文章编号: 1000-3673 (2010) 04-0168-05

168-05 中图分类号: TM 47 文献标志码: A 学科代码: 470·4027

基于 ANSYS 的可控电抗器磁路结构与损耗分析

王子强, 尹忠东, 周丽霞, 王志坚

(电力系统保护与动态安全监控教育部重点实验室(华北电力大学),北京市 昌平区 102206)

Magnetic Structure of Controllable Reactor and Loss Analysis Based on ANSYS

WANG Zi-qiang, YIN Zhong-dong, ZHOU Li-xia, WANG Zhi-jian

(Key Laboratory of Power System Protection and Dynamic Security Monitoring and Control

(North China Electric Power University), Ministry of Education, Changping District, Beijing 102206, China)

ABSTRACT: Magnetic fields of six typical controllable reactors core structures are theoretically analyzed, and by use of a finite element analysis software, namely analysis system (ANSYS), the models of these six core structures are built; exerting different excitation currents, the comparison and analysis on the distributions of these core magnetic fields are performed; utilizing the built-in algorithm of ANSYS, the losses of these six core structures are compared, thus the influence of excitation current on the loss of a certain given core structure is validated. Research results show that for different core structures of controllable reactors, ANSYS software can effectively analyze the magnetic field distribution and core loss.

KEY WORDS: analysis system (ANSYS); controllable reactor; magnetic field distribution; core loss

摘要:针对6种典型的可控电抗器铁心结构,在理论上进行 磁场分析,并在有限元分析软件 ANSYS(analysis system)中 建立其模型,施加不同的激励电流,进行铁心磁场分布的分 析比较,采用 ANSYS 内置的损耗算法,比较了6种铁心结 构的损耗情况,验证了对于某种特定的铁心,激励对损耗的 影响情况。结果表明,对于不同的电抗器铁心结构,ANSYS 能有效分析对比其磁场分布及损耗情况。

关键词: ANSYS; 可控电抗器; 磁场分布; 铁心损耗

0 引言

近年来,可控电抗器得到了越来越广泛的应用。它是一种带铁心的非线性电路,有直流和交流绕组。利用直流激磁控制铁心的饱和程度,从而控制、改变交流绕组电感(感抗)值。在电力系统中,可控电抗器应用广泛,可用作无功功率补偿装置,

限制超高压电网工频和操作过电压,减小线路的空载及轻载损耗,提高电力系统的输电能力、稳定性和电网可靠性,此外,还能补偿单相接地电流(消弧),进行大功率整流系统的谐波抑制。它可连续平滑地调节功率,控制灵活,成本较低,寿命较长,维护管理简便。

可控电抗器的性能改善与新材料、新工艺的发 展有密切的联系。电抗器的容量与铁心体积及磁通 密度紧密相关。电抗器运行时的损耗是一项重要的 性能指标,损耗包括铁损、铜损和杂散损耗,在这 些运行损耗中,除绕组的电阻损耗外,其余损耗都 是由磁通产生的,因此通过改变铁心结构来控制磁 路方向,对设计计算损耗具有重要意义^[1-3]。

有限元分析软件 ANSYS(analysis system)能够 快速直观地进行电磁计算,可用来求解设备或某个 部件的磁场分布问题,它以 Maxwell 方程组作为电 磁分析的出发点。有限元方法计算的未知量(自由度) 主要是磁位或电位,其他诸如磁场通量密度、电流 密度、能量、力、损耗、电感和电容等参数可由这 些自由度导出^[4]。ANSYS 软件可以进行 2-D 及 3-D 的稳态、谐波和瞬态磁场分析,分析方法有磁标量 位方法、矢量位分析方法、棱边单元法等^[5]。

1 可控电抗器结构及工作原理

铁心磁性能的好坏与铁磁材料、铁心结构、制造工艺有关,因此在设计计算可控电抗器时,首先 要合理选择磁性材料,目前使用的磁性材料有铁镍 合金和冷轧硅钢片。对于铁心材料厚度的选择,应 考虑涡流问题,从而减小铁损,降低温升,但磁性 材料越薄,某些磁性能也越低,综合考虑,厚度一 般选 0.3~0.35 mm。

基金项目: 国家自然科学基金资助项目(50777019)。

Project Supported by National Natural Science Foundation of China (NSFC)(50777019).

