
ar
X

iv
:1

20
4.

08
40

v1
  [

m
at

h-
ph

] 
 4

 A
pr

 2
01

2
TH-1536

Effect of Position-dependent Mass on Dynamical Breaking of

Type B and Type X2 N -fold Supersymmetry

Bikashkali Midya∗ and Barnana Roy†

Physics and Applied Mathematics Unit,

Indian Statistical Institute,

Kalkata 700108, India

Toshiaki Tanaka‡

Department of Physics,

National Cheng Kung University,

Tainan 701, Taiwan, R.O.C.

National Center for Theoretical Sciences,

Taiwan, R.O.C.§

Abstract
We investigate effect of position-dependent mass profiles on dynamical breaking of N -fold super-
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the other hand, some physically relevant mass profiles can change the pattern of dynamical N -fold
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I. INTRODUCTION

In recent years, the study of quantum mechanical systems with a position-dependent
mass (PDM) have attracted a lot of interest due to their relevance in describing the physics
of many microstructures of current interests, such as compositionally graded crystals [1],
semiconductor heterostructure [2], quantum dots [3], 3He clusters [4], metal clusters [5] etc.
The concept of PDM comes from the effective-mass approximation [6, 7] which is a useful
tool for studying the motion of carrier electrons in pure crystals and also for the virtual-
crystal approximation in the treatment of homogeneous alloys (where the actual potential is
approximated by a periodic potential) as well as in graded mixed semiconductors (where the
potential is not periodic). Recent interest in this field stems from extraordinary development
in crystal-growth techniques like molecular beam epitaxy, which allow the production of
nonuniform semiconductor specimen with abrupt heterojunctions [8]. In these mesoscopic
materials, the effective mass of the charge carrier are position dependent. Consequently, the
study of the position-dependent mass Schrödinger equation (PDMSE) becomes relevant for
deeper understanding of the non-trivial quantum effects observed on these nanostructures. It
has also been found that such equations appear in many different areas. For example, it has
been shown that constant mass Schrödinger equations in curved space and those based on
deformed commutation relations can be interpreted in terms of PDMSE [9]. The PDM also
appear in nonlinear oscillator [10, 11] and PT -symmetric cubic anharmonic oscillator [12].
The most general form of the PDM Hamiltonian proposed by von Roos [13] is defined by

H = −1

4

(

m(q)α
d

dq
m(q)β

d

dq
m(q)γ +m(q)γ

d

dq
m(q)β

d

dq
m(q)α

)

+ V (q), (1.1)

where the ambiguity parameters α, β, γ are related by α + β + γ = −1. The above
Hamiltonian always has the following form:

H = − 1

2m(q)

d2

dq2
+

m′(q)

2m(q)2
d

dq
+ U(q), (1.2)

where the effective potential U(q) is given by

U(q) = V (q)− (α+ γ)
m′′(q)

4m(q)2
+ (αγ + α + γ)

m′(q)2

2m(q)3
. (1.3)

It is quite natural that physical interests just described above have also enhanced the
studies on exact solutions to PDMSE [14–30] by employing various methods e.g. supersym-
metric (SUSY) quantum mechanics [31] and point canonical transformation [32] to mention
a few. Later, PDM quantum systems were successfully formulated in the framework of
N -fold SUSY in Ref. [33], which has provided until now the most general tool for con-
structing a PDM system which admits exact solutions because of its equivalence to weak
quasi-solvability. To avoid confusion, we here note that N -fold SUSY is different from non-

linear SUSY which has been long employed since the work by Samuel and Wess [34] in
1983 to indicate the nonlinearly realized SUSY originated from the work by Akulov and
Volkov [35] in 1972. For a review of N -fold SUSY see Ref. [36], while for recent works on
nonlinear SUSY see, e.g., Ref. [37] and references cited therein.

Very recently, new classes of exactly solvable PDM quantum systems whose eigenfunctions
are expressible in terms of so-called X1 polynomials were constructed in Ref. [28]. The new
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findings ofXn polynomials (n ≥ 1) were associated with the more fundamental mathematical
concept of exceptional polynomial subspaces of codimension n introduced in Refs. [38–40],
whose origin can be traced back to the pioneering work on the classification of monomial
spaces preserved by second-order linear differential operators [41].

The purpose of the present paper is two-fold. The first one is to bring the purely mathe-
matical concept of exceptional polynomial subspaces into more physical settings by allowing
the position dependence of mass (in a spirit similar to Ref. [28]) in the framework of N -fold
SUSY. In the constant-mass case, form of potentials related to exceptional polynomial sys-
tems is very limited. Thus, we can enlarge the physical applicability of the mathematical
concept by introducing PDM to quantum systems. On the other hand, the framework of
N -fold SUSY enables us to talk about the physical phenomenon of dynamical N -fold SUSY
breaking. The second purpose is actually to examine effect of PDM profiles on dynamical
breaking of N -fold SUSY. In this respect, it is rather surprising that there have been few
papers, like Ref. [11], where broken as well as unbroken SUSY is described in PDM back-
grounds depending on the mass profiles. One of the main reasons would be that SUSY has
been mostly used just as a technique to obtain exact solutions. The true significance of
the Witten’s SUSY quantum mechanics [31], however, rather resides in the nonperturbative
aspects of dynamical SUSY breaking. Hence, one of our main purposes is, in other words,
to examine change of nonperturbative nature of quantum systems caused by variations of
mass profiles in view of dynamical N -fold SUSY breaking.

The paper is organized as follows. In Section II, we provide a self-contained review of
N -fold SUSY in a PDM background, especially for those who are not familiar with the
subject. We also summarize mathematical structure of type B and type X2 N -fold SUSY.
In Section III, we construct several N -fold SUSY PDM quantum systems and examine
dynamical N -fold SUSY breaking in different PDM backgrounds. The first three models of
type BN -fold SUSY have rational, trigonometric, and exponential potentials in the constant
mass case. We show in particular that the models whose bound state eigenfunctions were
shown to be expressed in terms of X1 polynomials in Ref. [42] for the constant mass case and
in Ref. [28] for the PDM cases can be obtained as type B systems. The last three models of
type X2 N -fold SUSY have rational, hyperbolic, and exponential potentials in the constant
mass case. For both types of N -fold SUSY, we find that the rational potentials have steady
N -fold SUSY against variation of mass profile while all the other types of potentials can
receive effect of PDM on their dynamical breaking of N -fold SUSY. Finally, we summarize
the results and discuss their implications and prospects in Section IV.

II. REVIEW OF N -FOLD SUPERSYMMETRY IN A PDM BACKGROUND

An N -fold SUSY one-body quantum mechanical system with PDM is composed of a pair
of PDM Hamiltonians

H± = − 1

2m(q)

d2

dq2
+

m′(q)

2m(q)2
d

dq
+ U±(q), (2.1)

and an N th-order linear differential operator

P−
N = m(q)−N/2 dN

dqN
+

N−1
∑

k=0

w
[N ]
k (q)

dk

dqk
, (2.2)
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which satisfy the following intertwining relations

P−
NH

− = H+P−
N , P+

NH
+ = H−P+

N . (2.3)

In the above, P+
N is the transposition [43] of P−

N given by

P+
N = (P−

N )T =

(

− d

dq

)N

m(q)−N/2 +

N−1
∑

k=0

(

− d

dq

)k

w
[N ]
k (q). (2.4)

Actually, the two relations in (2.3) are not independent; the first implies the second and vice
versa, since the PDM Hamiltonians (2.1) are invariant under the transposition (H±)T = H±.

