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Abstract

In this paper, we present an explicit form in terms of endapaiata for the classical actio®, evaluated on ex-
tremals satisfying the Hamilton-Jacobi equation for eaelmimer of a hierarchy of classical non-relativistic ostilia
characterized by even power potentials (i.e., attractotergialsVon(yon) = 2—1nk2ny%ﬂ(t)|n21). The nonlinear quartic

oscillator corresponds to= 2 while the harmonic oscillator correspondste: 1.

“andersonr@hal.physast.uga.edu


http://arxiv.org/abs/1204.0768v1
mailto:andersonr@hal.physast.uga.edu

Part |

INTRODUCTION

The linearization map in [1] gives the solution for all memdef the hierarchysn(yon) = 2—1nk2nygﬂ(t)|n21 in terms of
the linear (harmonic) oscillaton(= 1). It consists of an explicit nonlinear deformation of cdinates and a nonlinear

deformation of time coordinates involving a quadrature:

X(E) = (ken/ k) 2y (1) (VB0 (1) "2,

yan(t) = (nka/kon)Y/2"(E) (& () ) /2, (1.1)

E _ n7(2n71)/2n(k2/kzn)l/Zn(XZ(f»7(n71)/2n’

dt

= Vilkan/ko)V2(3%,(0)) "2 12)

So, it important to keep in mind that all the quantities irsthaper are known in principle as a consequence of (1.1)

and (1.2)!

However, it is a non-canonical map. Therefore, to find a fasntlie action evaluated on an extremal, we can only use

the linearization map as a guide, albeit an extremely usefel

Critical to the form stated below is the fact that,,., andtmax are constants of the motion and they uniquely charac-
terize every extremal of the periodic systems studied mpliper. This allows us to find a form in terms of end-point

data for the classical actid®, evaluated on extremals for each member of a hierarchy oficksnon-relativistic



oscillators characterized by even power potentials éiteactive potential¥s,(yzn) = 2—1nk2nygﬂ(t)|n21). (The quartic

oscillator corresponds to= 2 while the harmonic oscillator correspondsite- 1. The form is new for the harmonic

linear oscillator and using the material in Part Il one caadily check that it is equal in value to the one given in

[2]-[3].) (See Appendix B.)

In particular, we arrive at a form for

tp
' d
S(Zn)(ta7YZna;tb,y2nb): /L2n(Y2n(t)aa)’Zn(t))d”extremal )

tmax

tmax
+ / Lan(Yan(t)

ta

d

; dty2n(t))dt|a<tremaj

whereL,, equals the Lagrangian for tha Bscillator, which satisfies

0Sn _ o
dYan A
aSZn aSZn
= —E = —Hop(=—,V. ,
dtb 2n((9y2nb 2n(y2nb))
and the time-reversed motion
0Sn
ayzna - pzna )
aSZn aSZn
= +E = Hpp(=—,V ) s
oL, on( 3one on(Yan,))

whereH,, = Hamiltonian for the 8 oscillator.

We shall use the notation= y», where it does not cause confusion.

(1.3)

(1.4)

(1.5)



mw |k
Sn(ta, Yaith; Yo) = (ﬁ)l/Z

(n+1) "nky
(10" 2c0% [ * y(t)dt — (011 Yma Vi) ™ /24 10 ™V 200800 [ y(t)) ™ V2 cosio [y
tmax tmax tmax
/sin(w / RAOLY
+

tmax max
[(y2)(n+D/ cosw/ t)dt — (N+ 1)YaymaxYimae) " /2 4 n(yz a0 " /2( coszw/ (t)dt)("+L) /Zn/cos(w/

tmax
/sin( w/

+

(n—=1) kon o,
D 2nY (o ta) (1.6)

wherey(t) = (%)1/2 (y?(t))" V2,

In Part 1, we discuss the description of the hierarchy ertiks using the known results for the harmonic (linear) os-
cillator (n =1) that are implied by the linearization map presented in Y¥ start with the quartic oscillator and then

present the general case.

In Part 11, we sein= 2 in (1.6) and show that the classical action evaluated ox@araalSy, satisfies the Hamilton-

Jacobi equation equations (1.4)-(3s5) for the quartic oscillator.