为了充分利用铁心的磁性能,要选择合理的结构和尺寸比例关系,如果铁心各部分不均匀磁化,构成铁心磁路时有空气隙存在,或者铁心磁路的个别段磁化方向与材料的最易磁化方向不一致,都会影响铁心的磁性能。在选择铁心结构和几何尺寸时,首先要充分利用材料原有的磁性能;其次在满足技术要求的前提下,要使铁心体积及重量最小;最后考虑经济性及工艺性。

可控电抗器的铁心主要有环形铁心和矩形铁 心。环形铁心的优点是漏磁小,磁性能可以充分利 用;缺点是绕制线圈不方便,窗口利用率低,并且 环形铁心内层磁路比外层小,磁化时内层先饱和, 存在径向不均匀磁化问题,使铁心磁性能下降,因 此只适用于工作绕组匝数少的可控电抗器。矩形铁 心有 2 个铁心柱,由冲片叠成,并且为了减小磁路 空气隙的影响,采用交叉叠片方法,使每个冲片上 的空隙位置错开,这样在一个冲片接缝处由于空气 隙磁阻较大,磁通将绕过它,经由相邻的冲片通过^[6]。

直流激磁起控制作用,因此直流绕组又称为控 制绕组,交流绕组(工作绕组)与工作负载连接。当直 流激磁电流为零时,交流绕组感抗值最大,绕组内 电流最小,这时相当于变压器空载运行;当直流激 磁电流一定时,铁心中的磁感应既有直流分量又有 交流分量,由于交流与直流激磁的叠加作用,铁心 工作于磁特性的饱和段,因此交流磁场强度增大, 铁心的等值磁导率下降^[7]。铁心越饱和,磁导率越小, 非线性电抗器的电抗值也越小。电源电压不变时电 抗值是不变的,这种情况下电抗器不可控。

2 用 ANSYS 求解可控电抗器铁心磁场

2.1 分析方法

根据分析类型、材料特性和分析的物理情况, ANSYS提供了几种分析方法:磁标量位法(magnetic scalar potential, MSP)、磁矢量位法(magnetic vector potential, MVP)和棱边单元法。磁标量位法是 3-D 静态分析的首选方法,标量位法允许将电流源单独 建模,而不需要建立成剖分单元,因此电流源不需 要成为有限元剖分单元的一部分。将电流源作为基 元(如线圈)放在合适的位置就可以模拟它对磁场的 作用^[8],因此采用标量位法电流源模型(电流导体区) 比较简单。磁矢量位方法是 ANSYS 2 种节点分析 方法中的另一种,与磁标量位法相比,每个节点有 3 个自由度: *AX、AY*和*AZ*,表示在*X、Y*和*Z*方 向上的磁矢量位自由度(degrees of freedom, DOFs), 在磁矢量位法中,需要将电流源(电流导体区)建模 为有限元区域的一部分。由于矢量位方法的自由度 多,所以它比标量位方法慢。棱边单元法与磁矢量 位法相似,其自由度与单元边有关,与单元节点无 关。这种方法可用于低频电磁场分析中的 3-D 静态 和动态分析^[9-11]。

磁场问题可借助位函数求解。在满足 Maxwell 方程和本构关系的条件下,可得到

 ∇

$$\boldsymbol{H} = \boldsymbol{H}_{\mathrm{g}} - \nabla \varphi_{\mathrm{g}} \tag{1}$$

$$\cdot \mu \nabla \varphi_{\rm g} - \nabla \cdot \mu \boldsymbol{H}_{\rm g} - \nabla \cdot \mu_0 \boldsymbol{M}_0 = \boldsymbol{0}$$
(2)

