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Nonlinear sigma model for optical media with linear absorption or gain
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In the framework of the Keldysh technique, we formulate the nonlinear sigma model for disordered
optical media with linear absorption or gain. The effective action for fluctuations of the matrix field
about the saddle point acquires an extra term due to the nonconservative nature of the system. We
determine the disorder-averaged Green-function correlator, which has a diffusion pole modified by a
finite absorption/gain rate. The diffusion coefficient is found to be close to its value for conservative
systems in the relevant range of parameters. In the medium with gain, the random-lasing threshold
depends on the sample size.

PACS numbers: 42.25.Dd, 03.70.+k, 42.55.Zz

I. INTRODUCTION

The transport of waves through disordered matter has
been a topic of recurring interest ever since the discov-
ery of the Anderson localization in electronic systems [1].
Analogous phenomena have been subsequently studied
for the transport of classical [2–5], matter [6, 7], and even
seismic waves [8].
The research on classical-wave propagation in disor-

dered media has been motivated by the conjectured pos-
sibility of the localization of light. The results, such as
the enhancement of dwell times due to resonant scatterers
and, hence, lower energy-transport velocities [9] and the
correction term in the Ward identity due to frequency-
dependent scattering potentials [10], have shown that,
while retaining many similarities, the behavior of light
in disordered media differs from that of electrons in sev-
eral important aspects. One of these aspects concerns the
propagation of light in nonconservative disordered media.
Such systems can be physically realized, for example, as
random lasers [11–13], which have received much atten-
tion recently. A promising research direction in this con-
text are theories that combine description of wave prop-
agation through disordered medium with the nonlinear
laser equations [14–16].
The properties of light diffusion in absorbing media

was studied using the photon transport equation [17–
19]. In particular, it was argued that, in the parame-
ter range of validity of the diffusion equation, the dif-
fusion coefficient is close to its value in the conserva-
tive medium. The treatment of light propagation start-
ing from the wave equation has been mainly conducted
via the self-consistent diagrammatic theory [20, 21]. In-
teresting results, such as corrections to the bare diffu-
sion coefficient due to the additional terms in the Ward
identity [22, 23] and dynamics of Anderson localization
in quasi-one-dimensional geometry [24] and open three-
dimensional media [25] have been obtained by these

∗ Corresponding author; ozaitsev@khu.ac.kr

methods. An alternative description of classical wave
propagation is provided by the so called effective models
of disordered systems, commonly known as the nonlinear
sigma model [26, 27] (NLSM). Being originally developed
for electronic systems, the (supersymmetric) NLSM de-
scribing light propagation in a conservative disordered
medium was derived in Refs. [2, 28]. Later, the effects
of an open boundary on the diffusion coefficient were
studied [29] by using a similar model. Unlike the self-
consistent theory of transport, effective models have not
yet been applied to optical systems with absorption or
gain. The effective models can be useful, e.g., in de-
scribing special properties of light localization in such
systems [30–32].

In the present work we formulate the Keldysh nonlin-
ear sigma model [33] for the propagation of electromag-
netic waves in nonconservative disordered media in the
diffusive regime. Systems with absorption or gain are rel-
atively simple to treat in the Keldysh formalism, which
makes it possible to define an action needed for the field-
theoretical description. By following the general scheme
as outlined in Ref. [33] for electronic systems, we derive
an effective NLSM action where we obtain a term due
to nonconservativeness of the medium. A similar con-
tribution was found in Ref. [29]; in that case the term
originated from the openness of the system.

Furthermore, by using the standard methods [33], we
show that the light propagation can be described by a dif-
fusion equation for nonconservative medium. The condi-
tions under which the NLSM yields the diffusion equation
are found to be equivalent to the restrictions imposed in
the theory of transport equation [17]. Similarly, the dif-
fusion coefficient that we derive is almost independent of
the absorption or gain under these conditions. For the
amplifying medium, we discuss the applicability of the
linear-gain approximation and determine the threshold
of random lasing.

http://arxiv.org/abs/1204.2608v1
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II. KELDYSH APPROACH TO LIGHT
PROPAGATION

A. Partition function for nonconservative medium

We consider an optical medium defined by a complex
dielectric constant ǫ(r, ω). Restricting our theory to the
TM modes in two dimensions, we describe the electric
field by its normal component Eω(r) = iωAω(r) (in the
Coulomb gauge), where Aω(r) is the normal component
of the vector potential. We use the Gaussian units with
the velocity of light c ≡ 1. The transversality condition
∇ · (ǫA) = 0 with ǫ varying in two dimensions, leads to
the two-dimensional wave equation

[∇2 + ǫ(r, ω)ω2]Aω(r) = 0. (1)

For real ǫ(r, ω), this equation, and its complex conju-
gate, can be obtained by setting to zero the functional
derivatives

δS

δA
= 0,

δS

δA∗
= 0 (2)

of the action (Hamilton principal function)

S[A,A∗]

=
1

16π

∫
dr

dω

2π

[
ǫ(r, ω)ω2|Aω(r)|2 − |∇Aω(r)|2

]

=
1

16π

∫
dr

dω

2π
A∗

ω(r)
[
ǫ(r, ω)ω2 +∇2

]
Aω(r), (3)

treating A and A∗ as independent functions. The ac-
tion can be rewritten in the representation-free operator
notation as

S[A,A†] =
1

16π
A†G−1A, (4)

where the inverse Green function operator G−1 =
ǫ(r, ω)ω2+∇2 in the (r, ω) representation and A (A†) is
the Hilbert-space vector Aω(r) [A

∗
ω(r)].

