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Consider a system operating over n discrete time periods (n¼1, 2, y). Each operation period causes a

random amount of damage to the system which accumulates over time periods. The system fails when

the cumulative damage exceeds a failure level z and a corrective maintenance (CM) action is

immediately taken. To prevent such a failure, a preventive maintenance (PM) may be performed. In

an operation period without a CM or PM, a regular maintenance (RM) is conducted at the end of that

period to maintain the operation of the system. We propose a maintenance policy which prescribes a

PM when the accumulated damage exceeds a pre-specified level d (oz), or when the number of

operation periods reaches N, whichever comes first. With the long-term average cost rate as an

optimality criterion, we optimize the maintenance policy parameters dn and Nn and discuss some useful

properties about them. It has been shown that a d-based PM outperforms a N-based PM in terms of cost

minimization. Numerical examples are presented to demonstrate the optimization of this class of

maintenance policies.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Maintenance policies for systems subject to stochastic failures
have been studied extensively in the literature. A comprehensive
review on these policies can be found in Wang [1] and Nakagawa
[2,3]. Maintenance refers to planned or unplanned actions carried
out to retain a system in, or restore it to, an acceptable operating
condition. There are two types of maintenance actions. A correc-
tive maintenance (CM) is to restore a failed item to a working
condition. A preventive maintenance (PM) represents an action
taken to retain or improve an operating item’s condition. When a
CM is conducted, it is usually more costly; thus, a PM may be
performed to prevent the item’s failure and related high CM cost.
However, an appropriate PM frequency must be determined as
too many PMs also lead to high cost. The optimal maintenance
policy is to minimize the long-run average operating cost of
the system

Preventive maintenance (PM) itself can be classified into two
categories: predetermined maintenance and condition-based
maintenance (CBM). Predetermined maintenance is scheduled
ll rights reserved.
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without any monitoring activities. The maintenance schedule
can be based on the number of operating hours, the number of
times of usage, or the specific dates. In contrast, CBM does not use
a predetermined schedule. It monitors the condition of the system
to determine if a PM should be performed. A classical assumption
in CBM modeling is that a system failure is caused by a deteriora-
tion process. One way to model a continuous and gradual
deterioration due to wear and tear, such as erosion (hydraulic
structures, dikes), or cumulative wear (cutting tools), etc, is to
utilize a single continuous-state stochastic process. Failure occurs
when the state exceeds a threshold value. Due to the complexity
of the practical system, it is difficult to represent the failure
mechanism by using a single deterioration process. However,
some important partial information on the system state can be
obtained by monitoring the observable covariates (e.g., vibration,
temperature, humidity, etc.).

Recently, many researchers in ‘Reliability Engineering & Sys-
tem Safety’ have considered CBM policies for continuously dete-
riorating systems subject to stress. Deloux et al. [4] studied a
system with two types of failure mechanisms due to an excessive
deterioration level and shock. To optimize the maintenance
policy, they proposed an approach that combines SPC (statistical
process control) and CBM. SPC is used to monitor the stress
covariate, and CBM is used to inspect and replace the system
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based on the observed deterioration level. Niu et al. [5] presented
a novel CBM system that employs data fusion strategy to improve
the condition monitoring, health assessment, and prognostics.
Zhao et al. [6] focused on optimizing CBM policies for a deterior-
ating system with covariates. Tinga [7] proposed two CBS type
maintenance concepts: usage based and load based maintenance.
Tian and Liao [8] proposed a CBM policy based on a proportional
hazards model, which applies to multi-component systems.
Bouvard et al. [9] also presented a method to optimize the CBM
planning for a multi-components system. Fouladirad and Grall
[10] considered a gradually deteriorating system with sudden
mean deterioration rate increases due to external causes. They
proposed an adaptive maintenance model for such a system.
Weide and Pandey [11] presented a probabilistic analysis of a
system subject to shocks where damage is modeled as a cumu-
lative stochastic process. To model the damage process in a
nonlinear nature, they utilized a non-homogeneous Poisson
process for damage increments instead of a renewal process.

There are different degrees of improvement after a mainte-
nance action. ‘Perfect maintenance’ means a maintenance action
that restores system to an ‘‘as good as new’’ condition. A complete
overhaul of an engine with a broken connecting rod is an example
of perfect maintenance. The replacement of a failed system with a
new one signifies a perfect maintenance (or called perfect repair).
‘Minimal maintenance’ means a maintenance action that brings
the system back to operation with the same condition as that
prior to this action. Changing a flat tire on a car, or changing a
broken fan belt on an engine is an example of minimal main-
tenance. The minimal repair that was first studied by Barlow and
Proschan [12]. ‘Imperfect maintenance’ is a maintenance action
that brings a system to between ‘‘as bad as old’’ and ‘‘as good as
new’’ condition. An engine tune-up is an example of imperfect
maintenance, as a tune-up may not make an engine as good as
new, but its performance would be somewhat improved. Pham
and Wang [13] presented the classification of maintenances.
Recently, Bartholomew-Biggs et al. [14] addressed the problem
of scheduling imperfect PM that improves the equipment’s con-
dition but not as good as new. Soro et al. [15] developed a model
for evaluating the production rate and reliability of multi-state
systems subjected to minimal repairs and imperfect PM. You et al.
[16] investigated two component-level control-limit PM policies
for systems subject to variable operational conditions. Kallen [17]
used a superimposed renewal process to model the effect of
imperfect PM in contrast to the common use of a virtual age
process. In our model, both CM and PM are considered ‘‘perfect
maintenance’’ actions.

Most maintenance models are based on a continuous time
process. In failure studies, however, the system’s time to failure is
often measured as the number of operational cycles. Therefore, a
discrete time process can be more appropriate for the system
operation. Cumulative damage models were proposed by Cox [18]
to analyze the system degradation process due to a sequence of
shocks which occur randomly in time and cause some damage to
a system. The system fails when the total damage accumulated
exceeds a threshold or failure level. Zhao and Nakagawa [19]
considered a modified cumulative damage model where the unit
fails when the total damage due to shocks reaches a failure level
or the total number of shocks reaches a certain number. They
obtained the expected cost rates and the related optimal policies.
Zhao et al. [20] studied the imperfect maintenance problem for
used systems that suffer damage due to shocks. Zhao et al. [21]
considered age replacement policies for combining additive
independent damages. Other maintenance models were also
studied by Wortman et al. [22], Sheu [23], Sheu and Griffith
[24,25], Chien and Sheu [26] and Chien et al. [27]. A variety of
optimal maintenance policies for different damage models were
summarized in Nakagawa [3]. Another application of the cumu-
lative damage process is the repair-cost limit policy. Lai [28],
Chien et al., [29–31], and Chang et al. discussed the cumulative
repair-cost limit policy for a maintenance model.