One of the significant consequences of the intertwining relations (2.3) is weak quasi-

sovability, that is, H± preserves a finite-dimensional linear space V±
N spanned by the kernel

of the operator P±
N

H±V±
N ⊂ V±

N , V±
N = kerP±

N . (2.5)

Each space V±
N is called a solvable sector of H±. Except for the N = 2 case (cf., Refs. [36,

44]), virtually all the N -fold SUSY systems so far found admit analytic expression of V±
N in

closed form, and thus are quasi-solvable. In addition, it sometimes happens when either H−

or H+ does not depend essentially on N and preserves an infinite flag of the solvable sectors

V−/+
1 ⊂ V−/+

2 ⊂ · · · ⊂ V−/+
N ⊂ · · · . (2.6)

In this case, it is said to be solvable, which is a necessary condition for exact solvability. We
note that H− and H+ are usually simultaneously solvable due to the intertwining relations
(2.3).

A set of an N -fold SUSY system H± and P±
N provides a representation of N -fold super-

algebra defined by

[

Q±
N ,H

]

=
{

Q±
N ,Q

±
N

}

= 0,
{

Q−
N ,Q

+
N

}

= 2NPN (H), (2.7)

where PN (x) is a monic polynomial of degree N in x. Indeed, it is realized by defining H

and Q±
N as

H = H−ψ−ψ+ +H+ψ+ψ−, Q+
N = P−

Nψ
+, Q−

N = P+
Nψ

−, (2.8)

where ψ± is a pair of fermionic variables satisfying {ψ±, ψ±} = 0 and {ψ−, ψ+} = 1. It is
easy to check that the above H and Q±

N satisfy the first part of algebra (2.7). In particular,
the intertwining relations in (2.3) guarantee the commutativity of H and Q±

N . Regarding
the second part of algebra, the monic polynomial PN is given, in the above representation,
by [33, 43]

PN (H) = det
(

H −H±
∣

∣

V±

N

)

, (2.9)

namely, the characteristic polynomial for H± restricted to the solvable sectors V±
N .

Whether N -fold SUSY of the system under consideration is dynamically broken is deter-
mined by a property of the solvable sectors V±

N since they characterize N -fold SUSY states,
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namely, states annihilated by the pair of N -fold supercharges Q±
N . Let |0〉 and |1〉 be the

fermionic vacuum and the one fermion state, respectively, which satisfy

ψ−|0〉 = 0, |1〉 = ψ+|0〉. (2.10)

Then, superstates |Ψ−
0 〉 = Ψ−

0 (q)|0〉 and |Ψ+
0 〉 = Ψ+

0 (q)|1〉, respectively, are annihilated by
both of Q±

N

Q±
N |Ψ−

0 〉 = 0, Q±
N |Ψ+

0 〉 = 0, (2.11)

if and only if Ψ−
0 (q) ∈ V−

N and Ψ+
0 (q) ∈ V+

N , respectively. However, such states do not
necessarily satisfy physical requirements. Suppose S ⊂ C is a domain where both of the
Hamiltonians H± have no singularities and are thus naturally defined, and F(S) is a linear
space of complex functions in which both of H± act. In a usual physical application, the
domain S is the real line R or a real half-line R+ = (0,∞), and the linear space F is a Hilbert
space L2, so that F(S) = L2(R), or L2(R+). In the latter cases, the physical requirement is
the normalizability (square integrability) on S. Then, there exists physical (normalizable)
N -fold SUSY states |Ψ−

0 〉 and/or |Ψ+
0 〉 which satisfies (2.11) if V−

N (S) ⊂ L2(S) and/or
V+
N (S) ⊂ L2(S), in other words, if H− and/or H+ is quasi-exactly solvable. If there are no

such physical N -fold SUSY states in the Hilbert space L2(S) exists then N -fold SUSY of
the system is said to be dynamically broken. It was first shown correctly in Ref. [45] that the
generalized Witten index characterizes N -fold SUSY breaking, which corrected the wrong
statement made earlier in Ref. [46].

For N > 1, we can have an intriguing situation where not the whole of, but a subspace
of the solvable sectors V−

N (S) and/or V+
N (S) belong to the Hilbert space L2(S). In this case,

N -fold SUSY of the system is said to be partially broken. Partial breaking of N -fold SUSY
was first discovered in Ref. [47]. We note that it is different in nature from the partial
breaking of (nonlinear) SUSY [48, 49].

Construction of an N -fold SUSY system is in general quite difficult, especially for a larger
value of N , since the intertwining relations (2.3) compose of coupled nonlinear differential

equations for U±(q) and w
[N ]
k (q) (k = 0, . . . ,N − 1). For the direct calculations of inter-

twining relations in a PDM background in the cases of N = 1 and 2, see Ref. [24]. To
circumvent the difficulty, a systematic algorithm for constructing an N -fold SUSY system
was developed in Ref. [47] for constant-mass quantum mechanics and was later generalized
to PDM systems in Ref. [33]. The significant feature which is common in both constant-mass
and PDM systems is that an N -dimensional linear space of functions

Ṽ−
N =

〈

ϕ̃1(z), . . . , ϕ̃N (z)
〉

, (2.12)

preserved by a second-order linear differential operator H̃− can determine whole of anN -fold

SUSY system. Indeed, we can construct a pair of N th-order linear differential operators ¯̃P±
N

and another N -dimensional vector space V̄+
N such that ¯̃V±

N = ker ¯̃P±
N . Then, we can show

that a pair of second-order linear differential operators given by

¯̃H± =−A(z)
d2

dz2
+

[N − 2

2
A′(z)±Q(z)

]

d

dz
− C(z)

− (1± 1)

[N − 1

2
Q′(z)− 1

2
A′(z)w̃

[N ]
N−1(z)−A(z)w̃

[N ]′
N−1(z)

]

, (2.13)
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is weakly quasi-solvable with respect to the spaces ¯̃V±
N , namely, ¯̃H± ¯̃V±

N ⊂ ¯̃V±
N .

With the choice of the change of variable z = z(q) and the gauge potentialW±
N determined

by

z′(q)2 = 2m(q)A(z), W±
N = −1

4
ln |m(q)|+ N − 1

4
ln |2A(z)| ±

∫

dz
m(q)Q(z)

2A(z)
, (2.14)

we can obtain an N -fold SUSY system by

H± = e−W±

N
¯̃H±eW

±

N

∣

∣

∣

z=z(q)
, P±

N = e−W±

N
¯̃P±
N eW

±

N

∣

∣

∣

z=z(q)
. (2.15)

With the change of variable and the gauge transformation, both of H± get the form of PDM
Hamiltonian (2.1) and their effective potentials U±(q) are given by

U±(q) =
1

2m(q)

[

(

dW−
N

dq

)2

− d2W−
N

dq2
+
m′(q)

m(q)

dW−
N

dq

]

− C(z(q))

− (1± 1)

[N − 1

2
Q′(z)− 1

2
A′(z)w̃

[N ]
N−1(z)− A(z)w̃

[N ]′
N−1(z)

]

z=z(q)

. (2.16)

The solvable sectors V±
N of H± are evidently given by

V±
N = kerP±

N = e−W±

N
¯̃V±
N

∣

∣

∣

z=z(q)
. (2.17)

In principle, we can construct a pair ofN -fold SUSY PDM Hamiltonians H± and its solvable
sectors V±

N by using the formulas (2.16) and (2.17). However, there is an easier way to obtain
such a system when we have already had an ordinary N -fold SUSY constant-mass quantum
system at hand. Suppose the latter system is such that its pair of potentials V (0)±(q), its

gauge potentials W(0)±
N (q), its solvable sectors V(0)±

N [q] are all known. Then, an N -fold
SUSY PDM system having a pair of effective potentials U±(q), gauge potentials W±

N (q),
and solvable sectors V±

N [q] can be constructed immediately via the following prescription:

U±(q) = V (0)±(u(q)) +
m′′(q)

8m(q)2
− 7m′(q)2

32m(q)3
, (2.18a)

W±
N (q) = −1

4
ln |m(q)|+W(0)±

N (u(q)), (2.18b)

V±
N [q] = m(q)1/4V(0)±

N [u(q)], (2.18c)

where the function u(q) is given by

u(q) =

∫

dq
√

m(q). (2.19)