In order to construct the quantum Hamiltonian, one
expresses the energy of the system in terms of the vector
potential. Aω(r) and A∗

ω(r) are then expanded in the
normal modes of the system, the expansion coefficients
become the photon annihilation and creation operators.
In the Keldysh field-theoretical approach [33, 34] we

calculate the partition function

Z = Tr (Uρ), (5)

where ρ is the density matrix at time t = −∞, with
Tr ρ = 1, and

U = TC exp

[
−i

∫

C

H(t) dt

]
, ~ ≡ 1, (6)

is the time-evolution operator along the Keldysh con-
tour C. The contour begins at t = −∞, where the state

of the system is known, then goes forward in time up
to t = ∞, where it turns back and goes to t = −∞.
TC denotes the time ordering along the contour. The
Hamiltonian H(t) is switched on adiabatically, starting
from a trivial Hamiltonian H(−∞). H(t) is the same
on the forward and backward branches of the contour.
This condition leads to U = 1, and, hence, Z = 1. If
the source terms that are different on the two branches
are added to the Hamiltonian then Z 6= 1. The (func-
tional) derivatives of the type δZ[J ]/δJ |J=0 with respect
to the sources J generate averages with the density ma-
trix propagated from t = −∞ to relevant times.
The partition function can be written in the form of a

functional integral over the fields (i.e., the classical func-
tions) A and A†. To this end, we represent the classical
action along the Keldysh contour as

SC =
1

16π
[A†

+ G−1A+ −A†
− G−1A−]

=
1

16π
[(Acl)† G−1Aq + (Aq)†G−1Acl], (7)

where the subscripts “±” denote the fields on the forward
and backward branches of the contour and the so called
classical and quantum fields are defined by

Acl =
1√
2
(A+ +A−), Aq =

1√
2
(A+ −A−). (8)

The minus sign in front of the A†
− G−1A− term in Eq. (7)

takes care of the time reversal on the backward branch,
whereas A− is the representation-free (vector) notation
for the function A−(r, t) with the forward time ordering.
It is convenient to consider Acl and Aq as components of
a single field

Â =

(
Acl

Aq

)
(9)

in the Keldysh space, which is twice the size of the origi-
nal Hilbert space. (We will furnish the vectors and oper-
ators in this space with a hat.) Then the contour action
can be written in the form (dropping the subscript “C”)

S[Â, Â†] =
1

16π
Â† Ĝ−1Â, (10)

where Ĝ−1 has a 2×2 matrix structure with zeros on the
diagonal and equal off-diagonal elements.
In order to use S[Â, Â†] in the functional integral for Z,

the operator Ĝ−1 has to be regularized [33] by imposing
the causality structure on its matrix:

Ĝ−1 =

(
0 (G−1)A

(G−1)R (G−1)K

)
, (11)

(G−1)R,A
ω (r) = ǫ(r, ω)ω2 +∇2 ± i0+, (12)

(G−1)K = (G−1)RF − F (G−1)A. (13)

Here, (G−1)R,A,K are the retarded, advanced, and
Keldysh components of the inverse Green function opera-
tor. The operator F that parameterizes (G−1)K depends
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on the thermal distribution. Equation (12) is written
under assumption of real ǫ(r, ω). In the medium with
absorption, it is generalized to

(G−1)R,A
ω (r) = ǫ′(r, ω)ω2 +∇2 ± iǫ′′(r, ω)ω2, (14)

ǫ′(r, ω) = Re [ǫ(r, ω)], ǫ′′(r, ω) = Im [ǫ(r, ω)], (15)

where ǫ′′ > 0. In the case of the gain medium, ǫ′′ < 0, the
time-dependent Green function is exponentially diverg-
ing, and its Fourier transform to the frequency domain
does not exist. The frequency representation can be de-
fined with the help of the Laplace transform, which is
equivalent to introducing a fictitious absorption to the
system. When the results of a calculation are trans-
formed back to the time representation, they should not
depend on the fictitious absorption. This means that one
can perform the calculations in the frequency domain as-
suming ǫ′′ > 0, and obtain the final results by analytic
continuation to ǫ′′ < 0.
The functional-integral representation of the partition

function becomes

Z = N
∫
D[Â, Â†] eiS[Â,Â†], (16)

where N is the nonessential normalization constant that
ensures Z = 1 and the measure is defined by

D[Â, Â†] =
∏

r,ω,
j=cl,q

d
(
ReAj

ω(r)
)
d
(
ImAj

ω(r)
)

π
. (17)

Here and below we set to unity the step size for the grid
used to discretize the integral.
We note that the Keldysh formalism is especially ap-

propriate for the description of systems with absorp-
tion or gain as it naturally takes into account the finite
ǫ′′(r, ω) in the causality structure of the inverse Green
function, Eqs. (11), (14), and (13).

