D L, Schulman J H. J. Chem. Phys., 1954, 22(6): 1063.
- [16] WANG Zhi-jun, LI Pan-lai, WANG Ying, et al(王志军,李盼来,王 颖,等). Acta Physcia Sinica(物理学报), 2009, 58(12): 1257.
- [17] WANG Wen-yun, YU Jiao-lu, YU Ying-ning, et al(王文韵, 于皎路, 于英宁, 等). Laser Journal(激光杂志), 1993, 14(3): 127.

Preparation and Luminescent Properties of a Green Ca_2SnO_4 : Tb^{3+} Phosphor

 $\mathbf{QIU}\ \mathbf{Gui-ming}^1$, $\mathbf{XU}\ \mathbf{Cheng-ke}^2$, $\mathbf{HUANG}\ \mathbf{Chong}^1$

1. College of Science, Shantou University, Shantou 515063, China

2. Department Physics & Electronic Information Science, Hengyang Normal University, Hengyang 421008, China

Abstract A novel green emitting phosphor, Tb^{3+} -doped $Ca_2 SnO_4$, was prepared by the solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed the formation of $Ca_2 SnO_4 : Tb^{3+}$. Photoluminescence measurements indicated that the phosphor exhibits bright green emission at about 543 nm under UV excitation. The excitation spectra of $Ca_{2-x} Tb_x SnO_4$ appear to have a red shift with main peak from 254 to 260 nm. The emission spectra of $Ca_{2-x} Tb_x SnO_4$ have four peaks ascribed to 5D_4 — 7F_J (where J=6, 5, 4, 3) transitions of Tb^{3+} ions. Under the condition of low Tb^{3+} concentration, the 5D_4 — 7F_6 transition of Tb^{3+} showed a stark energy level split to three split peaks and the peak intensity of 481nm firstly increased with increasing Tb^{3+} concentration, then decreased. The dependence of luminescent intensity of $Ca_2 SnO_4 : Tb^{3+}$ phosphor on the Tb^{3+} concentration was studied, and the results show that the luminescence intensity firstly increased with increasing Tb^{3+} concentration, then decreased the maximal value at 9 mol% Tb^{3+} . According to the Dexter theory, the authors confirmed the concentration quenching mechanism of Tb^{3+} in $Ca_2 SnO_4 : Tb^{3+}$ could be a potential candidate as a green-emitting powder phosphor.

Keywords Ca₂SnO₄ : Tb³⁺; Phosphor; Luminescence; Fluorescence lifetime

(Received Oct. 3, 2010; accepted Jan. 5, 2011)