Actually, the above relations are consistent with the formulas obtained by the point canonical
transformation, see, e.g., equations (2.7) and (2.8) in Ref. [22], equation (7) of [21] and
equations (10), (13), and (14) in Ref. [19]. The above relations (2.18) have also been verified
in Ref. [33] where type A N -fold SUSY has been constructed in PDM background. One
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of the most salient features unveiled by the algorithmic construction is that both constant-
mass and PDM quantum systems with N -fold SUSY have totally the same structure in

the gauged z-space. That is, the functional forms of the gauged operators such as ¯̃P±
N and

¯̃H± given by (2.13) are identical in both the cases. It means in particular that the starting
vector space Ṽ−

N determines all in the algorithm regardless of whether mass is constant or
not. Hence, different types of N -fold SUSY are characterized by different types of vector
spaces Ṽ−

N and vice versa. Until now, four different types have been discovered, namely, type
A [44, 50], type B [51], type C [47], and type X2 [52]. We note that almost all the models
having essentially the same symmetry as N -fold SUSY but called with other terminologies
in the literature, such as Pöschl–Teller and Lamé potentials, are actually particular cases of
type A N -fold SUSY. In this article, we focus on constructing PDM quantum systems with
type B and type X2 N -fold SUSY since the other types (type A and type C) are not related
to exceptional polynomial subspaces. In what follows, we shall review the general structure
of these two types of N -fold SUSY.

A. Type B N -fold Supersymmetry

Type B N -fold SUSY was first discovered in Ref. [51] and was found to be associated
with the following monomial space

Ṽ−
N = Ṽ(B)

N :=
〈

1, z, . . . , zN−2, zN
〉

, (2.20)

called type B, which was considered in Ref. [41] in the context of the classification of mono-
mial spaces preserved by second-order linear ordinary differential operators. Applying the
algorithm to the type B monomial space, we obtain [36] the gauged N -fold supercharge
components

P̃−
N = z′(q)N

(

d

dz
− 1

z

)

dN−1

dzN−1
, P̄+

N = z′(q)N
dN−1

dzN−1

(

d

dz
+

1

z

)

, (2.21)

and the functions which characterize the gauged Hamiltonians (2.13) are given by

A(z) = a4z
4 + a3z

3 + a2z
2 + a1z + a0, (2.22)

2Q(z) = −Na3z
2 + 2b1z −Na1, (2.23)

C(z) = N (N − 3)a4z
2 +N (N − 2)a3z + c0, (2.24)

and w̃
[N ]
N−1(z) = −z−1. The other linear space V̄+

N preserved by H̄+ is given by

V̄+
N = z−1

〈

1, z2, . . . , zN
〉

. (2.25)

We note that both the monomial spaces (2.20) and (2.25) are actually exceptional polynomial
subspaces of codimension 1, see Ref. [40]. We can easily check that the type B Hamiltonian
H+ preserves an infinite flag of the following spaces

V̄+
1 e

−W+
N ⊂ V̄+

2 e
−W+

N ⊂ · · · ⊂ V̄+
N e−W+

N ⊂ · · · , (2.26)

where V̄+
N and W+

N are given by (2.25) and (2.14), respectively, and thus H+ is solvable if
and only if a3 = a4 = 0. On the other hand, the partner type B Hamiltonian H− does

7



not appear to be solvable for any parameter value since the type B monomial space (2.20)

does not constitutes an infinite flag due to the fact that Ṽ(B)
N 6⊂ Ṽ(B)

N+1 for all N = 1, 2, . . ..
However, it turns out [36] that, when a3 = a4 = 0 and H+ gets solvable, the partner
Hamiltonian H− does preserve an infinite flag of linear spaces given by

Ṽ(A)
1 e−W−

N ⊂ Ṽ(A)
2 e−W−

N ⊂ · · · ⊂ Ṽ(A)
N e−W−

N ⊂ · · · , (2.27)

where W−
N is given by (2.14) and Ṽ(A)

N is the type A monomial space defined by

Ṽ(A)
N =

〈

1, z, . . . , zN−1
〉

. (2.28)

That is, H− and H+ can be solvable simultaneously. In this paper, all the type B models
we will consider later satisfy the solvability condition a3 = a4 = 0. Thus, all the pairs of
type B Hamiltonians H± preserve the infinite-dimensional solvable sectors V± given by

V− =
〈

1, z(q), z(q)2, . . .
〉

e−W−

N
(q),

V+ =
〈

1, z(q)2, z(q)3, . . .
〉

z(q)−1e−W+
N
(q).

(2.29)

An interesting consequence of the fact that H− and H+ preserve different types of infinite
flag of spaces in the solvable case is that the eigenfunctions of H− are expressed in terms of
a classical polynomial system while those of H+ are in terms of an X1 polynomial system.
It is exactly the underlying reason why some of the Hamiltonians whose eigenfunctions
are expressed in terms of the X1 Laguerre or Jacobi polynomials were obtained by those
whose bound state eigenfunctions are expressed in terms of the classical Laguerre or Jacobi
polynomials using an intertwining or SUSY techniques in Refs. [27, 53, 54].

B. Type X2 N -fold Supersymmetry

TypeX2 N -fold SUSY constructed in Ref. [52] is associated with the following exceptional
polynomial subspace of codimension 2

Ṽ−
N =

〈

ϕ̃1(z;α), . . . , ϕ̃N (z;α)
〉

, (2.30)

where ϕ̃n(z;α) is a polynomial of degree n + 1 in z with a parameter α( 6= 0, 1) defined by

ϕ̃n(z;α) = (α + n− 2)zn+1 + 2(α+ n− 1)(α− 1)zn + (α + n)(α− 1)αzn−1. (2.31)

Applying the algorithm to the X2 space (2.30), we obtain [52] the gaugedN -fold supercharge
components

P̃−
N = z′(q)N

f(z;α)

f(z;α +N )

N−1
∏

k=0

f(z;α + k + 1)

f(z;α + k)

(

d

dz
− f ′(z;α + k + 1)

f(z;α + k + 1)

)

,

P̄+
N = z′(q)N

[

N−1
∏

k=0

(

d

dz
+
f ′(z;α +N − k)

f(z;α+N − k)

)

f(z;α +N − k)

f(z;α +N − k − 1)

]

f(z;α)

f(z;α+N )
,

(2.32)
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where
∏N−1

k=0 Ak := AN−1 . . . A1A0, and the functions f(z;α) and w̃
[N ]
N−1(z) are given by

f(z;α) = z2 + 2(α− 1)z + (α− 1)α, (2.33)

w̃
[N ]
N−1(z) = −(N − 1)

f ′(z;α)

f(z;α)
− f ′(z;α +N )

f(z;α +N )
. (2.34)

The most general forms of the functions A(z), Q(z), and C(z) appeared in ¯̃H± depend on
four parameters ai (i = 1, . . . , 4), but in this paper we only consider models with a4 = a3 = 0.
In the latter case, they read as

A(z) = a2z
2 + a1z + (α− 1)(α+N − 1)a2, (2.35)

Q(z) =− a2z
2 − (3a2 + a1)z − (α− 1)(3α + 3N − 7)a2

+
2α +N − 8

2
a1 +

4(α− 1)D(z)

f(z;α)
, (2.36)

C(z) = a2z + c0 −
4(α− 1)D(z)

f(z;α)
, (2.37)

where D(z) is given by

D(z) = −[(2α +N − 3)a2 − a1]z − (α− 1)(2α +N − 1)a2 + αa1. (2.38)

For their most general forms, please refer to Ref. [52]. The other linear space V̄+
N preserved

by H̄+ is given by

V̄+
N =

〈

χ̄1(z;α +N ), . . . , χ̄N (z;α +N )
〉

f(z;α)−1f(z;α+N )−1, (2.39)

where χ̄n(z;α) is a polynomial of degree n + 1 in z defined by

χ̄n(z;α) = (α− n)(α− n + 1)zn+1 + 2(α− n− 1)(α− n+ 1)(α− 1)zn

+ (α− n− 1)(α− n)(α− 1)αzn−1. (2.40)

The solvable sectors V±
N of the constant-mass Hamiltonians H± are

V−
N =

〈

ϕ̃1(z(q);α), . . . , ϕ̃N (z(q);α)
〉

e−W−

N
(q), (2.41)

V+
N =

〈

χ̄1(z(q);α +N ), . . . , χ̄N (z(q);α +N )
〉

f(z(q);α)f(z(q);α+N )
e−W+

N
(q). (2.42)

Finally, the type X2 Hamiltonians H± preserve the infinite flag of the spaces V±
N (N =

1, 2, . . .) and are simultaneously solvable if and only if a2 = (a3 = a4 =)0.