B. Disorder average

We shall study the effect of disorder in the refractive
index and assume the absorption or gain in the system to
be spatially uniform. Hence, we represent the dielectric
constant in the form

ǫ(r, ω) = ǫ′(ω) + ∆ǫ′(r, ω) + iǫ′′(ω) (18)

with the averages over disorder realizations
〈∆ǫ′(r, ω)〉 = 0 and 〈∆ǫ′(r, ω)∆ǫ′(r′, ω)〉 ∝ δ(r− r

′).
In order to define the scattering time τ , let us, for

a moment, neglect ǫ′′(ω). The wave equation (1) can
be interpreted as a time-independent Schrödinger equa-
tion with the energy E(ω) = ǫ′(ω)ω2 and the potential
energy V (r, ω) = −∆ǫ′(r, ω)ω2. The scattering time τ
and other characteristic time scales of the system are
assumed to be much larger than ω−1

0 , where ω0 is the
typical optical frequency. The slowly varying amplitude

Ã(r, t) = A(r, t) exp(iω0t) satisfy the approximate equa-
tion

i~̃
∂Ã

∂t
= [−∇2 + V (r, ω0)− E(ω0)]Ã, (19)

which is the time-dependent Schrödinger equation with
the “optical Planck constant”

~̃ =
dE(ω0)

dω0
. (20)

The scattering time can now be defined by analogy with
the quantum scattering time via the correlation func-
tion [35]

〈V (r, ω0)V (r′, ω0)〉 =
~̃

2πντ
δ(r− r

′), (21)

where ν = dn/dE is the quantum density of states (per

unit volume). Note that ν = ν0/~̃, where ν0 = dn/dω is
the standard optical density of modes.
A disorder average of the partition function can be

obtained by evaluating the functional integral

〈Z〉 =
∫

D[V ]Z exp

[
−πντ

~̃

∫
drV 2(r, ω0)

]
, (22)

D[V ] =
∏

r

√
ντ

~̃
dV (r, ω0). (23)

The disorder-dependent part of the action is

∆S[Â, Â†, V ] = − 1

16π
Â†V γ̂Â, γ̂ ≡

(
0 1
1 0

)
, (24)

where V (r, ω0) appears as an operator V diagonal in r;
F is assumed to be diagonal in r, as well. By completing
the square, we obtain the disorder contribution to the
partition function

〈ei∆S〉 = exp

[
− ~̃

4πντ

∫
dr

(
1

16π
Â†(r)γ̂Â(r)

)2
]
. (25)

The short-hand notation Â(r) is used for the Keldysh-

space vector Â with the fixed index r, i.e., it is a vector in
the space with the reduced dimensionality; in this nota-
tion, Â†(r)Â(r) involves a summation over the remaining
indices, e.g., ω and the Keldysh index.
The negative sign in the exponent (25) is essential for

the properties of nonlinear sigma model in the optical
medium. In contrast to a fermionic system, the sign can-
not be changed by commuting the fields.

III. NONLINEAR SIGMA MODEL

A. Hubbard-Stratonovich transformation. Saddle
point

The term of the fourth-order in the fields in Eq. (25)
can be converted to a second-order term with the help of
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the Hubbard-Stratonovich transformation yielding

exp

[
− ~̃

4πντ

∫
dr

(
1

16π
Â†(r)γ̂Â(r)

)2
]
=

NQ

∫
D[Q̂] exp

[
−πν~̃

4τ
Tr Q̂2 + i

~̃

32πτ
Â†γ̂Q̂Â

]
, (26)

Tr f̂ ≡
∑

j=cl,q

∫
dr

dω

2π
f jj
ωω(r). (27)

The auxiliary field Q̂ is the Hermitian operator diagonal
in r. The measure D[Q̂] is defined over the independent
matrix elements by analogy to Eq. (17). The normaliza-

tion constant NQ is determined by setting Â = 0 and

Â† = 0. The negative coefficient in front of Tr Q̂2 de-
termines the scale of Q̂ and can be chosen freely. The
present choice leads to the simple form of matrix Λ̂ in-
troduced in Eq. (34). In order to prove Eq. (26) more

easily, one can define the matrix Â(r) = Â(r) ⊗ Â†(r)
where the tensor product applies to the Keldysh and ω
subspaces. Then one represents

Â†γ̂Q̂Â = Tr (Q Â γ̂). (28)