In this paper, we consider a cumulative damage model for a
system operating for an indefinite length of period. Applied is a
maintenance policy which prescribes PM based on the number of
operating periods and the accumulated damage level. We first
derive the expected cost rate for the system as the optimality
criterion. Then we find the optimal policy to minimize the long-
run average cost. Finally, we present numerical analysis and
conduct sensitivity analysis based on our model.
2. Model descriptions and formulation

Consider a system operating over n periods (n¼1, 2, y). Each
period’s operation causes a random amount of damage to the
system. These damages are accumulated to the system. In each
operation period, a system fails when the total accumulated
damage exceeds a threshold level z, then a corrective mainte-
nance (CM) is immediately conducted. To prevent such a failure, a
preventive maintenance (PM) action may be performed. The
maintenance policy considered prescribes a PM when either the
accumulated damage exceeds a pre-specified level d (but less
than the failure level z), or the number of operating periods
reaches N (N¼1, 2, y) since the system installation, whichever
occurs first. For an operation period without the CM and PM,
a regular maintenance (RM) action is performed at the end of that
period. A practical example fitting this model is the maintenance
schedule of a transit bus. For a public transit bus, every 2000
miles of use can be considered as an operation period. At the end
of each period, the general condition of the bus will be recorded. If
the condition reaches a pre-determined level or a certain number
of operating periods is reached, a PM is performed; if the
condition reaches a failure level, a CM is performed. Both PM
and CM bring the bus to a perfect condition. If none of PM or CM
is conducted, at the end of each operating period, an RM is
performed to improve the reliability of the bus which in turn is
translated into better safety for the public transit service.

To develop the expected cost rate for the maintenance policy,
the following cost structure is imposed. Let c0 be the fixed
operating cost for each operation, crm be the fixed cost for each
RM, CPM be the fixed PM cost, and CCM be the fixed CM cost.
Without loss of generality, CCM4CPM4crm is assumed. Further-
more, let random variable Yj (j¼1, 2, y) be the amount of damage
due to the jth operation with a distribution function G(y)�
Pr(Yjry). Then, the total damage Zj �

Pj
j ¼ 0 Yi at the jth operation

has a distribution function Pr(Zjrw)¼Pr(Y1þY2þ?þYjrw)¼
G(j)(w) where G(j)(w) is the jth-fold convolution of G(w) with itself
with G(0)(w)�1 for wZ0. Clearly, the probability of a PM
performed at the completion of Nth operation is G(N)(d).

For N¼N, the probability that a PM is performed at the end of
the jth operation (denoted by PðPMÞ

j , j¼1, 2, y) is given by

PðPMÞ
j ¼ PrðY1þY2þUUUþYj�1odrY1þY2þUUUþYjozÞ

¼ PrðZj�1odrZjozÞ ¼
Z d

0
½Gðz�yÞ�Gðd�yÞ�dGðj�1Þ

ðyÞ

¼

Z d

0
Gðz�yÞdGðj�1Þ

ðyÞ�GðjÞðdÞ, ð1Þ

and the probability that a CM is performed at the end of the jth
operation (denoted by PðCMÞ

j , j¼1, 2, y) is given by

PðCMÞ
j ¼ PrðY1þY2þUUUþYj�1odozrY1þY2þUUUþYjÞ



Fig. 2. CM due to damage level z at i th (i¼1, 2,y, N) operation.

Fig. 3. PM due to the completion of N th operation without exceeding damage

level d.
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¼ PrðZj�1odozrZjÞ ¼

Z d

0
Gðz�yÞdGðj�1Þ

ðyÞ

¼ Gðj�1Þ
ðdÞ�

Z d

0
Gðz�yÞdGðj�1Þ

ðyÞ: ð2Þ

Combining (1) and (2) (i.e., PðPMÞ
j þPðCMÞ

j ) yields

Gðj�1Þ
ðdÞ�GðjÞðdÞ ¼ PðZj�1odrZjÞ, ð3Þ

which is the probability that a CM or a PM is performed at the end
of the jth operation (j¼1, 2, y) when N¼N.

In this study, CM and PM are assumed to be ‘perfect main-
tenance’ type, while RM is assumed to be ‘minimal maintenance’
type. That is, a system becomes as good as new after a CM or PM,
and as bad as old after an RM. Therefore, the system becomes
brand new after a scheduled PM at the end of period N, or an
unscheduled PM at any period with damage d, or an unscheduled
CM at any period with damage z, whichever occurs first. The time
between two successive perfect maintenance actions (i.e., CM or
PM) can be regarded as a renewal cycle. From the renewal reward
theorem (see Ross [32, p. 52]), the long-run expected cost rate is
the expected total cost per renewal cycle divided by expected
renewal cycle length.

Three types of the maintenance actions as well as the asso-
ciated costs are illustrated in Figs. 1–3, respectively. Based on
these diagrams, the expected total cost in a renewal cycle and the
renewal cycle length are given by

XN

j ¼ 1

f½ðj�1Þcrmþ jc0þCPM� � PðPMÞ
j þ½ðj�1Þcrmþ jc0þCCM� � PðCMÞ

j g

þ½ðN�1ÞcrmþNc0þCPM �G
ðNÞ
ðdÞ ¼ c0

XN�1

j ¼ 0

GðjÞðdÞ

þcrm

XN�1

j ¼ 1

GðjÞðdÞþCPM

XN

j ¼ 1

PðPMÞ
j þGðNÞðdÞ

8<
:

9=
;þCCM

XN

j ¼ 1

PðCMÞ
j , ð4Þ

and

XN

j ¼ 1

j½Gðj�1Þ
ðdÞ�GðjÞðdÞ�þNGðNÞðdÞ ¼

XN�1

j ¼ 0

GðjÞðzÞ: ð5Þ

Using (4) and (5), the expected cost rate is obtained as

CRðd,NÞ¼
c0
PN�1

j¼0 GðjÞðdÞþcrm
PN�1

j¼1 GðjÞðdÞþCPMf
PN

j¼1 PðPMÞ
j þGðNÞðdÞgþCCM

PN
j¼1 PðCMÞ

jPN�1
j ¼ 0 GðjÞðzÞ

:

ð6Þ
Fig. 1. PM due to damage level d at i th (i¼1, 2,y, N) operation.
Assumed that the amount of damage due to each period of
operation has an exponential distribution with a mean of m; that

is, GðyÞ ¼ 1�exp½�ðy=mÞ�, and G(j)(y)¼
P1

i ¼ j½ðy=mÞ
i=i!�exp½�ðy=mÞ�.