In Part 1V, we taken arbitrary in (1.6) and show that the classical action evaldi@n an extremel, satisfies the
Hamilton-Jacobi equations (1.4)-(1.5) for each membeheftierarchy. This reproduces the quartic oscillator tesul

in Part 1l and as well as yielding a new form for the harmorscitiator.



Part |1

Extremals

The set of extremals for the harmonic (linear) oscillatatéscribed by the endpoint solution of Newton’s equation of

motion

X(f) = (xp sinw(f — fa) + Xasinw(f, — f) /sinw(f, — ), (2.1)

where the spring constaki = mw?, m = mass, { denotes the harmonic oscillator time andenotes the space co-
ordinate of the linear oscillator (ref [3] and eq. (1.1) if)[1lt is important to note that each extremal is uniquely
characterized bymax and afmax. Specifically, we take & fmax < %” and of coursenax is fixed by the energy. In

practice the evaluation of quantities here we can fakgup to a multiple of the period.

Now the extremals are also described by the equation

X(f) = Xmax cosw(f — tmax) (2.2)

[(see Appendix A for a demonstation)].

The set of extremals for a quartic oscillator with mass described by the equivalent endpoint solution of Newgon’

equation of motion



V()2 y(t) =

Rt b
o(vB) H/2sineo] () 2P (1) 20t + ya(ya)/2sinco) (F)H2(2(1) M2l

- (2.3)
sinco (3 )1/2(y2(t) )/ 2dl

a

and the equivalent integral equation

YO O) ~ e e 0050 [ yit)t) =0 2.4

wherey = (2ka/k2)2(y*)Y?, ymax = (4E /ks)Y/*, k4 = denotes the quartic spring constardenotes quartic oscillator

time andy = yq = Y4 denotes the space coordinate of the quartic oscillator.

(We remind the reader that because of the linearization rivem ¢n [1], the integral equation (2.4) is solved. However,

as an aside, we would like to point out thﬁ'ﬁwy(t/)dt/ can also be determined from (2.4) since we know the pairs

(t,y(t)) and(tmax, Ymax).)

The argument in Appendix A generalizes to this case for thevatgnce of (2.3) and (2.4). Further, that the integral

equation (2.4) satisfies Newtons equation of moﬁémny(t) = —kqy(t) follows by direct differentiation twice.

The pairs (2.1)-(2.2) and (2.3)-(2.4) are connected byitteatization map (1.1)-1.2) given in [1] between the linear

oscillator and the quartic oscillator.

Using the preceding arguments, (2.3)-(2.4) generalize to



(Van(t) ™2 yan(t) =

t ty
y2nb(y%nb)‘”*”/Zsinwtfv(t/)dt/ + yzna(y%na)(“*”/Zsinw{v(t’)dt’

ty
sinw [y(t")dt’
ta

which is equivalent to the integral equation

(Y20(®) () ™ 72) — (Vonmae Vo) ™ /2 cOg @ / (t))dt) =

tmax

wherey(t') = (&)Y (yan(t')) " 1/2,

The above imply the following momenta since all systems lhgesame magss:

mw , k _ . t

Pam, = T ()2 (10,) " 2, 60860 [ YOE) ~ ) ™ P S50 [yt
mw k max max

pzna - nin 1/2[ yzna " l yznacoqw/ (y%nmax)( >/ yznmax /Sln OJ/ dt)

These are the equations we have to reproduce witlsgur

(2.5)

(2.6)

(2.78)

(2.7b)



Note (2.6) implies

Bolto) ™ 72) = (B) " 200800 [yttt /2, (2.82)

tmax
and

max

(V3 (t2)) " Y72) = (V) " /?) (cOS (@ t y(t)dt)) "7, (2.8b)

ta
These latter relations are needed to evalyatden we differentiate w.r.t time far = 2 in Part Il and arbitrary in

Part IV.

Part |11

Nonlinear action for the quartic oscillator

As mentioned above, because the linearization map givetj is f non-canonical one, we do not have a derivation of
the actions for the nonlinear quartic oscillator in termgfa, t, andty, rather we have constructed it, namely (1.6)

with n = 2, using the linearization map as a guide.