Now the field Q̂ can be integrated out after completing
the square.
Using Eqs. (25) and (26) in Eq. (16) and integrating

out the fields Â and Â†, we obtain the disorder-averaged
partition function

〈Z〉 = ÑQ

∫
D[Q̂] eiS[Q̂], (29)

iS[Q̂] ≡ −Tr

[
πν~̃

4τ
Q̂2 + ln

(
Ĝ−1

0 +
~̃

2τ
γ̂Q̂

)]
, (30)

where Ĝ−1
0 is the inverse Green function operator that

does not include the disordered part of the dielectric con-
stant and all Q̂-independent factors are included in the

normalization constant ÑQ.
In the limit of large scattering time, the main contri-

bution to 〈Z〉 comes from the neighborhood of a saddle
point. The saddle-point equation

Q̂(r)γ̂ = − 1

πν

(
Ĝ−1

0 +
~̃

2τ
γ̂Q̂

)−1

rr

(31)

follows from the condition of stationary variation of S[Q̂]

with respect to γ̂Q̂. In the (k, ω) representation,

(G−1
0 )R,A

ω (k) = E(ω)− k2 ± iǫ′′(ω)ω2 (32)

is diagonal. We will look for the solutions QR,A
ω in the

(cl, cl) and (q, q) blocks of Q̂, respectively, which are uni-
form in r and diagonal in ω. Equation (31) yields for
these blocks:

QR,A
ω = − 1

πν

∑

k

1

E(ω)− k2 ± iǫ′′(ω)ω2 + ~̃

2τQ
R,A
ω

.

(33)

The sum over the modes can be converted into an in-
tegral over ν dE , where E = k2. In the limit ωτ ≫ 1
and ǫ′′ ≪ ǫ′, the lower integration limit can be extended

to −∞. Then (QR,A
0 )ω = ±i is the solution. The full

matrix can be written in the form

Q̂0 = iΛ̂, Λ̂ =

(
1R 2F
0 −1A

)
, (34)

which includes the regularization in 1R,A
ω = e±iω0+ and

the Keldysh block. The regularization leads to an impor-
tant property Tr Q̂2

0 = 0.

We note that the saddle point Q̂0 lies outside of the
manifold of Hermitian matrices Q̂. The diagonal part
of Q̂0 is anti-Hermitian; this property can be traced back
to the negative sign in the exponent in Eq. (25). The

Q̂manifold can be continuously deformed to pass through
the saddle point by making the transformation Q̂ 7→ eiφQ̂
in the neighborhood of Q̂ = Λ̂. As φ changes from 0
to π/2, the logarithm argument in Eq. (30) has no zero
eigenvalues if ǫ′′ > 0. Thus, no singularities are crossed
by exp(iS[Q̂]) during the deformation.

B. Effective action

The main contribution to 〈Z〉 arises from the fluctu-
ations about the saddle point that satisfy the condition
Tr Q̂2 = 0. Such fluctuations produce weak variations of
the action S[Q̂] (30). The matrices Q̂ having the above
property can be represented in the general form

Q̂(r) = iR̂−1(r) Λ̂R̂(r), (35)

where R̂ is diagonal in the r representation.
In what follows we present the results of the calculation

and refer the reader to the Appendix for details. After
substituting the parameterization (35) in Eq. (30) and

omitting the Q̂-independent contribution, we arrive at

iS[Q̂] = −Tr ln
(
1̂ + Ĝγ̂R̂[γ̂Ĝ−1

0 , R̂−1]
)

≈ −Tr
(
Ĝγ̂R̂[γ̂Ĝ−1

0 , R̂−1]
)

+
1

2
Tr
(
Ĝγ̂R̂[γ̂Ĝ−1

0 , R̂−1]
)2

. (36)

where

Ĝ =

(
Ĝ−1

0 + i
~̃

2τ
γ̂Λ̂

)−1

(37)

is the disorder-dependent Green function operator [see
Sec. IVB]. The action is expanded in the fluctuations
about the saddle point, which are described by the com-
mutator [γ̂Ĝ−1

0 , R̂−1]; at the saddle point R̂ = 1̂ the
commutator vanishes. The disorder-free inverse Green
function consists of the conservative and nonconservative
parts:

γ̂ (Ĝ−1
0 )ω(k) = [E(ω)− k2]1̂ + iǫ′′(ω)ω2Λ̂. (38)
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The latter results in a nontrivial contribution to the com-
mutator due to the Keldysh structure of Λ̂.
There are three leading-order contributions to S[Q̂].