Thus, the probability PðPMÞ
j given in (1) can be expressed as

Gðz�dÞGðj�1Þ
ðdÞ�ð1=mÞ �

R d
0 Gðj�1Þ

ðyÞ½Gðd�yÞ�Gðz�yÞ�dy, and then

the term
PN

j ¼ 1 PðPMÞ
j in (6) can be further reduced to

G(z�d)[1�G(N)(d)]. On the other hand, the probability PðCMÞ
j

in (2) can be expressed as Gðz�dÞGðj�1Þ
ðdÞ�ð1=mÞ �

R d
0 Gðj�1Þ

ðyÞG

ðz�yÞdy, and then the term
PN

j ¼ 1 PðCMÞ
j in (6) can be further

reduced to Gðz�dÞ½1�GðNÞðdÞ�. Therefore, the expected cost rate
in (6) reduce to

CRðd,NÞ ¼
ðcoþcrmÞ

PN�1
j ¼ 0 GðjÞðdÞþðCCM�CPMÞGðz�dÞ½1�GðNÞðdÞ�þðCPM�crmÞPN�1

j ¼ 0 GðjÞðdÞ
:

ð7Þ

Remark 1. Note that
P1

j ¼ 0 GðjÞðyÞ ¼ 1þ
P1

j ¼ 1 GðjÞðyÞ ¼ 1þMðyÞ

where M(y) is the renewal function of the distribution G(y); and
if GðyÞ ¼ 1�exp½�ðy=mÞ�, then M(y)¼(y/m).
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3. Optimal PM policies
For the infinite-horizon case, the optimal PM policy is to
minimize CR(d,N) with respect to the pair (d,N), where 0rdrz
and N¼1, 2, y. For a fixed d, CR(d,N) in (7) has the following
properties: (i) the inequalities CR(d,Nþ1)ZCR(d,N) and
CR(d,N)oCR(d,N�1) holds if, and only if

Fðd,NÞZðCPM�crmÞ and Fðd,N�1ÞoðCPM�crmÞ, ð8Þ

where

Fðd,NÞ ¼ ðCCM�CPMÞGðz�dÞ 1�
GðNþ1Þ

ðdÞ
GðNÞðdÞ

" #XN�1

j ¼ 0

GðjÞðdÞþGðNÞðdÞ�1

8<
:

9=
;:
ð9Þ

(ii) Since

Fðd,Nþ1Þ�Fðd,NÞ

¼�ðCCM�CPMÞGðz�dÞ
GðNþ2Þ

ðdÞ
GðNþ1Þ

ðdÞ
�

GðNþ1Þ
ðdÞ

GðNÞðdÞ

" #XN

j ¼ 0

GðjÞðdÞ, ð10Þ

and we can show that G(Nþ1)(d)/G(N)(d) decreases strictly with
N when GðjÞðyÞ ¼

P1
i ¼ j½ðy=mÞ

i=i!�exp½�ðy=mÞ�, j¼0, 1, 2, y(see
Nakagawa [3, p. 24]), thus F(d,N) increases strictly with N.

On the other hand, differentiating CR(d,N) in (7) with respect
to d and setting it equal to zero yields

ðCCM�CPMÞGðz�dÞ
XN

j ¼ 1

GðjÞðdÞ ¼ ðCPM�crmÞ: ð11Þ

Let O(d,N) be the left-hand-side of (11); thus, it is easy to see
that O(d,N) is strictly increasing in d for a fixed N.

Based on (8)–(11), we obtain the following two theorems
regarding the optimal dn that minimizes CR(d,N) for a fixed N,
and the optimal Nn that minimizes CR(d,N) for a fixed d.

Theorem 1. Given a fixed d (0odoz).
(i)
 If ðCCM�CPMÞGðz�dÞðd=mÞ4 ðCPM�crmÞ, then there exists a Nn

(where 1rNnoN) that minimizes CR(d,N) in (7), and the
resulting cost rate satisfies

ðc0þcrmÞþðCCM�CPMÞGðz�dÞ 1�
GðN

n
Þ
ðdÞ

GðN
n
�1Þ
ðdÞ

" #

oCRðd,Nn
Þrðc0þcrmÞþðCCM�CPMÞGðz�dÞ 1�

GðN
n
þ1Þ
ðdÞ

GðN
n
Þ
ðdÞ

 !
:

ð12Þ
(ii)
 If ðCCM�CPMÞGðz�dÞðd=mÞr ðCPM�crmÞ, then Nn
¼N, and

CRðd,1Þ¼ ðc0þcrmÞþ
m

mþd ðCCM�CPMÞGðz�dÞþðCPM�crmÞ

h i
:

ð13Þ
Proof. Since F(d,N) is strictly increasing in N for a given fixed d, and

lim
N-1

Fðd,NÞ ¼ ðCCM�CPMÞGðz�dÞ ½1�0�
X1
j ¼ 0

GðjÞðdÞþGð1ÞðdÞ�1

8<
:

9=
;

¼ ðCCM�CPMÞGðz�dÞ
X1
j ¼ 1

GðjÞðdÞ

8<
:

9=
;

¼ ðCCM�CPMÞGðz�dÞMðdÞ ¼ ðCCM�CPMÞGðz�dÞ
d
m
:

Thus, if limN-1Fðd,NÞ ¼ ðCCM�CPMÞGðz�dÞðd,mÞ4 ðCPM�crmÞ,

then there exists a finite Nn satisfies (8), which minimizes CR(d,N)
in (7) with respect to N. That is, the optimal Nn satisfies (8) or

ðCCM�CPMÞGðz�dÞ 1�
GðN

n
Þ
ðdÞ

GðN
n
�1Þ
ðdÞ

" # XNn
�2

j ¼ 0

GðjÞðdÞþGðN
n
�1Þ
ðdÞ�1

8<
:

9=
;

o ðCPM�crmÞrðCCM�CPMÞGðz�dÞ

� 1�
GðN

n
þ1Þ
ðdÞ

GðN
n
Þ
ðdÞ

" # XNn
�1

j ¼ 0

GðjÞðdÞþGðN
n
Þ
ðdÞ�1

8<
:

9=
;:

Algebraic manipulation of the above inequality yields (12).

Otherwise, if limN-1Fðd,NÞ ¼ ðCCM�CPMÞGðz�dÞðd=mÞr
ðCPM�crmÞ, then Nn

¼N; and by (7), the resulting cost rate

yields (13). &

Theorem 2. Given a fixed N (N¼1, 2, y).
(i)
 If ðCCM�CPMÞ
PN

j ¼ 1 GðjÞðzÞ4ðCPM�crmÞ, then there exists an
unique dn (where 0odnoz) that minimizes CR(d,N) in (7),
and

CRðdn,NÞ ¼ ðc0þcrmÞþðCCM�CPMÞGðz�d
n
Þ: ð14Þ
(ii)
 If ðCCM�CPMÞ
PN

j ¼ 1 GðjÞðzÞr ðCPM�crmÞ, then dn¼z, and

CRðz,NÞ ¼ ðc0þcrmÞþ
ðCCM�CPMÞ½1�GðNÞðzÞ�þðCPM�crmÞPN�1

j ¼ 0 GðjÞðzÞ
: ð15Þ
Proof. From (11), since O(0,N)¼0o(CPM�crm) and O(d,N) is
strictly increasing in d (0rdrz), thus if limd-zOðd,NÞ ¼
Oðz,NÞ ¼ ðCCM�CPMÞ

PN
j ¼ 1 GðNÞðzÞ4 ðCPM�crmÞ, there exists a

unique dn (0odnoz) that satisfies (11), which minimizes the
cost rate CR(d,N) in (7) with respect to d. Applying the condition
O(dn,N)¼(CPM�crm) into (7) yields (14).