III. TYPE B AND TYPE X2 N -FOLD SUPERSYMMETRY FOR POSITION-

DEPENDENT MASS

In this section, we shall consider some models which belong to type B and type X2 N -
fold supersymmetry. In order to study effect of PDM in these models, we need to consider
simultaneously the corresponding constant-mass type B and type X2 models as well. In
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particular, we shall address ourselves to the following question: Does position dependent
mass have any effect on dynamical breaking of type B and type X2 N -fold SUSY? By
comparing the solvable sectors of both constant and position-dependent mass cases, we
shall see below that the answer is in the affirmative in some cases for particular choices
of physically interesting mass functions. In order to explore in detail the impact of mass
functions on symmetry breaking or restoration, it will be appropriate to consider more
than one mass function in a few examples. Also it will be shown that the bound state
wavefunctions of one of the partner potentials obtained in type BN -fold SUSY are associated
with exceptional X1 Laguerre and Jacobi polynomials while those of the other partner are
associated with classical Laguerre and Jacobi polynomials.

A. Effects of PDM on Dynamical Symmetry Breaking of Type B N -fold SUSY

Here we shall consider three examples of type B N -fold SUSY corresponding to
three different choices of A(z). In each of the examples, we first show the results in
the constant mass case, followed by the corresponding results in the PDM case. As we
referred to before, all the type B models constructed below satisfy the solvability condi-
tion a3 = a4 = 0 and thus their solvable sectors in the constant-mass case are given by (2.29).

Example 3.1. A(z) = k(z − z0) (k 6= 0)
Potentials:

V (0)−(q) =
b 21
8
q2 +

4(z0b1 −N k)2 − k2

8k2q2
+

N b1
2

+ V0, (3.1)

V (0)+(q) =
b 21
8
q2 +

4z 2
0 b

2
1 − k2

8k2q2
+

2k

kq2 + 2z0
− 8kz0

(kq2 + 2z0)2
+ V0, (3.2)

where V0 is an irrelevant constant given by

V0 =
(z0b1 −N k)b1

2k
+
b1
N − R.

Solvable sectors:

V(0)− =
〈

1, z(q), z(q)2, . . .
〉

q(2z0b1−2Nk+k)/(2k)eb1q
2/4, (3.3)

V(0)+ =
〈

1, z(q)2, z(q)3, . . .
〉

z(q)−1q−(2z0b1−k)/(2k)e−b1q2/4. (3.4)

We assume k > 0 and z0 > 0 so that the pair of potentials V ±(q) has no singularities except
for at q = 0. Thus, the system is naturally defined in L2(R+), R+ = (0,∞). In the latter
Hilbert space, V(0)−(R+) ⊂ L2(R+) if and only if

b1 < 0 and z0b1 > (N − 1)k, (3.5)

which cannot be satisfied by any b1 ∈ R. On the other hand, V(0)+(R+) ⊂ L2(R+) if and
only if

b1 > 0 and k > z0b1. (3.6)
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Hence, N -fold SUSY of the system is unbroken if and only if 0 < b1 < k/z0 on the constant-
mass background.

Now, the relevant expressions for partner potentials, gauge potentials and corresponding
solvable sectors of type B PDM systems can be obtained using Eqs. (3.1)–(3.4) and relations
(2.18). Since our main objective in this section is to study effect of mass function on
dynamical breaking of N -fold SUSY, we give below only the solvable sectors V± for an
arbitrary mass function m(q):

V− =
〈

1, z(u(q)), z(u(q))2, . . .
〉

m(q)1/4u(q)(2z0b1−2Nk+k)/(2k)eb1u(q)
2/4, (3.7)

V+ =
〈

1, z(u(q))2, z(u(q))3, . . .
〉

z(u(q))−1m(q)1/4u(q)−(2z0b1−k)/(2k)e−b1u(q)2/4, (3.8)

where u(q) is given by (2.19). At this point, we are in a position to choose a particular mass
function. Let the mass function be

m(q) = e−bq, b > 0, q ∈ (−∞,∞), (3.9)

which was considered in Ref. [28] where the PDM potentials were associated with X1-
Laguerre polynomials. This exponentially behaved mass function has been often used in the
study of confined energy states for carriers in semiconductor quantum well [19, 28]. It has
also been used to compute transmission probabilities for scattering in abrupt heterostruc-
tures [25] which may be useful in the design of semiconductor devices [55]. For the mass
function, the change of variable is given by

u(q) = −2

b
e−bq/2, (3.10)

and the pair of potentials U±(q) reads from (2.18a) as

U−(q) =
b 21
2b2

e−bq +
b2[(z0b1 −N k)2 − k2]

8k2
ebq +

N b1
2

+ V0, (3.11)

U+(q) =
b 21
2b2

e−bq +
b2(z 2

0 b
2
1 − k2)

8k2
ebq +

kb2

2ke−bq + z0b2
− 2kz0b

4

(2ke−bq + z0b2)2
+ V0, (3.12)

respectively. It is worth mentioning here that the potential U+(q) given in (3.11) is iden-
tical with the potential Veff(q) associated with exceptional X1 Laguerre polynomials [e.g.,
Eq. (12) of Ref. [28]], if one takes k = 1/2, b1 = b2/2, and z0 = α/b2. On the other hand,
for the same choices of parameters the other potential U−(q) coincides with the potential
[after making a translation α → α − N ] previously obtained in Ref. [27] corresponding to
classical Laguerre polynomials.

The solvable sectors of the potentials (3.11) and (3.12) are respectively given by

V− =
〈

1, e−bq + z̄0, (e
−bq + z̄0)

2, . . .
〉

× exp

[

−
(

z0b1
k

−N + 1

)

b

2
q +

b1
b2
e−bq

]

, (3.13)

V+ =
〈

1, (e−bq + z̄0)
2, (e−bq + z̄0)

3, . . .
〉

× (e−bq + z̄0)
−1 exp

[(

z0b1
k

− 1

)

b

2
q − b1

b2
e−bq

]

, (3.14)
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where z̄0 = z0b
2/(2k). Here the potentials have no singularities in the finite part of the real

line, so the domain is R. Since b > 0, so V−(R) ⊂ L2(R) if and only if b1 < 0. On the
other hand, V+(R) ⊂ L2(R) if and only if b1 > 0. Hence, the N -fold SUSY of the PDM
system is unbroken unless b1 = 0. Comparing the solvable sectors of both the constant and
position-dependent mass scenarios, it can be observed that it is not possible to break N -fold
SUSY dynamically for the particular choice of mass function m(q) = e−bq. In addition,
we have checked that many physically interesting mass functions also have no effect on
symmetry breaking.