Using the E(ω) part of γ̂Ĝ−1
0 in the linear term in Eq. (36)

we arrive at

iS1[Q̂] ≃ iπν~̃Tr (∂tQ̂), (∂tQ̂)tt ≡ (∂tQ̂tt′)t′=t. (39)

The contribution of the k2 part of γ̂Ĝ−1
0 to the linear term

of Eq. (36) is neglected compared to its contribution to
the second-order term, which gives

iS2[Q̂] ≃ −π

4
ν~̃D̄Tr (∂rQ̂)2. (40)

To derive this result, we used the property [35]

~̃

2πν

∑

k

GR
ω0
(k)GA

ω0
(k) ≃

(
1

τ
+

2ǫ′′ω2
0

~̃

)−1

≡ τ̄ (41)

yielding the effective scattering time τ̄ and defined the
effective diffusion coefficient in two dimensions,

D̄ =
1

2
v2τ̄ =

2ǫ′ω2
0

~̃2
τ̄ , (42)

where v is the group velocity of light in the medium. In
Sec. IV we show that τ̄ and D̄ are the relevant parameters
to describe the diffusive light propagation [see Eq. (75)].

Finally, the nonconservative part of γ̂Ĝ−1
0 yields, in the

linear order in the commutator,

iS3[Q̂] = πνǫ′′ω2
0 Tr (iΛ̂Q̂+ Λ̂2). (43)

The contributions S1,2,3[Q̂] sum up to yield the NLSM
effective action

iS[Q̂] =

− πν0Tr

[
−i∂tQ̂+

D̄

4
(∂rQ̂)2 − ǫ′′ω2

0

~̃
(iΛ̂Q̂+ Λ̂2)

]
.

(44)

The action vanishes at the saddle point, S[iΛ̂] = 0. The
key assumption behind the NLSM is the smallness of the
action for fluctuations of Q̂ restricted to the manifold
Tr Q̂2 = 0, compared to the action for arbitrary fluctua-
tions about the saddle point. The terms S1,2[Q̂], which
also appear in the NLSM for disordered fermionic sys-
tems [33], depend only on the derivatives of Q̂. There-
fore, the dominant contribution to the partition func-
tion comes from the fluctuations Q̂tt′(r) [or R̂tt′(r)] that
are slowly varying functions of r and (t + t′)/2. These
“massless modes” are associated with the diffusive light
propagation. The assumption of slow variation justifies
neglecting of higher-order terms in the expansion (36).

The contribution S3[Q̂] results from the nonconservative
nature of the medium. It is, in general, comparable to
the to the “massive” Tr Q̂2 term, unless the rate of ab-
sorption or gain is smaller than the scattering rate:

|ǫ′′|ω2
0

~̃
≪ 1

τ
. (45)

This condition specifies the regime when the light propa-
gation is diffusive. If this requirement is not fulfilled, the
massive fluctuations beyond the NLSM have to be taken
into account.

IV. LIGHT DIFFUSION

In this section we calculate the disorder-averaged
Green-function correlator. In particular, we consider
the contribution that arises from the fluctuations of the
field Q̂ in the neighborhood of the saddle point. The cor-
relator possesses a diffusion-pole structure modified by a
finite absorption/gain rate.

A. Fluctuations about the saddle point

We consider the parameterization

Q̂ = iÛe−Ŵ/2σ̂ze
Ŵ/2Û−1, Û = Û−1 =

(
1 F
0 −1

)
,

(46)

where σ̂z is the Pauli matrix. Because Λ̂ = Û σ̂zÛ
−1 (if

the regularization of unit operators is neglected), this

parameterization is equivalent to Eq. (35) with R̂ =

Û exp(Ŵ/2) Û−1. It can be verified by explicit calcu-

lation that the diagonal blocks of Ŵ do not contribute
to S[Q̂] and the Green-function correlator, at least, up

to the second order in Ŵ . We, therefore, represent this
field in the form

Ŵ =

(
0 w
w† 0

)
. (47)

The specific choice of Ŵ as a Hermitian matrix is justified
by the requirement of convergence of the functional inte-
gral for the partition function (see below). The operator
w is diagonal in the r representation.
By expanding the parameterization (46) in the powers

of Ŵ we find the first- and second-order deviations from
the saddle point,

δQ̂(1) = i

(
−Fw† −w − Fw†F
w† w†F

)
, (48)

δQ̂(2) =
i

2

(
ww† ww†F + Fww†

0 −ww†

)
. (49)

We note that only the latter matrix has the causality
structure; however, the fluctuations of Q̂ are not required
to obey causality. By using δQ̂(1,2) in Eq. (44) we can
calculate fluctuations of the effective action.
The first-order variation of S[Q̂] depends on the deriva-

tives [36] of the distribution function F generated by the
first two terms in Eq. (44); the third term yields an identi-
cally vanishing first-order contribution. The saddle-point
equation (33) determines the retarded and advanced sec-

tors of Q̂, but not the function F . By setting to zero the
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variation of the effective action near the saddle point, we
obtain the Usadel equation

(−∂t̄ + D̄∂2
r
)Fω0(r, t̄) = 0 (50)

for Ftt′(r) in the mixed representation of the slow time
variable t̄ = (t+ t′)/2 and the large frequency ω, conju-
gate to t− t′.