On the other hand, if limd-zOðd,NÞ ¼Oðz,NÞ ¼ ðCCM�CPMÞPN
j ¼ 1 GðNÞðzÞr (CPM�crm), then dn¼z; and substituting d¼z into

(7) gives (15). &

Remark 2. Theorems 1 and 2, respectively, reveal the relation
between the optimal Nn and the given d, as well as the relation
between the optimal dn and the given N. They show a common
characteristic: when the ratio (CCM�CPM)/(CPM�crm) exceeds a
threshold, a PM needs to be implemented (i.e. 1rNnoN,
0odnoz). Specifically, the higher the CCM, or the higher the crm,
the earlier the PM will be implemented (i.e. the Nn and dn values
will be smaller); on the other hand, the higher the CPM, the later
the PM will be implemented (i.e. the Nn and dn values will be
larger).

Remark 3. It is observed from the cost rate function in (7) and
Theorems 1 and 2 that the fixed cost c0 of each operation period of
the system does not influence the optimal maintenance policy;
however, a larger c0 indicates a higher long-run average cost rate.
On the other hand, the cost of each RM crm influences the optimal
maintenance policy. According to (8) and Theorem 1, a higher crm

leads to a smaller optimum PM Nn; Similarly, according to (11)
and Theorem 2, a higher crm results in a smaller optimal PM dn.

4. Two special cases

There are two special cases of the maintenance model.
�
 Case 1: d¼z. This is the maintenance policy that PM only
depends on N.



Table 1-1

Nn and CR(d,Nn) for a given d¼20 and under z¼20, CPM¼10, and crm¼c0¼1.

m¼1 m¼2 m¼3 m¼4 m¼5

CCM¼30

Nn
¼ 14 7 5 4 3

CR(d,Nn)¼ 2.741 3.684 4.703 5.735 6.761

CCM¼40

Nn
¼ 13 6 4 3 3

CR(d,Nn)¼ 2.784 3.848 5.043 6.314 7.585

CCM¼50

Nn
¼ 13 6 4 3 2
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In this case, a CM is performed at a failure (i.e., the total
damage exceeds failure level z) or a PM is performed at at the
end of period N (N¼1, 2, y), whichever occurs first. Substitut-
ing d¼z into (7), we have

CRðz,NÞ ¼
ðcoþcrmÞU

PN�1
j ¼ 0 GðjÞðzÞþðCCM�CPMÞ½1�GðNÞðzÞ�þðCPM�crmÞPN�1

j ¼ 0 GðjÞðzÞ
¼ CR1ðNÞ:

ð16Þ

Then, the following properties regarding the optimal Nn can be
obtained.

Corollary 1. The optimal Nn that minimizes the cost rate
CR1(N) in (16) has the following properties:
(i) If (CCM�CPM)(z/m)4(CPM�crm), then there exists a finite

and unique Nn (where 1rNnoN) which satisfies
CR1(Nn

þ1)ZCR1(Nn) and CR1(Nn)oCR1(Nn
�1), and the

associated cost rate is

ðc0þcrmÞþðCCM�CPMÞ 1�
GðN

n
Þ
ðzÞ

GðN
n
�1Þ
ðzÞ

" #

oCR1ðN
n
Þr ðc0þcrmÞþðCCM�CPMÞ 1�

GðN
n
þ1Þ
ðzÞ

GðN
n
Þ
ðzÞ

" #
: ð17Þ

(ii) If (CCM�CPM)(z/m)r(CPM�crm), then Nn
¼N, and the cost

rate is given as

CR1ð1Þ ¼ ðc0þcrmÞþ
m

mþd
ðCCM�crmÞ: ð18Þ
CR(d,Nn)¼ 2.814 3.961 5.299 6.736 8.390
�

CCM¼60

Nn
¼ 12 6 4 3 2

CR(d,Nn)¼ 2.840 4.073 5.554 7.158 8.852

CCM¼70

Nn
¼ 12 5 3 3 2

CR(d,Nn)¼ 2.858 4.156 5.774 7.580 9.314

CCM¼80

Nn
¼ 12 5 3 2 2

CR(d,Nn)¼ 2.876 4.215 5.901 7.934 9.776

CCM¼90

Nn
¼ 12 5 3 2 2

CR(d,Nn)¼ 2.893 4.274 6.029 8.137 10.238

CCM¼100

Nn
¼ 11 5 3 2 2

CR(d,Nn)¼ 2.907 4.332 6.156 8.340 10.700

CCM¼120

Nn
¼ 11 5 3 2 2

CR(d,Nn)¼ 2.926 4.450 6.410 8.746 11.624

CCM¼150

Nn
¼ 11 4 3 2 2
Case 2: N¼N. This is the maintenance policy that PM only
depends on the damage level d.

In this case, a CM is performed at a failure (i.e., the total
damage exceeds failure level z) or a PM is performed when the
accumulated damage exceeds a pre-specified PM level d (but less
than the failure level z), whichever occurs first. Substituting
N¼N into (7), we have

CRðd,1Þ¼ ðc0þcrmÞþ
m ðCPM�crmÞþðCCM�CPMÞGðz�dÞ
h i

mþd ¼ CR2ðdÞ

ð19Þ

Then, the following properties regarding the optimal dn can be
found.

Corollary 2. The optimal dn that minimizes the cost rate CR2(d) in
(19) has the following properties:
CR(d,Nn)¼ 2.956 4.613 6.792 9.354 13.011

CCM¼180
n

i)

N ¼ 10 4 3 2 1

CR(d,Nn)¼ 2.985 4.691 7.174 9.963 14.113

CCM¼200
If (CCM�CPM)(z/m)4(CPM�crm), then there exists a unique dn

(0odnoz), which satisfies ðCCM�CPMÞðd
n=mÞGðz�dn

Þ ¼

ðCd�cmÞ, and the cost rate is the same as (12).
Nn
¼ 10 4 3 2 1
ii)
CR(d,Nn)¼ 2.995 4.743 7.429 10.368 14.479

CCM¼250

Nn
¼ 10 4 2 2 1

CR(d,Nn)¼ 3.020 4.872 7.674 11.382 15.395

CCM¼300

Nn
¼ 10 4 2 2 1

CR(d,Nn)¼ 3.045 5.001 7.918 12.397 16.311

CCM¼400

Nn
¼ 9 4 2 1 1

CR(d,Nn)¼ 3.090 5.260 8.406 13.627 18.143

CCM¼500

Nn
¼ 9 3 2 1 1

CR(d,Nn)¼ 3.113 5.452 8.894 14.301 19.974

CCM¼1000

Nn
¼ 8 3 2 1 1

CR(d,Nn)¼ 3.221 5.914 11.335 17.670 29.132
If (CCM�CPM)(z/m)r(CPM�crm), then dn¼z and the cost rate is