Example 3.2. A(z) = a2[1− (z − z0)
2]/2 (a > 0)

Potentials:

V (0)−(q) =
(4b 21 −N 2a4)z0

4a2
sin aq

cos2 aq
+

(2b1 −Na2)2z 2
0 + (2b1 +Na2)2 − a4

8a2
tan2 aq

+
b1N
2

+ V0, (3.15)

V (0)+(q) =
(2b1 −Na2)2z0

4a2
sin aq

cos2 aq
+

(2b1 −Na2)2(z 2
0 + 1)− a4

8a2
tan2 aq

+
a2z0

sin aq + z0
− a2(z 2

0 − 1)

(sin aq + z0)2
− b1N

2
+ V0, (3.16)

where V0 is an irrelevant constant given by

V0 =
b1
N +

a2(N 2 − 7)

12
+

(2b1z0 −N z0a
2)2

8a2
− R.

Solvable sectors:

V(0)− =
〈

1, z(q), z(q)2, . . .
〉

| cos aq|
b1
a2

+N−1
2

(

1 + sin aq

1− sin aq

)−
(2b1−Na

2)z0
4a2

, (3.17)

V(0)+ =
〈

1, z(q)2, z(q)3, . . .
〉

z(q)−1| cos aq|−
b1
a2

+N−1
2

(

1 + sin aq

1− sin aq

)

(2b1−Na
2)z0

4a2

. (3.18)

It is worth mentioning here that the potential V (0)+(q) coincides with the potential whose
bound state wave functions are given in terms of exceptional X1 Jacobi polynomial [42] for
a = 1, b1 = B + N /2, z0 = −(2A − 1)/(2B) whereas potential V (0)−(q) coincides with
the Scarf I potential [54] [after making an change B → B + N ] whose bound state wave
functions are given in terms of classical Jacobi polynomials.

We choose here a domain of the system as S = (− π
2a
, π
2a
) and assume z0 > 1 so that the

pair of potentials V (0)±(q) has no singularities except for at the boundary ∂S = {− π
2a
, π
2a
}.

Thus, the Hilbert space for the system is L2(S). Then, V(0)−(S) ⊂ L2(S) if and only if

b1
a2

+
N − 1

2
± (2b1 −Na2)z0

2a2
> −1

2
,

that is,

Na2

2

z0 − 1

z0 + 1
< b1 <

Na2

2

z0 + 1

z0 − 1
for z0 > 1. (3.19)
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Similarly, V(0)+(S) ⊂ L2(S) if and only if

− b1
a2

+
N − 1

2
± (2b1 −Na2)z0

2a2
> −1

2
,

that is,

b1 >
Na2

2
and z0 > 1. (3.20)

Hence, N -fold SUSY of the system is broken for the constant mass case if and only if z0 > 1
and

b1 ≤
Na2

2

z0 − 1

z0 + 1
or b1 ≥

Na2

2

z0 + 1

z0 − 1
. (3.21)

In a PDM case, the solvable sectors V± of the type B PDM N -fold SUSY partner Hamilto-
nians H± for an arbitrary mass function m(q) are deformed according to (2.18c) as

V− =
〈

1, z(u(q)), z(u(q))2, . . .
〉

m(q)
1
4

× | cos au(q)|
b1
a2

+N−1
2

(

1 + sin au(q)

1− sin au(q)

)−
(2b1−Na

2)z0
4a2

, (3.22)

V+ =
〈

1, z(u(q))2, z(u(q))3, . . .
〉

m(q)
1
4

× | cos au(q)|−
b1
a2

+N−1
2

sin au(q) + z0

(

1 + sin au(q)

1− sin au(q)

)

(2b1−Na
2)z0

4a2

. (3.23)

where u(q) is given by (2.19). In this case, the choice of mass function and the corresponding
change of variable are given by

m(q) =
2

π
e−2q2 , u(q) = Erf q, q ∈ (−∞,∞). (3.24)

Consequently, the partner potentials U±(q) read as

U−(q) =
(4b 21 −N 2a4)z0

4a2
sin(aErf q)

cos2(aErf q)
− (3q2 + 1)πe2q

2

4
+
b1N
2

+ V0

+
(2b1 −Na2)2z 2

0 + (2b1 +Na2)2 − a4

8a2
tan2(aErf q), (3.25)

U+(q) =
(2b1 −Na2)2z0

4a2
sin(aErf q)

cos2(aErf q)
− (3q2 + 1)πe2q

2

4
− b1N

2
+ V0

+
a2z0

sin(aErf q) + z0
− a2(z 2

0 − 1)

[sin(aErf q) + z0]2

+
(2b1 −Na2)2(z 2

0 + 1)− a4

8a2
tan2(aErf q). (3.26)
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The solvable sectors of the potentials (3.25) and (3.26) are given by

V− =
〈

1, z(u(q)), z(u(q))2, . . .
〉

e−q2/4

× | cos(aErf q)|
b1
a2

+N−1
2

(

1 + sin(aErf q)

1− sin(aErf q)

)−
(2b1−Na

2)z0
4a2

, (3.27)

V+ =
〈

1, z(u(q))2, z(u(q))3, . . .
〉

e−q2/4

× | cos(aErf q)|−
b1
a2

+N−1
2

sin(aErf q) + z0

(

1 + sin(aErf q)

1− sin(aErf q)

)

(2b1−Na
2)z0

4a2

. (3.28)

The potentials U±(q) as well as the mass function are well behaved in q ∈ (−∞,∞). So,
we can take the domain as the whole real line R. Since Erf q → ±1 as q → ±∞, so both
the solvable sectors V±(R) belong to L2(R), irrespective of the parameter values of b1 and
z0. Hence, it manifests unbroken SUSY. So, in this case position-dependent mass affects
the symmetry breaking scenario. But the mass profile m(q) = sech2 aq, q ∈ (−∞,∞) has
no effect on dynamical breaking of N -fold SUSY which can be observed by considering the
leading behavior of the solvable sectors (3.22) and (3.23). We have found that same is true
for many other mass functions.

Also associated to this mass profile, one of the partner potentials given in equation (3.29)
is identical with the Veff(q) whose bound state wave functions are given by exceptional
X1 Jacobi polynomials [e.g., Eq. (18) of Ref. [28]], for the choice of parameters b1 = (α −
β + N )a2/2, z0 = (α + β)/(α − β). The simplified form of the other partner potential
U−(q) matches with the potential previously obtained in [27] corresponding to classical
Jacobi polynomials. It is worth mentioning that this mass profile m(q) = sech2 aq has
been previously used in PDM Hamiltonians of BenDaniel–Duke [56] and Zhu–Kroemer [57]
type and interesting connection was shown [58] between the discrete eigenvalues of such
Hamiltonians and the stationary 1-soliton and 2-soliton solutions of the Korteweg-de Vries
(KdV) equation.

For the latter choice of the mass function, the change of variable is given by u(q) =
tan−1(sinh aq)/a and corresponding pair of potentials U±(q) read as

U±(q) =
[2b1(z0 + 1)−Na2z0 ∓ (N − 2)a2][2b1(z0 + 1)−Na2z0 ∓ (N + 2)a2]

32a2
e2aq

+
[2b1(z0 − 1)−Na2z0 ± (N − 2)a2][2b1(z0 − 1)−Na2z0 ± (N + 2)a2]

32a2
e−2aq

+
1± 1

2

a2

z0 + 1

[

1− 2(z0 − 2)

z0 − 1 + (z0 + 1)e2aq
− 4(z0 − 1)

(z0 − 1 + (z0 + 1)e2aq)2

]

∓ N b1
4

+ V0.

(3.29)

Example 3.3. A(z) = (z − z0)
2/2

Potentials:

V (0)−(q) =
(2b1 +N )2z 2

0

8
e−2q +

(4b 21 −N 2)z0
4

e−q + V0, (3.30a)

V (0)+(q) =
(2b1 +N )2z 2

0

8
e−2q +

(2b1 +N )2z0
4

e−q − z0e
−q

(1 + z0e−q)2
+ V0, (3.30b)
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where V0 is an irrelevant constant given by

V0 =
b 21
2

+
b1
N +

N 2 + 11

24
− R.