The second-order variation is

iδS(2)[w,w†] = −πν0Tr

[
−i∂t δQ̂

(2) +
D̄

4
(∂r δQ̂

(1))2

+i
D̄

2
(∂rΛ̂)(∂r δQ̂

(2))− i
ǫ′′ω2

0

~̃
Λ̂δQ̂(2)

]

= −πν0
2

∑

ωω′k

|wωω′(k)|2
[
−i(ω − ω′) + D̄k2 +

2ǫ′′ω2
0

~̃

]
,

(51)

where w(k) is the Fourier transform of w(r). Of the
two terms with spatial gradients, the second term has a
zero trace. The first term yields the D̄k2 contribution to
δS(2), as well as the additional correction

iδS
(2)
F [w†] = −πν0

2
D̄ tr[w†(∂rF )]2, (52)

where “tr” denotes the trace of operators that do not
have the Keldysh matrix structure. This correction van-
ishes when F (r) is uniform, which we will assume. With
the help of Eq. (51), the disorder-averaged partition func-
tion can be approximated by the functional integral

〈Z〉 ≈ Nw

∫
D[w,w†] eiδS

(2)[w,w†], (53)

where Nw is a normalization constant. For a medium
with gain, the divergence of the integral for the modes
with

k < kmin ≡
√

−2ǫ′′ω2
0

~̃D̄
(54)

indicates that the long-scale fluctuations become unsta-
ble due to onset of lasing (see Sec. IVC). Thus, in
the long-wavelength limit the linear-gain theory breaks
down and the nonlinear effects have to be taken into ac-
count [15, 16].

B. Disorder-averaged correlator

Green functions and their combinations can be ex-
pressed in terms of derivatives of the partition function

with respect to the source fields:

Gjk(1, 2) = − i

16π

δ2Z[Ĵ , Ĵ†]

δ[Jj(1)]∗ δJk(2)

∣∣∣∣∣
Ĵ=Ĵ†=0

, (55)

Gjk(1, 2)Glm(3, 4) +Gjm(1, 4)Glk(3, 2)

= − 1

(16π)2
δ4Z[Ĵ , Ĵ†]

δ[Jj(1)]∗ δJk(2) δ[J l(3)]∗ δJm(4)

∣∣∣∣∣
Ĵ=Ĵ†=0

,

(56)

Z[Ĵ , Ĵ†] = N
∫
D[Â, Â†] eiS[Â,Â†]+Ĵ†Â+Â†Ĵ , (57)

where j, k, l,m = cl, q and 1, 2, . . . are full sets of co-
ordinates in some representation, e.g., 1 = (k1, ω1),
etc. By inverting the matrix (11), we identify the sec-
tors of the Green function as Gcl,q = GR, Gq,cl = GA,
Gcl,cl = GK 6= [(G−1)K]−1, and Gq,q = 0.

The disorder-averaged Green functions and correlators
are obtained by using the above expressions with the
disorder-averaged partition function [37]

〈Z[Ĵ , Ĵ†]〉 = ÑQ

∫
D[Q̂] exp

(
iS[Q̂] + 16πiĴ†ĜQ̂Ĵ

)
,

(58)

ĜQ̂ ≡
(
Ĝ−1

0 +
~̃

2τ
γ̂Q̂

)−1

. (59)

We find, in particular,

〈GR,A,K(1, 2)〉 = 〈GR,A,K

Q̂
(1, 2)〉Q̂, (60)

〈GR(1, 2)GA(3, 4)〉
= 〈GR

Q̂
(1, 2)GA

Q̂
(3, 4) + GK

Q̂
(1, 4)GQ

Q̂
(3, 2)〉Q̂, (61)

where the average 〈· · · 〉Q̂ over Q̂ is performed with the

exponential weight exp(iS[Q̂]). Equation (60) shows that

Ĝ = ĜiΛ̂ [Eq. (37)] is the disorder-averaged Green func-
tion in the lowest-order saddle-point approximation. The

component GQ

Q̂
≡ Gq,q

Q̂
in Eq. (61) is, in general, non-zero

when Q̂ does not have the causality structure. This ob-
servation is essential for the following calculation.

We calculate the Green-function correlator

R(1, 2, 3, 4) ≡ 〈GR(1, 2)GA(3, 4)〉 − 〈GR(1, 2)〉〈GA(3, 4)〉
(62)

by expansion about the saddle point. The lowest-order
correction to the Green function (59) is

ĜQ̂ − Ĝ ≃ − ~̃

2τ
Ĝγ̂δQ̂(1)Ĝ

= i
~̃

2τ

(
GRwGA + FGAw†GRF FGAw†GR

−GAw†GRF −GAw†GR

)
. (63)
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The Gaussian averages with the action (51) are as follows:

〈w〉w = 〈w†〉w = 0, 〈w†(1, 2)w†(3, 4)〉w = 0 (64)

〈w(1, 2)w†(3, 4)〉w

=
2

πν0

δk1−k2,k4−k3δω1,ω4δω2,ω3

D̄(k1 − k2)2 − i(ω1 − ω2) +
2ǫ′′ω2

0

~̃

. (65)