CR2ðd
n
Þ ¼ CR2ðzÞ ¼ ðc0þcrmÞþ

ðCCm�crmÞ

mþz : ð20Þ

Remark 4. Corollaries 1 and 2 indicate the properties of the
optimal policies for the two special cases, they are coincides with
Theorems 1 and 2, respectively. It is worth noting that if d¼z and
N¼N, a CM will be implemented only in case of system failure,
and a PM will never be implemented. Substituting d¼z and N¼N

into (7), then the cost rate become (c0þcrm)þm((CCM�crm)/
(mþz)). On the other hand, if d-0þ , a PM will be implemented
immediately once the first period of operation is finished after
the system installation. At this point, the cost rate will be
limd-0þ CRðd,NÞ ¼ ðc0þCPMÞþðCCM�CPMÞexpð�ðz=mÞÞ.
5. Numerical example and discussion
In this section, a numerical example is used to demonstrate
the optimal preventive maintenance (PM) policies, where para-
meters z¼20, CPM¼10 and crm¼c0¼1 are fixed, and CCM and m are
varied to observe their impacts on the optimal policies.
Tables 1-1–1-4 show the optimal Nn and optimal CR(d,Nn) when
d is chosen to be at 20, 18, 16 and 14. Note that d¼20 is the first
special case discussed in Section 4. On the other hand,
Tables 2-1–2-5 show the optimal dn and optimal CR(dn,N) when
the N is chosen to be at N, 15, 10 and 5. And N¼N is the second
special case discussed in Section 4.

Based on these numerical results, the following observations
are made:
1.
 As shown in Tables 1-1–1-4, Nn decreases as CCM or m
increases, whereas CR(d,Nn) increases with CCM or m. These
behaviors are intuitive. For a higher CM cost CCM, or a larger



Table 1-2

Nn and CR(d,Nn) for a given d¼18 and under z¼20, CPM¼10, and crm¼c0¼1.

m¼1 m¼2 m¼3 m¼4 m¼5

CCM¼30

Nn
¼ 20 9 6 5 4

CR(d,Nn)¼ 2.606 3.493 4.476 5.502 6.488

CCM¼40

Nn
¼ 18 8 5 4 3

CR(d,Nn)¼ 2.649 3.655 4.809 6.056 7.299

CCM¼50

Nn
¼ 17 7 4 3 3

CR(d,Nn)¼ 2.682 3.770 5.089 6.512 8.012

CCM¼60

Nn
¼ 16 6 4 3 2

CR(d,Nn)¼ 2.708 3.880 5.287 6.871 8.697

CCM¼70

Nn
¼ 15 6 4 3 2

CR(d,Nn)¼ 2.729 3.952 5.485 7.231 9.124

CCM¼80

Nn
¼ 15 6 4 3 2

CR(d,Nn)¼ 2.748 4.024 5.683 7.591 9.551

CCM¼90

Nn
¼ 14 6 3 3 2

CR(d,Nn)¼ 2.764 4.096 5.874 7.950 9.979

CCM¼100

Nn
¼ 14 6 3 2 2

CR(d,Nn)¼ 2.778 4.168 5.980 8.202 10.406

CCM¼120

Nn
¼ 13 5 3 2 2

CR(d,Nn)¼ 2.804 4.257 6.194 8.574 11.260

CCM¼150

Nn
¼ 13 5 3 2 2

CR(d,Nn)¼ 2.833 4.379 6.514 9.133 12.541

CCM¼180

Nn
¼ 12 5 3 2 2

CR(d,Nn)¼ 2.859 4.501 6.834 9.692 13.822

CCM¼200

Nn
¼ 12 5 3 2 1

CR(d,Nn)¼ 2.871 4.583 7.048 10.065 14.479

CCM¼250

Nn
¼ 12 4 2 2 1

CR(d,Nn)¼ 2.902 4.723 7.575 10.997 15.395

CCM¼300

Nn
¼ 11 4 2 2 1

CR(d,Nn)¼ 2.928 4.821 7.798 11.928 16.311

CCM¼400

Nn
¼ 11 4 2 1 1

CR(d,Nn)¼ 2.966 5.017 8.244 13.627 18.143

CCM¼500

Nn
¼ 10 4 2 1 1

CR(d,Nn)¼ 3.003 5.212 8.690 14.301 19.974

CCM¼1000

Nn
¼ 9 3 2 1 1

CR(d,Nn)¼ 3.105 5.758 10.920 17.670 29.132

Table 1-3

Nn and CR(d,Nn) for a given d¼16 and under z¼20, CPM¼10, and crm¼c0¼1.

m¼1 m¼2 m¼3 m¼4 m¼5

CCM¼30

Nn
¼ N 14 8 6 5

CR(d,Nn)¼ 2.550 3.300 4.232 5.219 6.208

CCM¼40

Nn
¼ N 11 6 4 4

CR(d,Nn)¼ 2.561 3.436 4.549 5.774 7.023

CCM¼50

Nn
¼ 54 9 5 4 3

CR(d,Nn)¼ 2.572 3.548 4.809 6.211 7.677

CCM¼60

Nn
¼ 43 8 5 3 3

CR(d,Nn)¼ 2.583 3.644 5.027 6.629 8.289

CCM¼70

Nn
¼ 34 8 4 3 3

CR(d,Nn)¼ 2.594 3.728 5.233 6.932 8.901

Table 1-3 (continued )

m¼1 m¼2 m¼3 m¼4 m¼5

CCM¼80

Nn
¼ 29 7 4 3 2

CR(d,Nn)¼ 2.604 3.799 5.384 7.235 9.342

CCM¼90

Nn
¼ 26 7 4 3 2

CR(d,Nn)¼ 2.615 3.863 5.535 7.538 9.734

CCM¼100

Nn
¼ 24 7 4 3 2

CR(d,Nn)¼ 2.626 3.927 5.686 7.841 10.127

CCM¼120

Nn
¼ 21 6 4 2 2

CR(d,Nn)¼ 2.646 4.028 5.988 8.411 10.912

CCM¼150

Nn
¼ 19 6 3 2 2

CR(d,Nn)¼ 2.673 4.161 6.271 8.921 12.909

CCM¼180

Nn
¼ 18 5 3 2 2

CR(d,Nn)¼ 2.697 4.285 6.535 9.431 13.268

CCM¼200

Nn
¼ 17 5 3 2 2

CR(d,Nn)¼ 2.711 4.340 6.712 9.771 14.053

CCM¼250

Nn
¼ 16 5 3 2 1

CR(d,Nn)¼ 2.742 4.476 7.153 10.621 15.395

CCM¼300

Nn
¼ 15 5 3 2 1

CR(d,Nn)¼ 2.768 4.613 7.594 11.471 16.311

CCM¼400

Nn
¼ 14 4 2 2 1

CR(d,Nn)¼ 2.810 4.821 8.086 13.171 18.143

CCM¼500

Nn
¼ 13 4 2 1 1

CR(d,Nn)¼ 2.844 4.965 8.490 14.301 19.974

CCM¼1000

Nn
¼ 11 3 2 1 1

CR(d,Nn)¼ 2.952 5.618 10.510 17.670 29.132

Table 1-4

Nn and CR(d,Nn) for a given d¼14 and under z¼20, CPM¼10, and crm¼c0¼1.