式中: H 为电场强度矢量; H_g 为电场强度矢量初 始值; φ_g 为全标量位; μ 表示铁的磁导率; μ_0 表 示空气磁导率; " ∇ "表示梯度; " ∇ ·"表示散度; M_0 为本征剩余磁化矢量。

H_g总是包括满足安培定律的毕-沙磁场 H_s, 而 H_s是源电流密度矢量 J_s的函数,并由积分计算 得到

$$\boldsymbol{H}_{s} = \frac{1}{4\pi} \int_{V} \frac{\boldsymbol{J}_{s} \times \boldsymbol{r}}{|\boldsymbol{r}|^{3}} \mathrm{d}V$$
(3)

式中: **r** 为源点到场点的位置矢量; **V** 为电流源的体积。

2.2 分析对象

本文选择6种典型的铁心结构进行分析,铁心 结构如图1所示。

铁心结构1是常见的可控电抗器铁心结构,制造方便,应用较为广泛,其缺点是不能控制铁心的磁状态;铁心结构2是带小截面的铁心,制造较为复杂,但能通过小截面来控制铁心的磁状态,因此

Vol. 34 No. 4

也称为可控电抗器,应用也较为广泛;铁心结构 3 具有 3 级截面,这样可进行分级调磁,从而能更灵 活地控制磁状态;铁心结构 4 是其中一相具有 3 级 截面的三相电抗器;铁心结构 5 是在铁心结构 4 的 基础上,在中间相加空气隙;铁心结构 6 则是具有 旁轭的单相可控电抗器。

2.3 模型的建立

ANSYS 系统中三维电磁场的分析类型有节点 法、棱边法、高频电磁场分析、静电场分析,本文 选择棱边法。

考虑到空气中有漏磁存在,在对铁心进行建模 的同时也要对空气区域建模,对与铁心接触的空气 用 SOLID98 建模,线圈用 SOURCE36 单元建模^[5]。 定义空气相对磁导率为"1",铁心的相对磁导率为 "2000"。创建几何模型并给实体模型分配属性, 最后用剖分工具 MeshTool 进行剖分^[12-14]。

对铁心结构 1 和铁心结构 2 分别进行剖分后的 模型见图 2 和图 3。

图 2 经过有限元剖分后的电抗器铁心结构 1 Fig. 2 Reactor core structure 1 after finite element mesh

2.4 加载和求解

有限元分析的主要目的是检查结构后构件对 一定载荷的响应。在 ANSYS 中,载荷是边界条件 和外部或内部作用力的函数。本文中施加 DOFs 约 束并进行求解^[15]。电抗器模型有电流源存在并且是 多连通铁区,故采用总标量磁位法。假设导磁非导 电区为Ω₁,自由空间为Ω₀, *S*₁表示Ω₁的边界。

在铁区范围Ω,内有

$$\boldsymbol{H}_{\mathrm{g}} = \boldsymbol{H}_{\mathrm{s}} \tag{4}$$

边界 S1上的约束条件为

$$\boldsymbol{n} \cdot \boldsymbol{\mu} (\boldsymbol{H}_{\mathrm{g}} - \nabla \boldsymbol{\varphi}_{\mathrm{g}}) = 0 \tag{5}$$

式中 n 为 n 方向单位矢量。将式(3)代入式(1)(2),

得到铁区内的场值为

$$\boldsymbol{H}_{1} = \boldsymbol{H}_{s} - \nabla \varphi_{g} \tag{6}$$

在空气范围 Ω_0 内有

$$\boldsymbol{H}_{\mathrm{g}} = \boldsymbol{H}_{\mathrm{s}} \tag{7}$$

边界 S1上的约束关系为

$$\boldsymbol{n} \times \boldsymbol{H}_{g} = \boldsymbol{n} \times \boldsymbol{H}_{1} \tag{8}$$

通过自动约束铁区表面的标量位结果 φ_g 等于式(6)中所得铁区内磁场强度矢量 H_1 ,使边界条件得到满足。将式(7)代入式(1)(2),得到场值为

$$\boldsymbol{H}_{0} = \boldsymbol{H}_{s} - \nabla \boldsymbol{\varphi}_{g} \tag{9}$$