Therefore, the leading contribution to the correlator
comes from the K-Q term in Eq. (61), which is given
by the product of diagonal blocks in Eq. (63). We find

R(1, 2, 3, 4) =
~̃

2πντ2
GR(1)GR(2)GA(3)GA(4)

× δk1−k4,k2−k3δω1,ω2δω4,ω3

D̄(k1 − k4)2 − i(ω1 − ω4) +
2ǫ′′ω2

0

~̃

. (66)

The correlator has a diffusion pole with the diffusion co-
efficient D̄. The pole is modified by the ǫ′′ term that
arises from the corresponding contribution in the effec-
tive action (44). This term defines the absorption rate

1

τa
≡ 2ǫ′′ω2

0

~̃
, (67)

negative for gain.

C. Discussion

The pole structure of the correlator implies that the
light intensity I in the medium satisfies the diffusion
equation with a nonconservative term:

(
∂t − D̄∇2 + τ−1

a

)
I = 0, (68)

D̄ =
1

2
v2τ̄ =

1

2
v2
(
1

τ
+

1

τa

)−1

. (69)

We compare this equation with

[
τ

1 + 2τ/τa
∂2
t + ∂t −D′∇2 + τ−1

a

1 + τ/τa
1 + 2τ/τa

]
I = 0,

(70)

D′ ≡ 1

2
v2
(
1

τ
+

2

τa

)−1

, (71)

that follows from the photon transport equation (see
Eq. (15) of Ref. [17]). According to Ref. [17], the light
propagation is diffusive if the second derivative with re-
spect to time in Eq. (70) can be neglected. This is the
case when

τ ≪ ∆t, (72)

where ∆t is the characteristic time scale of intensity vari-
ation. The reaction of the medium on a fluctuation of
intensity will be determined by the shortest time scale,

so that ∆t . |τa| can be assumed. Therefore, when ne-
glecting the corrections of the order of τ/∆t in Eq. (70),
we also have to neglect the contributions of the order
of τ/τa. In particular, it is consistent with the diffusion
approximation to set

D′ ≃ D ≡ 1

2
v2τ. (73)

The independence of absorption for the diffusion coeffi-
cient was also supported by the numerical evidence in
Ref. [17]. It is worth commenting on the claim [18, 19]
that the diffusion coefficient in the medium with absorp-
tion must be equal to D even for τ/τa ∼ 1. A closer
look at the derivation of the diffusion coefficient from
the transport equation in Ref. [18] reveals that the time-
derivative terms neglected in Eqs. (A9) and (A11) of that
article would yield the diffusion coefficient

D′′ =
1

2
v2τ

(
1− 2

τ

τa

)
≃ D′ (74)

were they taken into account. Thus, the (approximate)
independence of the diffusion coefficient of absorption is
a consequence of the self-consistent application of the
diffusion-approximation conditions (45) and (72).
The NLSM effective action (44) is derived under the

condition (72) as well. This condition guarantees the slow

variation of Q̂, and makes it possible to neglect the con-
tribution of E(ω) part of γ̂Ĝ−1

0 [Eq. (38)] to the second-
order term in Eq. (36). This contribution would result
in a second-time-derivative term in the effective action.
Again, the diffusion approximation requires that we set

D̄ ≃ D, τ̄ ≃ τ (75)

in the NLSM expressions. Thus, the NLSM and the the-
ory of transport equation agree in the diffusive regime.
In the medium with gain, the diffusive relaxation com-

petes with the amplification. Because the long-scale in-
tensity fluctuations disperse slower, they become unsta-
ble, and the random lasing sets in. The cutoff wavenum-
ber kmin (54) determines the critical sample size

l =
√
D |τa| (76)

above which the system is lasing and the linear-gain the-
ory does not apply. Alternatively, the above expression
yields the lasing-threshold value of |τa| if l is given.

V. CONCLUSIONS

We obtained the functional-integral form of the par-
tition function for an optical medium with linear ab-
sorption or gain. Keldysh technique is particularly suit-
able for description of nonconservative systems because
it provides a natural representation for the action. The
disorder-averaged partition function is expressed as a
functional integral over the auxiliary matrix field Q̂.
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Within the framework of nonlinear sigma model, we con-
sidered the fluctuations about the saddle point that fulfill
the condition Tr Q̂2 = 0. We found that the effective ac-
tion S[Q̂] for these fluctuations contains an extra term
due to absorption or gain.
With the help of the nonlinear-sigma-model parti-

tion function, we computed the disorder-averaged Green-
function correlator. The leading contribution from the
vicinity of the saddle point has the diffusion-pole struc-
ture modified by a finite absorption/gain rate. The diffu-
sion coefficient is found to be approximately independent
of the absorption or gain in agreement with the theory
of photon transport equation. In the medium with gain,
the linear theory is not applicable in the long-wavelength
limit. If the sample size exceeds a certain critical length,
the random lasing sets in.