m¼1 m¼2 m¼3 m¼4 m¼5

CCM¼30

Nn
¼ N N 19 10 7

CR(d,Nn)¼ 2.603 3.249 4.065 4.991 5.952

CCM¼40

Nn
¼ N 35 10 6 5

CR(d,Nn)¼ 2.604 3.311 4.303 5.467 6.697

CCM¼50

Nn
¼ N 22 7 5 4

CR(d,Nn)¼ 2.606 3.373 4.528 5.891 7.352

CCM¼60

Nn
¼ N 15 6 4 3

CR(d,Nn)¼ 2.608 3.463 4.731 6.266 7.933

CCM¼70

Nn
¼ N 13 6 4 3

CR(d,Nn)¼ 2.609 3.497 4.914 6.606 8.456

CCM¼80

Nn
¼ N 11 5 3 3

CR(d,Nn)¼ 2.611 3.556 5.077 6.944 8.978

CCM¼90

Nn
¼ N 10 5 3 3

CR(d,Nn)¼ 2.613 3.613 5.228 7.196 9.500

CCM¼100

Nn
¼ N 9 5 3 2

CR(d,Nn)¼ 2.614 3.667 5.380 7.449 9.871

CCM¼120

Nn
¼ N 8 4 3 2

CR(d,Nn)¼ 2.618 3.764 5.619 7.954 10.589

CCM¼150

Nn
¼ N 8 4 3 2

CR(d,Nn)¼ 2.623 3.893 5.957 8.712 11.665
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Table 1-4 (continued )

m¼1 m¼2 m¼3 m¼4 m¼5

CCM¼180

Nn
¼ N 7 3 2 2

CR(d,Nn)¼ 2.628 3.998 6.283 9.185 12.742

CCM¼200

Nn
¼ N 7 3 2 2

CR(d,Nn)¼ 2.631 4.068 6.426 9.493 13.460

CCM¼250

Nn
¼ N 6 3 2 2

CR(d,Nn)¼ 2.639 4.206 6.785 10.263 15.254

CCM¼300

Nn
¼ 50 6 3 2 1

CR(d,Nn)¼ 2.647 4.337 7.144 11.032 16.311

CCM¼400

Nn
¼ 44 5 3 2 1

CR(d,Nn)¼ 2.664 4.532 7.861 12.572 18.143

CCM¼500

Nn
¼ 31 5 2 2 1

CR(d,Nn)¼ 2.680 4.708 8.296 14.111 19.974

CCM¼1000

Nn
¼ 18 4 2 1 1

CR(d,Nn)¼ 2.759 5.288 10.107 17.670 29.132

Table 2-1

dn and CR(dn,N) for a given N¼N and under z¼20, CPM¼10, and crm¼c0¼1.

m¼1 m¼2 m¼3 m¼4 m¼5

CCM¼30

dn¼ 16.41 14.45 13.17 12.31 11.74

CR(dn,N)¼ 2.549 3.246 4.050 4.924 5.833

CCM¼40

dn¼ 16.02 13.74 12.18 11.10 10.34

CR(dn,N)¼ 2.562 3.310 4.216 5.243 6.350

CCM¼50

dn¼ 15.75 13.24 11.49 10.26 9.39

CR(dn,N)¼ 2.571 3.360 4.349 5.507 6.792

CCM¼60

dn¼ 15.54 12.85 10.97 9.63 8.67

CR(dn,N)¼ 2.579 3.401 4.462 5.739 7.189

CCM¼70

dn¼ 15.37 12.53 10.54 9.12 8.10

CR(dn,N)¼ 2.586 3.436 4.562 5.949 7.555

CCM¼80

dn¼ 15.22 12.27 10.18 8.69 7.63

CR(dn,N)¼ 2.591 3.467 4.652 6.142 7.898

CCM¼90

dn¼ 15.10 12.04 9.87 8.33 7.23

CR(dn,N)¼ 2.596 3.495 4.735 6.323 8.223

CCM¼100

dn¼ 14.99 11.84 9.61 8.01 6.89

CR(dn,N)¼ 2.600 3.520 4.812 6.494 8.535

CCM¼120

dn¼ 14.80 11.49 9.15 7.48 6.32

CR(dn,N)¼ 2.608 3.566 4.952 6.811 9.125

CCM¼150

dn¼ 14.58 11.09 8.60 6.86 5.66

CR(dn,N)¼ 2.617 3.624 5.138 7.246 9.952

CCM¼180

dn¼ 14.39 10.76 8.18 6.38 5.15

CR(dn,N)¼ 2.625 3.673 5.302 7.644 10.730

CCM¼200

dn¼ 14.29 10.57 7.93 6.11 4.87

CR(dn,N)¼ 2.630 3.703 5.403 7.894 11.228

CCM¼250

dn¼ 14.07 10.18 7.43 5.55 4.32

CR(dn,N)¼ 2.639 3.768 5.634 8.482 12.424

CCM¼300

dn¼ 13.89 9.86 7.03 5.12 3.89

CR(dn,N)¼ 2.648 3.825 5.842 9.030 13.566

CCM¼400

dn¼ 13.62 9.37 6.41 4.47 3.27

CR(dn,N)¼ 2.661 3.920 6.210 10.044 15.747

Table 2-2

dn and CR(dn,N) for a given N¼15 and under z¼20, CPM¼10, and crm¼c0¼1.