综合上面的计算结果,并在铁区范围 Ω_1 内有

$$\boldsymbol{H}_{g} = \boldsymbol{H}_{1} \tag{10}$$

及空气范围 Ω_0 内有

$$\boldsymbol{H}_{g} = \boldsymbol{H}_{0} \tag{11}$$

从而得到区域中的总场为

$$\boldsymbol{H} = \boldsymbol{H}_{\mathrm{g}} - \nabla \varphi_{\mathrm{g}} \tag{12}$$

将数据结果读入数据库后,在通用后处理器中 查看2种铁心结构得到的磁场分布及磁感应强度示 意,见图4、图5。

9.855 46.144 82.433 118.722 155.012

图 4 电抗器铁心结构 1 磁场分布及强度 Fig. 4 Magnetic field intensity and distribution of reactor core structure 1

4.609 32.470 60.332 88.194 116.055
 图 5 电抗器铁心结构 2 磁场分布及强度
 Fig. 5 Magnetic field intensity and distribution of

reactor core structure 2

从示意图中可以明显看出,铁心结构1中的磁场强度基本均匀分布,而铁心结构2由于小截面的作用,其磁场强度远远小于前者,并且小截面处的磁场强度接近饱和,其他地方却远远没有达到饱和。并且从数据也可以得到验证:铁心结构1的磁感应强度最大值为173.156 T,最小值为9.885 T;铁心结构2的磁感应强度最大值为12.999 T,最小值为0.460865 T。

磁场分析中的焦耳热既可用矢量位方法通过 单元进行计算,也可作为输出功率损耗或耦合场热 生成载荷输出。本文中计算的每单元焦耳热为

$$Q^{j} = \frac{1}{m} \sum_{i=1}^{m} \rho \boldsymbol{J}_{ti} \cdot \boldsymbol{J}_{ti}$$
(13)

式中: *m* 为积分点个数; *ρ* 为电阻率矩阵; *J_u* 为单 元积分点 *i* 的总电流密度。得到每个单元的焦耳热 后,根据剖分后的有限单元可以计算出总的功率损 耗。在 ANSYS 的后处理中可以查看其功率损耗, 分别为 26.127 W 及 12.488 W。

按照上述建模及加载求解过程,对其余4种铁 心结构分别建模,并施加不同激励(线圈匝数 N×电 流强度 D),最后得到的数据结果如表1所示。

	表1	不同结构的铁心损耗比较
Tah. 1	Core loss	comparison of different core structure

铁心结构	激励	损耗/W
	<i>N</i> =500 ⊞, <i>I</i> =10 A	26.127 00
铁心结构1	<i>N</i> =500 ⊞, <i>I</i> =1 A	0.130 79
	<i>N</i> =100 ⊞, <i>I</i> =5 A	0.130 79
	<i>N</i> =500 ⊞, <i>I</i> =10 A	12.488 00
铁心结构 2	<i>N</i> =500 ⊞, <i>I</i> =1 A	0.124 55
	<i>N</i> =100 ⊞, <i>I</i> =5 A	0.120 33
	<i>N</i> =500 ⊞, <i>I</i> =10 A	11.453 00
铁心结构 3	<i>N</i> =500 ⊞, <i>I</i> =1 A	0.004 53
	<i>N</i> =100 ⊞, <i>I</i> =5 A	0.004 53
	<i>N</i> =500 ⊞, <i>I</i> =10 A	31.713 00
铁心结构 4	<i>N</i> =500 ⊞, <i>I</i> =1 A	0.317 52
	<i>N</i> =100 ⊞, <i>I</i> =5 A	0.317 47
	<i>N</i> =500 ⊞, <i>I</i> =10 A	0.074 886
铁心结构 5	<i>N</i> =500 ⊞, <i>I</i> =1 A	0.007 488 6
	<i>N</i> =100 ⊞, <i>I</i> =5 A	0.007 488 6
	<i>N</i> =500 ⊞, <i>I</i> =10 A	47.230 00
铁心结构 6	<i>N</i> =500 ⊞, <i>I</i> =1 A	0.479 81
	<i>N</i> =100 ⊞, <i>I</i> =5 A	0.472 30