Spo(ta, Yarto, Yb) = Su(ta, Yarth, Yo, )

_ m ka (172

{ l( 3/2005(“)/ — 3Yb Ymax( Yﬁmx)l/z y2 ax)3/2 COS2 w/

tmax

t)dt)¥/4 /cos(w/ ]
tmaX

max

1]

Jsin(e [ y(t)dt)

tmax

+

0208 [ V)a) ~ 3y ymax Vo2 + 2002080 [ ¥ fooste [ f“”v(t)dt))]

fsine [ " y(t)
+ 1i2 Ka Y?nax(tb —ta) (3.1)

This implies

9
—Sqo(ta,ya:tb,yb)

_mw K
3 (3,

[(yzwz o cose [ yta) - yﬁqayﬂym]/sm o[ v =py (32)

tmax tmax



and

0
a—tbS}o(taaya;tbayb)

_ m_wz(ﬁ)l/z
3 ‘2%,

[(Y%)s/ZCOs(w/'tb yat) — 3y Ymax(Vaad /2 + 2(Yaad¥ ?(cog( w/ t)dt)¥/4 /cos(w/ ]

Wi

cos(oo/ y(t)dt) /sir(w ° y(t)dt))

tmax

R 2-sinte [y

4220 ¥2(3/4)( 2co§,<w/tmax t)dit)sin( w/tmax dt))/((co$( w/tmax t)dt)) 1/4008(&)/tmax dt))
+202.)%2(cod(w /tmax £)dt)¥4sin(e /tmax t)dt)/co(w / ¥

fstef v

+—k4yﬁqax

B k“yﬁqaﬁ o k4):r1nax (3.3)

(We have used (2.4)—, and (2.8a)n—> after differentiating wrty, to obtain (3.3).) The first four terms sum to zero.

9%

0yb = pqob 9
0Sp B 0Sy0

This agrees with (2.7a) and (1.4) foe= 2.
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Thea-differentiations parallel the-differentiations and yield

0

(9?/1: Pgo, >

7} 7}

0?;0 e +E = qu(%;o,qu(ya)) . (35)

This agrees with (2.7b) and (1.5) foe= 2.

Itis important to note that the value &, is not changed if the substitution of (2|4}, is made in (3.1). However, this
substitution cannot be made before all differentiatiomsraade because the choice of the form in terms of space-time

endpoints foiSy is critical.

Part IV
Actionsfor the nonlinear hierarchy

Va(Yon) = 2koryB3(t) o1

Here we generalize the approach from Part 111

The action on an extrem&bn(ta, Ya;th, ¥b) is given (1.4) (Here, we shall use the notatios y»,.). We now proceed
to verify that (1.6) satisfies the Hamilton-Jacobi equati¢h.4)-(1.5) by verifying that the following equations are

satisfied (We shall use the notatipa- y,.):

11



d
YR t ) !t )
F Son(ta, Yaito: Vo)

@)1/2
n|(2

l(yz)nl ybcos(oo/ Y(©)dt) — Ymax(Yaad "2

max

= mow(
/sin( w/ y(t)dt) = pan,, 4.1)

and

9 _ _ mw® kan 1/
a—tk)SZn(ta7Yaatb7YD)—(n )(n_kz) Yo

{l(yz) 1)/ COS(a)/t (0)dt — (N+ 1) Ymax(Yarad ™ P72 + n(y20 ™ D/2(co( w/ (t)dt))"+D /Zn/cos(a)/t dt)]

cos(w/ t)dt) /sir?( w/
tmax tmalx
+ | (y2)™D/2 _sin( w/ (1)dt)) + N(y2a0 "2 (N4 1) /2)cog( w/ (t)dt)((MFD/2n=20 Zcos{w (t)dt)
tmax tmax tmalx
sin w/ t)dt)) /cos(w/ t)dt) + n(yZ,z0 ™Y/ co§w/ t)dt)™D/2" sin( w/ t)dt)/(cos( w/ ]
tma>< tmax tmalx tmalx tmalx
tp
/sin(w/ (t)dt)}
tmax
n 1 k2n
thyian Vit
k k
= n _T_nlyzmnax . ernaxv (4.2)

wherey, = ( nkon )1/2(yg)(n—1)/2.