m¼1 m¼2 m¼3 m¼4 m¼5

CCM¼30

dn¼ 16.52 14.45 13.17 12.31 11.74

CR(dn,N)¼ 2.639 3.246 4.051 4.924 5.833

CCM¼40

dn¼ 16.13 13.74 12.18 11.10 10.34

CR(dn,N)¼ 2.645 3.310 4.216 5.243 6.350

CCM¼50

dn¼ 15.85 13.24 11.49 10.26 9.39

CR(dn,N)¼ 2.650 3.360 4.349 5.507 6.792

CCM¼60

dn¼ 15.63 12.85 10.97 9.63 8.67

CR(dn,N)¼ 2.654 3.401 4.462 5.739 7.189

CCM¼70

dn¼ 15.45 12.53 10.54 9.12 8.10

CR(dn,N)¼ 2.657 3.436 4.562 5.949 7.555

CCM¼80

dn¼ 15.31 12.27 10.18 8.69 7.63

CR(dn,N)¼ 2.661 3.467 4.652 6.142 7.898

CCM¼90

dn¼ 15.18 12.04 9.87 8.33 7.23

CR(dn,N)¼ 2.663 3.495 4.735 6.323 8.223

CCM¼100

dn¼ 15.07 11.84 9.61 8.01 6.89

CR(dn,N)¼ 2.666 3.520 4.812 6.494 8.535

CCM¼120

dn¼ 14.87 11.49 9.15 7.48 6.32

CR(dn,N)¼ 2.670 3.566 4.952 6.811 9.125

CCM¼150

dn¼ 14.64 11.09 8.60 6.86 5.66

CR(dn,N)¼ 2.676 3.624 5.138 7.246 9.952

CCM¼180

dn¼ 14.45 10.76 8.18 6.38 5.15

CR(dn,N)¼ 2.681 3.673 5.302 7.644 10.730

CCM¼200

dn¼ 14.35 10.57 7.93 6.11 4.87

CR(dn,N)¼ 2.684 3.703 5.403 7.894 11.228

CCM¼250

dn¼ 14.12 10.18 7.43 5.55 4.32

CR(dn,N)¼ 2.690 3.768 5.634 8.482 12.424

CCM¼300

dn¼ 13.95 9.86 7.03 5.12 3.89

CR(dn,N)¼ 2.696 3.825 5.842 9.030 13.566

CCM¼400

dn¼ 13.66 9.37 6.41 4.47 3.27

CR(dn,N)¼ 2.705 3.920 6.210 10.044 15.747

CCM¼500

dn¼ 13.45 9.00 5.95 4.01 2.84

CR(dn,N)¼ 2.712 4.000 6.536 10.987 17.840

CCM¼1000

dn¼ 12.78 7.86 4.61 2.73 1.75

CR(dn,N)¼ 2.738 4.290 7.857 15.195 27.727

Table 2-1 (continued )

m¼1 m¼2 m¼3 m¼4 m¼5

CCM¼500

dn¼ 13.41 9.00 5.95 4.01 2.84

CR(dn,N)¼ 2.671 4.000 6.536 10.987 17.840

CCM¼1000

dn¼ 12.75 7.86 4.61 2.73 1.75

CR(dn,N)¼ 2.706 4.290 7.857 15.195 27.727
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average damage m, the PM will be implemented earlier to
avoid system’s failure; meanwhile, a higher CM cost CCM or a
larger damage m, will lead to the higher cost rate of system.
Tables 2-1–2-5 also show similar results.
2.
 As observed in Tables 1-1–1-4, Nn increases as d decreases.
This point is reasonable, because for smaller d, the damage-
based PM will be implemented more often. At the same time,



Table 2-3

dn and CR(dn,N) for a given N¼10 and under z¼20, CPM¼10, and crm¼c0¼1.

m¼1 m¼2 m¼3 m¼4 m¼5

CCM¼30

dn¼ 16.81 14.48 13.17 12.31 11.74

CR(dn,N)¼ 2.904 3.284 4.053 4.924 5.833

CCM¼40

dn¼ 16.41 13.93 12.19 11.10 10.34

CR(dn,N)¼ 2.905 3.341 4.218 5.243 6.350

CCM¼50

dn¼ 16.12 13.26 11.50 10.26 9.39

CR(dn,N)¼ 2.906 3.386 4.350 5.507 6.792

CCM¼60

dn¼ 15.91 12.86 10.97 9.63 8.67

CR(dn,N)¼ 2.907 3.424 4.463 5.739 7.189

CCM¼70

dn¼ 15.72 12.55 10.54 9.12 8.10

CR(dn,N)¼ 2.908 3.456 4.562 5.949 7.555

CCM¼80

dn¼ 15.57 12.28 10.18 8.69 7.63

CR(dn,N)¼ 2.908 3.485 4.652 6.142 7.898

CCM¼90

dn¼ 15.43 12.05 9.87 8.33 7.23

CR(dn,N)¼ 2.909 3.512 4.735 6.323 8.223

CCM¼100

dn¼ 15.32 11.85 9.61 8.01 6.89

CR(dn,N)¼ 2.910 3.536 4.812 6.494 8.535

CCM¼120

dn¼ 15.12 11.50 9.15 7.48 6.32

CR(dn,N)¼ 2.911 3.579 4.952 6.811 9.125

CCM¼150

dn¼ 14.88 11.09 8.60 6.86 5.66

CR(dn,N)¼ 2.912 3.635 5.138 7.246 9.952

CCM¼180

dn¼ 14.69 10.76 8.18 6.38 5.15

CR(dn,N)¼ 2.914 3.683 5.302 7.644 10.730

CCM¼200

dn¼ 14.58 10.57 7.93 6.11 4.87

CR(dn,N)¼ 2.914 3.711 5.403 7.894 11.228

CCM¼250

dn¼ 14.35 10.18 7.43 5.55 4.32

CR(dn,N)¼ 2.916 3.775 5.634 8.482 12.424

CCM¼300

dn¼ 14.16 9.86 7.03 5.12 3.89

CR(dn,N)¼ 2.918 3.831 5.842 9.030 13.566

CCM¼400

dn¼ 13.87 9.37 6.41 4.47 3.27

CR(dn,N)¼ 2.921 3.925 6.210 10.044 15.747

CCM¼500

dn¼ 13.65 9.00 5.95 4.01 2.84

CR(dn,N)¼ 2.923 4.004 6.536 10.987 17.840

CCM¼1000

dn¼ 12.96 7.86 4.61 2.73 1.75

CR(dn,N)¼ 2.933 4.291 7.857 15.195 27.727

Table 2-4

dn and CR(dn,N) for a given N¼8 and under z¼20, CPM¼10, and crm¼c0¼1.