表1中的损耗是指整个铁心的总损耗情况,并 且从表中可以看出,铁心损耗不是仅与线圈匝数*N* 或电流强度*I*有关,而是与其乘积有关,即与激励 有关^[16]。在激励相同的情况下,铁心损耗基本相同。 激励增大时,铁心中的感应电动势也会增加,从而 损耗增大。

为了更清楚地看出某种特定铁心损耗与激励 的关系,本文针对第2种铁心结构取了7组数据, 在 Matlab 中应用3次插值,得到如图6所示的关系 曲线,图6中小圆点代表所测得的数据点。由图6 能清楚地看出,随着激励的增大,损耗不断增大, 但当激励达到一定程度后,铁心达到磁饱和,损耗 基本不再增大。

Fig. 6 Relationship between excitation and loss for reactor core structure 2

3 结论

本文对可控电抗器的6种典型铁心结构进行了 磁场分析比较与损耗情况对比。仿真分析表明,仿 真结果与理论分析基本相符,验证了分析与仿真方 法的正确性,为进一步研究可控电抗器的其他性能 提供了依据。小截面是限制整个铁心磁路磁场强度 的瓶颈。当铁心具有小截面时,小截面磁场强度接 近饱和,铁心其他处远未达到饱和,这也说明磁阀 式可控电抗器的基本原理是通过小截面改变铁心 的磁饱和度,从而平滑地调节可控电抗器的容量。 并且如果铁心磁路中有空气间隙,由于其导磁能力 差,整个铁心的磁场强度都将大大下降。

将 ANSYS 应用于电抗器开发的前期研究,在设 计阶段便能对电磁装置或设备中的电磁场分布及其 各种性能指标了如指掌,方便进行各种设计方案的 比较和设计内容的改进,并且对某些指标可以进行 精确计算及性能预测,可以节省大量的设计实验费 用,具有较高的经济可比性。

参考文献

- [1] 蔡宣三,高越农.可控饱和电抗器原理、设计与应用[M].北京: 中国水利水电出版社,2008: 36-45.
- [2] 周勤勇,郭强,冯玉昌,等.可控高压电抗器在西北电网的应用研究[J]. 电网技术,2006,30(6):48-52.
 Zhou Qinyong, Guo Qiang, Feng Yuchang, et al. Study on applying high voltage controllable reactors in Northwest China power grid [J]. Power System Technology, 2006, 30(6):48-52(in Chinese).
- [3] 周勤勇, 郭强, 卜广全, 等. 可控电抗器在我国超/特高压电网中的应用[J]. 中国电机工程学报, 2007, 27(7): 1-6.
 Zhou Qinyong, Guo Qiang, Bu Guangquan, et al. Application of controllable reactors in China's Power Grid at extra and ultra voltage level[J]. Proceedings of the CSEE, 2007, 27(7): 1-6(in Chinese).
- [4] 阎照文. ANSYS10.0 工程电磁分析技术与实例详解[M]. 北京: 中国水利水电出版社, 2006: 123-134.
- [5] Yamada R, Marcsin E, Lee A, et al. 3D ANSYS quench simulation of cosine theta Nb₃ Sn high field dipole magnets[J]. IEEE Trans on

Applied Superconductivity, 2004, 14(2): 291-294.

2008, 28(21): 57-62(in Chinese).