Solvable sectors:

V(0)− =
〈

1, z(q), z(q)2, . . .
〉

exp

[

−(2b1 +N )z0
2

e−q − N − 1− 2b1
2

q

]

, (3.31a)

V(0)+ =
〈

1, z(q)2, z(q)3, . . .
〉

z(q)−1 exp

[

(2b1 +N )z0
2

e−q − N − 1 + 2b1
2

q

]

. (3.31b)

We assume z0 > 0 so that the pair of potentials V (0)±(q) has no singularities in (−∞,∞).
As we will show in what follows, the N -fold SUSY in this case can be partially broken. To

see this, we first introduce a pair of k-dimensional subspaces V(0)±
k of the solvable sectors

V(0)± as

V(0)−
k =

〈

1, z(q), . . . , z(q)k−1
〉

exp

[

−(2b1 +N )z0
2

e−q − N − 1− 2b1
2

q

]

, (3.32)

V(0)+
k =

〈

1, z(q)2, . . . , z(q)k
〉

z(q)−1 exp

[

(2b1 +N )z0
2

e−q − N − 1 + 2b1
2

q

]

. (3.33)

Then, for a fixed k ∈ N, we have

V(0)−
k (R) ⊂ L2(R) ⇐⇒ −N < 2b1 < N + 1− 2k, (3.34)

V(0)+
k (R) ⊂ L2(R) ⇐⇒ 2k −N − 1 < 2b1 < −N . (3.35)

From these conditions, it is easy to observe that V(0)−
k (R) ⊂ L2(R) if and only if −N /2 <

b1 < (N + 1 − 2k)/2 for a k ∈ N satisfying k < N + 1/2, while there is no k ∈ N which
satisfy the condition (3.35) and thus V(0)+(R) 6⊂ L2(R) ∀b1 ∈ R. Hence, the N -fold SUSY
in the constant-mass background is partially broken if there is a positive integer k ≤ N for
which the parameter b1 satisfies

−N
2
< b1 <

N + 1− 2k

2
,

and fully broken otherwise.
The solvable sectors V± of the corresponding PDM Hamiltonians H± are written as

V− =
〈

1, z(u(q)), z(u(q))2, . . .
〉

m(q)1/4

× exp

[

−(2b1 +N )z0
2

e−u(q) − N − 1− 2b1
2

u(q)

]

, (3.36a)

V+ =
〈

1, z(u(q))2, z(u(q))3, . . .
〉

z(u(q))−1m(q)1/4

× exp

[

(2b1 +N )z0
2

e−u(q) − N − 1 + 2b1
2

u(q)

]

. (3.36b)

and the potentials U±(q) can be obtained using Eqs. (2.18a), (3.30a) and (3.30b). We
have checked the normalizability of the solvable sectors (3.36) with the following two mass
functions.
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(i) m(q) = (1− q2)−1, q ∈ (−1, 1) for which the change of variable is u(q) = sin−1 q. This
mass profile has been used in Refs. [10, 11] while considering the effective-mass quantum
nonlinear oscillator. This mass function has effect on dynamical symmetry breaking because
it manifests broken SUSY [i.e., neither V− nor V+ belongs to L2(−1, 1)], which is clear from
the following expressions of V− and V+:

V− =
〈

1, z(u(q)), z(u(q))2, . . .
〉 1

(1− q2)1/4

× exp

[

−(2b1 +N )z0
2

e− sin−1 q − N − 1− 2b1
2

sin−1 q

]

, (3.37)

V+ =
〈

1, z(u(q))2, z(u(q))3, . . .
〉 1

(1− q2)1/4(esin
−1 q + z0)

× exp

[

(2b1 +N )z0
2

e− sin−1 q − N − 1 + 2b1
2

sin−1 q

]

. (3.38)

(ii) m(q) = 2e−2q2/π for which the solvable sectors (3.36) reduce to

V− =
〈

1, z(u(q)), z(u(q))2, . . .
〉

× exp

[

−q
2

4
− (2b1 +N )z0

2
e−Erf q − N − 1− 2b1

2
Erf q

]

, (3.39)

V+ =
〈

1, z(u(q))2, . . . , z(u(q))N
〉

z(u(q))−1

× exp

[

−q
2

4
+

(2b1 +N )z0
2

e−Erf q − N − 1 + 2b1
2

Erf q

]

. (3.40)

From the above solvable sectors, we observe that both V−(R) and V+(R) belong to L2(R),
irrespective of the parameter value b1, which means unbroken N -fold SUSY. Hence, the
mass function m(q) = 2e−2q2/π affects dynamical breaking of the N -fold SUSY.

Hence, comparing the normalizability conditions in both the constant and position de-
pendent mass cases, we conclude that both the mass functions change the behaviours of
symmetry breaking.

B. Effects of PDM on Dynamical Symmetry Breaking of Type X2 N -fold SUSY

In this section, we examine three different models of type X2 N -fold SUSY characterized
by different choices of the two parameters a1 and a2; a1 6= 0 and a2 = 0 for the first model,
a1 = 0 and a2 6= 0 for the second, and a1a2 6= 0 for the third. The first two choices lead to
the rational- and hyperbolic-type potential pairs already shown in Ref. [52], while the last
choice to an exponential-type potential pair which is new and has not been investigated in
the literature.
Example 3.4. A(z) = 2z [a1 = 2].
Potentials:

V (0)−(q) =
q2

2
+

4α2 − 1

8q2
+ 4

[

q2 − α + 1

f(q2;α)
− 4(α− 1)q2

f(q2;α)2

]

−N + V0, (3.41a)

V (0)+(q) =
q2

2
+

4(α+N )2 − 1

8q2
+ 4

[

q2 − α−N + 1

f(q2;α+N )
− 4(α +N − 1)q2

f(q2;α+N )2

]

+ V0, (3.41b)
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where V0 = N − α+ 3− c0 is an irrelevant constant.
Solvable sectors:

V(0)−
N =

〈

ϕ̃1(q
2;α), . . . , ϕ̃N (q2;α)

〉qα+1/2e−q2/2

f(q2;α)
, (3.42a)

V(0)+
N =

〈

χ̄1(q
2;α +N ), . . . , χ̄N (q2;α+N )

〉q−α−N+1/2eq
2/2

f(q2;α +N )
. (3.42b)

In this case, the solvability condition a2(= a3 = a4) = 0 for type X2 is satisfied and thus the
corresponding constant-mass Hamiltonians H(0)± are simultaneously solvable.

For α > 1, a natural choice for the domain of these potentials is a real half-line S = R+.

On this domain R+, it is evident from (3.42) that V(0)−
N (R+) ⊂ L2(R+) and V(0)−

N (R+) 6⊂
L2(R+). Therefore, it manifests unbroken N -fold SUSY of the system in the constant-mass
background.

According to (2.18c), the solvable sectors V±
N of the corresponding PDM Hamiltonians

H± for an arbitrary mass function m(q) read as

V−
N =

〈

ϕ̃1(u(q)
2;α), . . . , ϕ̃N (u(q)2;α)

〉m(q)1/4u(q)α+1/2e−u(q)2/2

f(u(q)2;α)
, (3.43)

V+
N =

〈

χ̄1(u(q)
2;α +N ), . . . , χ̄N (u(q)2;α +N )

〉m(q)1/4u(q)−α−N+1/2eu(q)
2/2

f(u(q)2;α+N )
, (3.44)

where u(q) is given by (2.19) and the PDM potentials U±(q) can be obtained using
Eqs. (2.18a) and (3.41). In this case, we have not been able to find out any realistic mass
function which could break the N -fold SUSY. In other words, we can say that the N -fold
SUSY in this case is steady against many variations of mass functions [e.g., m(q) = e−q,
sech2 q].