Appendix: Derivation of the effective action

1. Derivation of Eq. (36)

After substitution of the parameterization (35) in
Eq. (30) we obtain

iS[Q̂] = −Tr ln

[
R̂γ̂R̂−1

(
R̂γ̂Ĝ−1

0 R̂−1 + i
~̃

2τ
Λ̂

)]

= −Tr ln γ̂ − Tr ln
(
γ̂Ĝ−1 + R̂[γ̂Ĝ−1

0 , R̂−1]
)
.

(A.1)

By separating Tr ln(γ̂Ĝ−1) and dropping the Q̂-
independent terms we arrive at Eq. (36).

2. Derivation of Eq. (39)

The conservative part of γ̂Ĝ−1
0 , when substituted in

the first trace in Eq. (36), yields

iS1[Q̂] =− Tr
∑

ω,ω′

k,k′

Ĝω(k)γ̂R̂ωω′(k− k
′) R̂−1

ω′ω(k
′ − k)

× [E(ω′)− E(ω)− k′2 + k2]

≃ −Tr
∑

ω,∆ω
k,∆k

Ĝω(k)γ̂R̂ω,ω+∆ω(−∆k) R̂−1
ω+∆ω,ω(∆k)

× [~̃∆ω − (2k+∆k) ·∆k], (A.2)

where ∆ω = ω′ − ω and ∆k = k
′ − k. We note that R̂

is peaked at small wave vectors in the k representation.
The sum

∑

k

Ĝω(k)γ̂ = −iπνΛ̂ (A.3)

follows from the saddle-point condition; furthermore,∑
k
Ĝω(k)k = 0 due to the symmetry. After calculat-

ing the ∆k sum we arrive at

iS1[Q̂] = iπν Tr
∑

ω,∆ω

∫
drΛ̂R̂ω,ω+∆ω(r)

× [~̃∆ω + ∂2
r ] R̂

−1
ω+∆ω,ω(r)

= πν Tr

∫
dr dt dt′ iΛ̂R̂t′t(r)[i~̃∂t + ∂2

r ] R̂
−1
tt′ (r). (A.4)

Applying the representation (35) we obtain Eq. (39) from

the ∂t part. The ∂
2
r
part is neglected compared to iS2[Q̂];

the latter contribution is multiplied by ~̃D̄ ∼ ω0τ̄ ≫ 1.

3. Derivation of Eq. (40)

We substitute the k2 part of γ̂Ĝ−1
0 in the second trace

in Eq. (36) to get

iS2[Q̂] =
1

2
Tr
∑

k1...k4

Ĝ(k1)γ̂ R̂(k1 − k2) R̂
−1(k2 − k3)

× Ĝ(k3)γ̂ R̂(k3 − k4) R̂
−1(k4 − k1)(k

2
2 − k23)(k

2
4 − k21)

≃ 2Tr
∑

k̄∆k̄

∆k∆k
′

Ĝ(k̄)γ̂ R̂
(
∆k̄− ∆k+∆k

′

2

)
R̂−1(∆k

′)

× Ĝ(k̄)γ̂ R̂
(
−∆k̄− ∆k+∆k

′

2

)
R̂−1(∆k)

× (k̄ ·∆k)(k̄ ·∆k
′), (A.5)

where k̄ =
∑4

i=1 ki/4 and we neglected the contributions
of higher order in ∆k̄ = (k1 + k4 − k2 − k3)/2, ∆k =
k4 − k1, and ∆k

′ = k2 − k3. We use the representation

Ĝγ̂ =
1

2
GR (1̂ + Λ̂) +

1

2
(1̂− Λ̂)GA (A.6)

and the well-known relations [see Eqs. (42) and (41)]

∑

k

GR
ω (k)GA

ω′ (k) kαkβ ≃ 1

2
πν~̃D̄δαβ , (A.7)

∑

k

GR(A)
ω (k)GR(A)

ω′ (k) kαkβ ≃ 0, (A.8)

to find

iS2[Q̂] = −1

2
πν~̃D̄Tr [(1̂ + Λ̂)R̂ (∂rR̂

−1)

· (1̂− Λ̂)R̂ (∂rR̂
−1)] =

1

4
πν~̃D̄Tr [∂r(R̂

−1Λ̂R̂)]2, (A.9)

from which Eq. (40) follows.
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4. Derivation of Eq. (43)

The nonconservative part of γ̂Ĝ−1
0 , being substituted

in the first trace in Eq. (36) yields

iS3[Q̂] ≃− iǫ′′ω2
0 Tr

∑

kk′

Ĝ(k)γ̂R̂(k− k
′)

× [Λ̂R̂−1(k′ − k)− R̂−1(k′ − k) Λ̂]. (A.10)

We change the variable k′ = k+∆k and apply Eq. (A.3).
After cyclically moving the operators under the trace we

obtain Eq. (43).
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