(We have used (2.4)_y, and (2.8a) after differentiatirtg to obtain (4.2).) The first four terms sum to zero.

12



Thus,

0Sn

a—yb = P2n,

0Sn

o —E, (4.3)

which agrees with (2.7a) and (1.4).

Thea-differentiations parallel the-differentiations and yield.

0Sn

aya - pzna )

0Sn _

F E, (4.4)

which agrees with (2.7b) and (1.5).

Part V

Concluding Remarks

To the best of the author’s knowledge of the existing literaton classical mechanics, he can not find any literature
on general transformation theory devoted to transformimggystem at a given time to another at a distinctly different

time, hence the absence of references to the classicatliteron this point in this paper.

13
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Appendix A

As stated in Part 11, the set of extremals for the harmonie@r) oscillator is given by
X(f) = (xp sinw(f — ta) + xasinw(ty — t) /sinw(f, —ta), (2.1)

where the spring constakit = mw?, m=mass, f denotes the harmonic oscillator time andenotes the space coordinate

of the linear oscillator.

We now demonstrate that equation (A.1) is equivalent toehationship
X(f) = Xmax CO&u(f— fmax). (22)

Rewriting (2.1) as

cross-multiplying and expanding, we have

X(f) S|nw(fb - fmax+ fmax - fa) == (sz'nw(f - fmax+ fmax - fa) + XaS'ﬂOJ(fb - fmax+ fmax - f))

or

X(f){sinw(fy, — tmax) cosw(fmax — ta) + coso(th — tmax)sinw(tmax— ta) }
= Xp{SiNwW(f — tmax)co0(fmax — a) + coF0(f — tmax)sinw(tmax— ta) }
+Xa{sinw(fp — tmax)cosw(fmax— t) + coxw(ty — tmax)sinw(tmax—£)}

(A.2)

15



Substituting (2.2), we obtain the identity

x(f) sinc(fy — fmax) Xa +x() a sinw(fmax— fa)
Xmax Xmax
PPN x©) . . R
== sz'nw(t — tmax) Xa + Xbﬁs|nw(tmax_ ta)
Xmax Xmax
.. X(E . R
+Xasinw(fh — fmax) ® +xa£5|nw(tmax—t), (A.3)
Xmax Xmax

where the 1st and the 4th terms on the r.h.s. of (A.3) cancel.

You can now run the above argument backwards. Thus we hawenghat (2.1) and (2.2) are equivalent.

Appendix B
It follows from differentiating (2.1) and (2.2) and settifg fy, that
~ Xpcow(th —fa) — Xa

—la

Similarly, it follows that

Xo — XaCO0(fp — fa)

Xmaxsmw(fmax— fa) = sinw(fb )
—1a

(B.2)

Hence
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mOJ[ (Xg + Xg)cqg‘)(f;b B lza) — 2XbXa]
2sinw(t, —ta)

= [—XmaxXpSINW(fh — tmax) — XmasXaSiNW(fmax —ta)]

where the I.h.s. is th&,, of [2] - [3].

The actionSyp|n=1 = Sic With x =y, given by (1.6) is

mw A X2 0 COSW(fh —tmax) ., .~ -
So = 7{ [X5c0gw(th — tmax) — 2XpXmax—+ cosolfy— om0 ]/sinw(fy — fnax)

- N 2 5COF W (fmax— . PR -
+ Xecozo(fmax — fa) — 2XaXmax+ Xmixg; (E)nirixfa) 2) 1/sinw(tmax—ta)

Now (B.4) 2.2 in value is given by

1

mw . 5 PR
2 {Xb [COSA)( b maX) Cogl)(tb - tmax)

1/sinw(ty — tmax)
+ x2[cogo(fmax— fa) — m] /sinw(fmax—fa)}
mew

= [—Xbxmaxsmw(fb - fmax) - XaXmaxSinw(fmax— fa)]-

The r.h.s. of (B.5) equals the I.h.s. of (B.3).
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