Example 3.5. A(z) = (z2 + ζ2)/2, [a2 = 1/2, ζ2 = (α− 1)(α +N − 1) > 0].
Potentials:

V (0)−(q) =
ζ2

8
cosh2 q +

N − 1

4
ζ sinh q + V0

+
1

8 cosh2 q

[

4(N − 1)ζ sinh q + 4α2 + 4(N − 2)α−N 2 − 2N + 4
]

− 2(α− 1)

[

ζ sinh q − α−N + 3

f(ζ sinh q;α)
− 2(α− 1)

2ζ sinh q −N + 1

f(ζ sinh q;α)2

]

, (3.45)

V (0)+(q) =
ζ2

8
cosh2 q +

3N − 1

4
ζ sinh q + V0

− 1

8 cosh2 q

[

4(N + 1)ζ sinh q − 4α2 − 4(N − 2)α+N 2 + 6N − 4
]

− 2(α +N − 1)

[

ζ sinh q − α+ 3

f(ζ sinh q;α+N )
− 2(α +N − 1)

2ζ sinh q +N + 1

f(ζ sinh q;α +N )2

]

, (3.46)

where V0 is an irrelevant constant given by

V0 =
4α2 + 4(N − 4)α+N 2 + 16

8
− c0.
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Solvable sectors:

V(0)−
N =

〈

ϕ̃1(ζ sinh q;α), . . . , ϕ̃N (ζ sinh q;α)
〉 e−ζ(sinh q)/2−ζ gd q

(cosh q)N/2−1f(ζ sinh q;α)
, (3.47a)

V(0)+
N =

〈

χ̄1(ζ sinh q;α+N ), . . . , χ̄N (ζ sinh q;α+N )
〉

× eζ(sinh q)/2+ζ gd q

(cosh q)N/2f(ζ sinh q;α +N )
, (3.47b)

where gd q = tan−1(sinh q) is the Gudermann function. The solvability condition is not
satisfied in this case and both of the Hamiltonians are only quasi-solvable. For α > 1, the
potentials V ±(q) given in (3.45) are defined on the whole real line R. From the solvable

sectors (3.47), it is clear that neither V(0)−
N (R) nor V(0)+

N (R) belongs to L2(R), so the N -fold
SUSY is dynamically broken in the constant-mass background.

Now, the PDM potentials U±(q) can be obtained with help of Eqs. (2.18a), (3.45), and
(3.46), and the solvable sectors V±

N of the corresponding PDM Hamiltonians H± for an
arbitrary mass function m(q) read from (2.18c) as

V−
N =

〈

ϕ̃1(ζ sinh u(q);α), . . . , ϕ̃N (ζ sinh u(q);α)
〉

× m(q)1/4e−ζ(sinhu(q))/2−ζ gdu(q)

(cosh u(q))N/2−1f(ζ sinh u(q);α)
, (3.48a)

V+
N =

〈

χ̄1(ζ sinh u(q);α+N ), . . . , χ̄N (ζ sinh u(q);α+N )
〉

× m(q)1/4eζ(sinhu(q))/2+ζ gdu(q)

(cosh u(q))N/2f(ζ sinh u(q);α+N )
, (3.48b)

where u(q) is given by (2.19). Let us now consider two cases:
(i) m(q) = sech2 q, q ∈ (−∞,∞), for which the change of variable is u(q) = gd q. Then,

the solvable sectors of U±(q) are given by

V−
N =

〈

ϕ̃1(ζ sinh u(q);α), . . . , ϕ̃N (ζ sinh u(q);α)
〉

×
√
sech q e−ζ sinh(gd q)/2−ζ gd(gd q)

[cosh(gd q)]N/2−1f(ζ sinh u(q);α)
, (3.49a)

V+
N =

〈

χ̄1(ζ sinh u(q);α+N ), . . . , χ̄N (ζ sinh u(q);α+N )
〉

×
√
sech q eζ sinh(gd q)/2+ζ gd(gd q)

[cosh(gd q)]N/2f(ζ sinh u(q);α+N )
. (3.49b)

In this case, the mass function as well as the potentials U±(q) are well behaved on (−∞,∞),
so we can consider the whole real line R as a domain of the potentials. From the solvable
sectors (3.49), it is clear that both V±

N (R) belong to L2(R), which means unbroken N -fold
SUSY, i.e., the mass profile affects symmetry restoration.

(ii) m(q) = 2e−2q2/π. In this case, the solvable sectors V±
N reduce to

V−
N =

〈

ϕ̃1(ζ sinh u(q);α), . . . , ϕ̃N (ζ sinh u(q);α)
〉

× exp[−q2/4− ζ sinh(Erf q)/2− ζ gd(Erf q)]

[cosh(Erf q)]N/2−1f(ζ sinh u(q);α)
, (3.50a)

V+
N =

〈

χ̄1(ζ sinh u(q);α+N ), . . . , χ̄N (ζ sinh u(q);α+N )
〉

× exp[−q2/4 + ζ sinh(Erf q)/2 + ζ gd(Erf q)]

[cosh(Erf q)]N/2f(ζ sinh u(q);α+N )
. (3.50b)
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From the above solvable sectors (3.50), it is clear that both V±
N (R) belong to L2(R). That

is, in this case we again have unbroken N -fold SUSY.
We note that there are other mass functions, e.g., m(q) = (β+ q2)2/(1+ q2)2, which have

no effect on the dynamical breaking of N -fold SUSY, i.e., it is also possible to construct
PDM systems which maintain the broken N -fold SUSY.

Example 3.6. A(z) = (z + ζ)2/2, [a2 = 1/2, a1 = ζ =
√

(α− 1)(α+N − 1)].
Potentials:

V (0)−(q) =
1

8
e2q − N + 1

4
eq − (N − 1)(N + 2α− 2ζ − 1)ζ

4
e−q

+
ζ2[N 2 + 2N (4α− 2ζ − 3) + 4α(2α− 2ζ − 3) + 4ζ + 5]

8
e−2q

− 2

[

(α− ζ − 1)eq

f(eq − ζ ;α)
+

2(α− 1)e2q

f(eq − ζ ;α)2

]

+ V0, (3.51)

V (0)+(q) =
1

8
e2q +

N − 1

4
eq +

(N + 1)(N + 2α− 2ζ − 1)ζ

4
e−q

+
ζ2[N 2 + 2N (4α− 2ζ − 3) + 4α(2α− 2ζ − 3) + 4ζ + 5]

8
e−2q

− 2

[

(α +N − ζ − 1)eq

f(eq − ζ ;α+N )
+

2(α +N − 1)e2q

f(eq − ζ ;α+N )2

]

+ V0, (3.52)

where V0 is an irrelevant constant given by

V0 =
(N + 2α)2 + 2ζ(N − 2α) + 2(7ζ − 8α+ 8)

8
− c0.

Solvable sectors:

V(0)−
N =

〈ϕ̃1(e
q − ζ ;α), . . . , ϕ̃N (eq − ζ ;α)〉

f(eq − ζ ;α)

× exp

[

−eq

2
+

2ζ − 2α−N + 1

2
ζe−q − N − 2

2
q

]

, (3.53)

V(0)+
N =

〈χ̄1(e
q − ζ ;α+N ), . . . , χ̄N (eq − ζ ;α+N )〉

f(eq − ζ ;α+N )

× exp

[

eq

2
− 2ζ − 2α−N + 1

2
ζe−q − N

2
q

]

. (3.54)

This system is new and presented in this paper for the first time. The exponential-type
V ±
N (q) are naturally defined on the whole real line R since they have no singularity on it, so

the Hilbert space is L2(R). Noting that 2ζ − 2α−N + 1 < 0 for α > 1, since

4ζ2 − (2α+N − 1)2 = −4α− (N − 1)(N + 3) < −(N + 1)2 < 0,

we see that V(0)−
N (R) ⊂ L2(R) and V(0)+

N (R) 6⊂ L2(R) for ζ > 0. Hence, it manifests unbroken

N -fold SUSY. For ζ < 0, on the other hand, neither V(0)−
N (R) nor V(0)+

N (R) belongs to L2(R),
so the N -fold SUSY is broken in the constant-mass background.
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In a PDM background, the solvable sectors V±
N of the type X2 PDM Hamiltonians H±

are deformed as [cf., Eq. (2.18c)]