m¼1 m¼2 m¼3 m¼4 m¼5

CCM¼30

dn¼ 17.01 14.56 13.18 12.32 11.74

CR(dn,N)¼ 3.126 3.375 4.073 4.929 5.834

CCM¼40

dn¼ 16.60 13.83 12.20 11.11 10.35

CR(dn,N)¼ 3.126 3.422 4.232 5.245 6.350

CCM¼50

dn¼ 16.32 13.31 11.50 10.27 9.39

CR(dn,N)¼ 3.126 3.459 4.361 5.509 6.792

CCM¼60

dn¼ 16.10 12.92 10.98 9.63 8.68

CR(dn,N)¼ 3.126 3.492 4.472 5.740 7.189

CCM¼70

dn¼ 15.91 12.60 10.55 9.12 8.11

CR(dn,N)¼ 3.127 3.520 4.570 5.949 7.554

CCM¼80

dn¼ 15.76 12.32 10.18 8.69 7.63

CR(dn,N)¼ 3.127 3.545 4.659 6.142 7.898

CCM¼90

dn¼ 15.62 12.09 9.88 8.33 7.23

CR(dn,N)¼ 3.127 3.568 4.741 6.323 8.223

CCM¼100

dn¼ 15.51 11.89 9.61 8.01 6.89

CR(dn,N)¼ 3.127 3.590 4.817 6.494 8.535

CCM¼120

dn¼ 15.30 11.53 9.15 7.48 6.32

CR(dn,N)¼ 3.128 3.629 4.956 6.811 9.125

CCM¼150

dn¼ 15.07 11.12 8.61 6.86 5.66

CR(dn,N)¼ 3.128 3.679 5.140 7.246 9.952

CCM¼180

dn¼ 14.87 10.79 8.18 6.38 5.15

CR(dn,N)¼ 3.129 3.723 5.304 7.644 10.730

CCM¼200

dn¼ 14.76 10.60 7.94 6.11 4.87

CR(dn,N)¼ 3.129 3.749 5.405 7.894 11.228

CCM¼250

dn¼ 14.53 10.20 7.43 5.55 4.32

CR(dn,N)¼ 3.130 3.809 5.635 8.482 12.424

CCM¼300

dn¼ 14.34 9.88 7.03 5.12 3.89

CR(dn,N)¼ 3.130 3.861 5.842 9.030 13.566

CCM¼400

dn¼ 14.05 9.38 6.41 4.47 3.27

CR(dn,N)¼ 3.131 3.950 6.210 10.044 15.747

CCM¼500

dn¼ 13.82 9.01 5.95 4.01 2.84

CR(dn,N)¼ 3.132 4.025 6.536 10.987 17.840

CCM¼1000

dn¼ 13.12 7.86 4.61 2.73 1.75

CR(dn,N)¼ 3.136 4.303 7.857 15.195 27.727

Y.-H. Chien et al. / Reliability Engineering and System Safety 103 (2012) 1–108
the scheduled PM should be delayed or Nn becomes larger.
Therefore, Nn increases gradually as d decreases. Note that
some values of Nn are infinite (i.e. Nn

¼N), as shown in
Tables 1-3 and 1-4. This is because the condition
ðCCM�CPMÞGðz�dÞðd=mÞ4(CPM�crm) cannot be satisfied as pre-
dicted in Theorem 1.
3.
 According to Tables 2-1–2-5, if N is large, there will be no
significant difference in optimal policies (dn,CR(dn,N)) for
different N’s; This is because that if N is large, then the
scheduled PM is less frequently implemented. At this point,
if the damage m is large, thus its effects on dn and CR(dn,N) will
becomes less related to N. As a result, the values of the optimal
(dn,CR(dn,N)) are almost the same for the case with large N

and m. Only if N is small, the impact of N on the optimal
(dn,CR(dn,N)) is significant.
4.
 Tables 1-1 and 2-1 show that CR1(Nn)4CR2(dn), which means
that the damage-based PM outperforms the operation
number-based PM This is because that the damage amount
contains more information about the system condition than
the number of operation periods does.

All of these observations are consistent with the analytical
results in Sections 3 and 4.
6. Concluding remarks

In this paper, a maintenance policy for a continuously operat-
ing system is studied. Each period of operation causes a random
amount of damage to the system and these damages are accu-
mulated to trigger a PM or CM action. The system fails when the
total damage exceeds a pre-specified failure level, and then
corrective maintenance (CM) is performed to bring the system
to a new condition. To prevent such a costly failure, a preventive



Table 2-5

dn and CR(dn,N) for a given N¼5 and under z¼20, CPM¼10, and crm¼c0¼1.

m¼1 m¼2 m¼3 m¼4 m¼5

CCM¼30

dn¼ 17.41 14.98 13.34 12.37 11.76

CR(dn,N)¼ 3.800 3.875 4.316 5.041 5.889

CCM¼40

dn¼ 17.01 14.21 12.32 11.14 10.36

CR(dn,N)¼ 3.800 3.896 4.441 5.332 6.388

CCM¼50

dn¼ 16.72 13.66 11.60 10.29 9.40

CR(dn,N)¼ 3.800 3.914 4.546 5.579 6.820

CCM¼60

dn¼ 16.49 13.25 11.06 9.65 8.68

CR(dn,N)¼ 3.800 3.931 4.639 5.799 7.210

CCM¼70

dn¼ 16.31 12.90 10.62 9.14 8.11

CR(dn,N)¼ 3.800 3.946 4.723 6.000 7.572

CCM¼80

dn¼ 16.16 12.61 10.25 8.70 7.62

CR(dn,N)¼ 3.800 3.960 4.801 6.186 7.911

CCM¼90

dn¼ 16.02 12.37 9.93 8.34 7.24

CR(dn,N)¼ 3.800 3.973 4.873 6.362 8.234

CCM¼100

dn¼ 15.91 12.15 9.66 8.02 6.89

CR(dn,N)¼ 3.800 3.985 4.940 6.528 8.544

CCM¼120

dn¼ 15.71 11.78 9.19 7.49 6.32

CR(dn,N)¼ 3.800 4.008 5.066 6.839 9.132

CCM¼150

dn¼ 15.46 11.34 8.64 6.87 5.66

CR(dn,N)¼ 3.800 4.039 5.234 7.266 9.956

CCM¼180

dn¼ 15.27 10.99 8.20 6.38 5.16

CR(dn,N)¼ 3.800 4.067 5.387 7.660 10.733

CCM¼200

dn¼ 15.16 10.79 7.96 6.11 4.88

CR(dn,N)¼ 3.800 4.085 5.481 7.908 11.231

CCM¼250

dn¼ 14.92 10.37 7.45 5.56 4.32

CR(dn,N)¼ 3.800 4.124 5.699 8.492 12.425

CCM¼300

dn¼ 14.74 10.04 7.04 5.12 3.89

CR(dn,N)¼ 3.800 4.160 5.897 9.037 13.566

CCM¼400

dn¼ 14.44 9.52 6.42 4.47 3.27

CR(dn,N)¼ 3.800 4.224 6.252 10.049 15.747

CCM¼500

dn¼ 14.21 9.12 5.96 4.01 2.84

CR(dn,N)¼ 3.800 4.280 6.569 10.990 17.840

CCM¼1000

dn¼ 13.51 7.94 4.61 2.73 1.75

CR(dn,N)¼ 3.801 4.499 7.871 15.195 27.726
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maintenance (PM) action is carried out at suitable time based on
both the cumulative damage level and the number of operation
periods. Using the renewal reward cycle, we derive the long-run
expected cost rate and determine the cost minimization optimal
policy. Both analytical and numerical results are presented and
some important observations are made.

The model and the maintenance policy studied in this paper
have wide applications. Besides the public transit bus mainte-
nance example mentioned in Section 2, some entertainment
facilities in amusement parks, such as roller-coasters, are another
example of our model. Each day of operating a roller-coaster can
be regarded as one operation period and corresponding CM, PM,
and RM may be performed at the end of each period according to
a maintenance policy like the one considered in this paper.
Analyzing the maintenance policy with imperfect CM or PM
actions can be a good topic for future research.
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