- [6] 牟宪民,王建赜,魏晓霞,等.新型正交铁心可控电抗器[J].中 国电机工程学报,2008,28(21):57-62.
 Mu Xianmin, Wang Jianze, Wei Xiaoxia, et al. Novel ferrite orthogonal core controllable reactor[J]. Proceedings of the CSEE,
- [7] 卢铁兵,冯晗,崔翔.基于上流有限元法对高压直流输电线路下 合成电场的研究[J].电网技术,2008,32(2):13-16.
 Lu Tiebing, Feng Han, Cui Xiang. Research on total electric field beneath HVDC power lines based on upstream finite element method [J]. Power System Technology, 2008, 32(2): 13-16(in Chinese).
- [8] Mishima F, Terada T, Akiyama Y, et al. Research and development of superconducting magnetic separation system for powdered products
 [J]. IEEE Trans on Applied Superconductivity, 2008, 18(2): 824-827.
- [9] 甘艳,阮江军,陈允平. 一维有限元与三维有限元耦合法在接地 网特性分析中的应用[J]. 电网技术, 2004, 28(9): 62-66. Gan Yan, Ruan Jiangjun, Chen Yunping. Application of unidimensional finite element method (FEM) coupled with three dimensional FEM in characteristics analysis of grounding mesh property[J]. Power System Technology, 2004, 28(9): 62-66(in Chinese).
- [10] 张武军,何奔腾,沈冰.特高压带并联电抗器线路的行波差动保 护[J].中国电机工程学报,2007,27(10):56-61.
 Zhang Wujun, He Benteng, Shen Bing. Traveling-wave differential protection on UHV transmission line with shunt reactor
 [J]. Proceedings of the CSEE, 2007, 27(10): 56-61(in Chinese).
- [11] 孙海顺,裴志宏,程时杰,等.电抗器品质因数对 TCSC 特性的 影响及阻抗特性的双解现象[J].中国电机工程学报,2005,25(7): 46-51.

Sun Haishun, Pei Zhihong, Cheng Shijie, et al. Effects of the reactor's quality factor on the characteristics of TCSC and its dual impedance solutions[J]. Proceedings of the CSEE, 2005, 25(7): 46-51(in Chinese).

[12] 赵俊峰,王秀莲.基于 ANSYS 的磁饱和式可控电抗器铁心磁场的 分析[J]. 沈阳理工大学学报,2007(26):58-61. Zhao Junfeng, Wang Xiulian. The study of a magnetically controlled saturated reactor core magnetic field in power transformer based on ANSYS[J]. Transactions of Shenyang Ligong University, 2007(26): 58-61(in Chinese).

- [13] 徐敏,王钢,王智东.基于 IEC 61850 标准的电抗器保护建模方法[J].电网技术,2008,32(增刊1):84-86.
 Xu Min, Wang Gang, Wang Zhidong. IEC 61850 based modeling method for shunt reactor protective functions[J]. Power System Technology, 2008, 32(Supplement1): 84-86(in Chinese).
- [14] Mehasni R, Feliachi M, Latreche M ElH. Effect of the magnetic dipole interaction on the capture efficiency in open gradient magnetic separation[J]. IEEE Trans on Magnetics, 2007, 43(8): 3488-3493.
- [15] 闫冬,赵建国,武守远.考虑电抗器支路电阻影响的 TCSC 触发 特性研究[J].电网技术,2004,28(8):38-41.
 Yan Dong, Zhao Jianguo, Wu Shouyuan. Research on firing characteristics of TCSC considering influence of resistance in reactor branch[J]. Power System Technology, 2004, 28(8): 38-41(in Chinese).
- [16] 翟国富,周学,任万滨.恒定干扰磁场下电磁继电器静态特性的 有限元分析[J].中国电机工程学报,2008,28(18):132-137. Zhai Guofu, Zhou Xue, Ren Wanbin. Finite element analysis of static characteristics of electromagnetic relay interfered by static magnetic field[J]. Proceedings of the CSEE, 2008, 28(18): 132-137(in Chinese).

收稿日期: 2009-10-14。 作者简介:

王子强(1985一),男,硕士研究生,研究方向 为电力电子技术在电力系统中的应用,E-mail: wangzq_ken@163.com;

尹忠东(1968—),男,博士后,教授,研究方向为 FACTS 技术、新能源发电及储能技术。

王子强

(责任编辑 沈杰)