V−
N =

〈

ϕ̃1(e
u(q) − ζ ;α), . . . , ϕ̃N (eu(q) − ζ ;α)

〉

f(eu(q) − ζ ;α)

×m(q)1/4 exp

[

−e
u(q)

2
+

2ζ − 2α−N + 1

2
ζe−u(q) − N − 2

2
u(q)

]

, (3.55)

V+
N =

〈

χ̄1(e
u(q) − ζ ;α+N ), . . . , χ̄N (eu(q) − ζ ;α+N )

〉

f(eu(q) − ζ ;α+N )

×m(q)1/4 exp

[

eu(q)

2
− 2ζ − 2α−N + 1

2
ζe−u(q) − N

2
u(q)

]

, (3.56)

and the potentials U±(q) can be obtained using Eqs. (2.18a), (3.51), and (3.52). In this
case, the choice of mass functions are as follows:

(i)m(q) = (1−q2)−1, q ∈ (−1, 1), for which the solvable sectors of the PDM Hamiltonians
H± are given by

V−
N =

〈

ϕ̃1(e
u(q) − ζ ;α), . . . , ϕ̃N (eu(q) − ζ ;α)

〉

(1− q2)1/4f(eu(q) − ζ ;α)

× exp

[

−esin
−1 q

2
+

2ζ − 2α−N + 1

2
ζe− sin−1 q − N − 2

2
sin−1 q

]

, (3.57)

V+
N =

〈

χ̄1(e
u(q) − ζ ;α+N ), . . . , χ̄N (eu(q) − ζ ;α+N )

〉

(1− q2)1/4f(eu(q) − ζ ;α+N )

× exp

[

esin
−1 q

2
− 2ζ − 2α−N + 1

2
ζe− sin−1 q − N

2
sin−1 q

]

. (3.58)

From the above solvable sectors, it is clear that both V±
N (−1, 1) do not belong to L2(−1, 1),

so it manifests broken N -fold SUSY irrespective of the sign of ζ . Hence, comparing the
normalizability conditions in both the constant and position-dependent mass cases, we con-
clude that the mass function m(q) = (1− q2)−1 affects dynamical breaking of N -fold SUSY
for ζ > 0.

(ii) m(q) = 2e−2q2/π, q ∈ (−∞,∞), for which the N -fold SUSY remains unbroken, which
is evident from the corresponding solvable sectors given by

V−
N =

〈

ϕ̃1(e
u(q) − ζ ;α), . . . , ϕ̃N (eu(q) − ζ ;α)

〉

f(eu(q) − ζ ;α)
exp

[

−q
2

4

−eErf q

2
+

2ζ − 2α−N + 1

2
ζe−Erf q − N − 2

2
Erf q

]

, (3.59)

V+
N =

〈

χ̄1(e
u(q) − ζ ;α+N ), . . . , χ̄N (eu(q) − ζ ;α+N )

〉

f(eu(q) − ζ ;α+N )

× exp

[

−q
2

4
+

eErf q

2
− 2ζ − 2α−N + 1

2
ζe−Erf q − N

2
Erf q

]

. (3.60)
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From the normalizability conditions in the constant and position-dependent mass cases, we
see that the mass function m(q) = 2e−2q2/π affects the dynamical breaking of N -fold SUSY
for ζ < 0.

IV. SUMMARY AND PERSPECTIVES

In this paper, we have investigated effect of position-dependent mass background on
dynamical breaking of type B and type X2 N -fold SUSY. We have selected three different
models in the constant mass background for each type, and then examined whether some of
the physically relevant effective mass profiles can affect the pattern ofN -fold SUSY breaking
in each model. We summarize the results in Table I. We can easily see from Table I that,
except for the rational potentials, some of the PDM profiles can actually affect and change
the patterns of dynamical N -fold SUSY breaking in all the trigonometric, hyperbolic, and
exponential potentials. Although we have selected the specific types of N -fold SUSY to
develop physical applicability of the new mathematical concept of exceptional polynomial
subspaces, we can of course make a similar analysis on other types of N -fold SUSY such as
type A and type C to find out positive effect of PDM on SUSY breaking in some models.

Hence, it would be possible to observe experimentally transition between a broken and an
unbroken phases if an effective mass can be controlled experimentally such that the constant
mass limit can be also realized in an experimental setting. The physical meanings of a
position-dependent mass depend on each physical system under consideration, for instance,
the curvature of the local band structure of an alloy in the momentum space for electrons
in a crystal with graded composition [1], the particle densities of 3He and 4He in pure and
mixed helium clusters with doping atoms or molecules [4], the effective electron mass for
electrons confined in a quantum dot [3] and for dipole excitations of sodium clusters [5], and
so on. Thus, if we can prepare such an atomic, molecular, or condensed matter system which
is described by a certain PDM quantum model subjected to an N -fold SUSY potential with
mass profiles, e.g., m(q) = e−ν2q2 or (1 − ν2q2)−1 where ν is an experimentally adjustable
parameter such that ν → 0 is realizable, then the spectral change of the system could be
observed at ν = 0 due to the phase transition. The essence and novelty of our idea rely
on the observation that the physically controllable PDM can cause the phase transition
by changing the normalizability of the solvable sector although the latter is superficially a
simple mathematical aspect. Hence, it is quite important to note that the normalizability
of wave functions can play much more roles than the quantization of energy spectrum which
is referred to by any standard textbook on quantum mechanics.

We note that this experimental observability might have impact not only on some atomic,
molecular, and condensed matter problems from which PDM quantum theory originated, but
also on high-energy physics. Until now many high-energy physicists have believed that SUSY
is realized at the GUT or Planck scale as a resolution of the naturalness and the hierarchy
problem but is broken at least at the electroweak scale. Unfortunately, however, theoretical
analysis on dynamical SUSY breaking in field theoretical models are extremely difficult on
the one hand, and it is virtually impossible to make a GUT scale experiment on the other
hand. The aforementioned experimental observability suggests that we might extract some
clues to understand dynamical SUSY breaking in high-energy physics from realistic eV scale
experiments in atomic, molecular, and condensed matter physics. It is because the Witten’s
work [31] has indicated that the mechanism of dynamical SUSY breaking in quantum field
theory and quantum mechanics is essentially the same. We also note that the careful non-
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TABLE I: The effects of PDM profiles on dynamical breaking of N -fold SUSY in various type B

and type X2 models.

Types of potentials Dynamical breaking of N -fold SUSY

Constant mass PDM

rational unbroken no effect

Type B trigonometric broken unbroken for m(q) ∝ e−2q2

partially broken for broken for m(q) = (1− q2)−1

exponential −N/2 < b1 < (N + 1− 2k)/2

and fully broken otherwise unbroken for m(q) ∝ e−2q2

rational unbroken no effect

Type X2 hyperbolic broken unbroken for m(q) ∝ sech2 q, e−2q2

exponential unbroken for ζ > 0 broken for m(q) = (1− q2)−1, ∀ζ
broken for ζ < 0 unbroken for m(q) ∝ e−2q2 , ∀ζ

perturbative analyses in Refs. [59, 60] have shown that the mechanism of dynamical breaking
of ordinary and N -fold SUSY is also the same. Hence, dynamical aspects of SUSY quantum
field theoretical models would be mimicked inN -fold SUSY quantum mechanical toy models,
regardless of whether or not N -fold SUSY can be realized in higher dimensions. Therefore,
we believe that further studies in this direction are worth pursuing both theoretically and
experimentally. From a theoretical point of view it is a challenging issue to investigate both
a perturbation theory and the non-renormalization theorem in PDM quantum systems.
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[39] D. Gómez-Ullate, N. Kamran, and R. Milson, J. Math. Anal. Appl. 359 (2009) 352.

arXiv:0807.3939 [math-ph].
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