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We investigate the stability of the pressure-driven, low-Reynolds flow of Brownian sus-
pensions with spherical particles in microchannels. We find two general families of sta-
ble/unstable modes: (i) degenerate modes with symmetric and anti-symmetric patterns;
(ii) single modes that are either symmetric or anti-symmetric. The concentration profiles
of degenerate modes have strong peaks near the channel walls, while single modes dimin-
ish there. Once excited, both families would be detectable through high-speed imaging.
We find that unstable modes occur in concentrated suspensions whose velocity profiles
are sufficiently flattened near the channel centreline. The patterns of growing unstable
modes suggest that they are triggered due to Brownian migration of particles between
the central bulk that moves with an almost constant velocity, and highly-sheared low-
velocity region near the wall. Modes are amplified because shear-induced diffusion cannot
efficiently disperse particles from the cavities of the perturbed velocity field.

1. Introduction

Microfluidic devices operate in overwhelming laminar conditions where particles mi-
grate across streamlines either through Brownian motion or shear-induced diffusion
(SID). In microfiltration, a process to remove unwanted particles from fluid using a mem-
brane, SID by very strong crossflow is essential to lessen the growth of particle layer cake
over the membrane (Vollebregt et al. 2010). Particles with different sizes are segregated
in particle fractionation devices due to SID (Kromkamp et al. 2006). Ceramic or metallic
particle injection moulding is another subject for SID to play a role in (Kauzlarić et al.
2011). While Brownian random walk due to thermal fluctuations operates in all times,
the efficiency of shear-induced migration depends on particle-particle and particle-fluid
interactions. For instance, spherical particles move to regions with lower shear rates when
the Péclet number is sufficiently large (Semwogerere et al. 2007; Semwogerere & Weeks
2008), but platelike particles do not sense the details of velocity profile and respond only
to average shear rate (Rusconi & Stone 2008). The lowest reported volume fraction that
supports SID is . 0.04 (Brown et al. 2009). Well below this limit, SID is turned off as
the experiments of Rusconi & Stone (2008) show no transfer of spherical particles from
the sample to buffer stream of a T-sensor. Interesting and largely unexplored dynamics
emerges when particle migration is governed not by a single mechanism, but through the
interplay between Brownian motion and SID.
Despite the apparent stability of low-Reynolds flows, some transient substructures

like ripples and sharp near-wall features of concentration profiles (see Frank et al. 2003;
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Semwogerere et al. 2007) are observed in experimental data. Substructures can be long-
lived or unstable ‘modes’ excited by anomalous particle migrations, wall roughness, and
particle-wall interactions. Instabilities in microchannels, however, are very hard to de-
tect experimentally, and their theoretical prediction is a challenging problem because
particle migration is generally a slow process compared to the time scale of veloc-
ity fluctuations. Moreover, none of the three known instabilities induced by interfaces
(Helton & Yager 2007), massive sedimentation (Yiantsios 2006; Rao et al. 2007), and
gravity (Govindarajan et al. 2001; Carpen & Brady 2002) seem to occur in microchan-
nel flows whose streaming velocity profiles are symmetric with respect to the channel
centreline. Important questions regarding the flow of suspensions in microchannels thus
include: (i) if excited, how long can stable modes survive, and in what flow conditions
are they detectable? (ii) what are the shapes of long-lived substructures and how do they
depend on dimensionless Reynolds and Péclet numbers? (iii) How do Brownian diffusion
and SID compete in the bulk and near the walls, and when do they collaborate to desta-
bilize suspension flows? In this paper we attempt to answer these questions, which have
remarkable implications for the design and manufacturing of microfluidic devices.
Dynamics of suspension flows is described by different models. The first model intro-

duced by Leighton & Acrivos (1987) and Phillips et al. (1992) is phenomenological and
involves the diffusion fluxes of particles due to particle collisions and the spatial variation
in the viscosity. The second model roots from the conservation equations of mass, momen-
tum and energy for the fluid and particle phases (Nott & Brady 1994). Morris & Boulay
(1999) take into account normal stress differences to handle curvilinear flows. In this pa-
per we adopt the constitutive model of Phillips et al. (1992) for two reasons: (i) combining
the effects of Brownian and shear-induced diffusions is a straightforward superposition
(ii) The free diffusion flux parameters allow for an exploration of different flow regimes.
The literature also includes models where particle and fluid phases interact only through
Stokes drag (e.g., Rudyak et al. 1997; Klinkenberg et al. 2011, and references therein).
However, our study is different in nature: the Reynolds number is smaller than these
studies by several orders of magnitude, and despite a strong coupling between the parti-
cle and fluid motions, particles undergo direct two-body collisions governed by shear and
viscosity gradients. These collisions lead to particle phase pressure and shear overlooked
in the models of Rudyak et al. (1997) and Klinkenberg et al. (2011).
We assume that the mean streaming velocities of particles and the solvent are identi-

cal, i.e., the slip velocity is zero because the drag force is high. We include the Brownian
diffusion in the flux vector. This leads to new steady-state concentrations that do not
saturate at the centre of the channel. We briefly review the governing equations of sus-
pension flows in §2 and find their steady-state solutions in the presence of Brownian
diffusion. We linearly perturb the diffusion and momentum equations in the vicinity of
steady state solutions and utilise the Chebyshev tau method to determine the eigenmodes
of perturbed equations. We present the results of our modal analysis in §3 and explain
the physical mechanism of a new instability that emerges in concentrated suspension
flows.

2. Governing diffusion and momentum equations

We aim at modeling the diffusion inside a microchannel of the width 2W as shown
in figure 1(a). We confine our study to regions far from the edges where the flow has
a two-dimensional nature in the (x, z) plane, which is spanned by the unit vectors ex

and ez. The x and z axes are along the channel width and flow direction, respectively.
We define the mean streaming velocity as v = vxex + vzez and assume that streaming
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field remains invariant by changing the y-coordinate. This is a legitimate assumption
because SID is controlled by shear gradient in the shortest direction. We define φ as the
actual concentration of particles, and set its maximum achievable value to φm = 0.68.
We scale all lengths byW and all velocities by the maximum velocity Vp of the associated
Poiseuille flow when φ = 0. Physical quantities are therefore normalized as φ̄ = φ/φm,
(x̄, z̄) = (x/W, z/W ), (v̄x, v̄z) = (vx/Vp, vz/Vp) and t̄ = Vpt/W , where t is the actual
time and −1 6 x̄ 6 +1. From here on, we will drop the bar sign for brevity and will
explicitly mention if we use actual values.
For a flow with the mean streaming velocity v, the volume fraction φ evolves according

to the following nonlinear partial differential equation (PDE) (Phillips et al. 1992)

φ,t + (v · ∇)φ = −ǫ∇ · J, ǫ = φmKc(a/W )2, (2.1)

J = −φ∇ (Γφ)− βφ2Γη−1η,φ∇φ −D∇φ, D = D0W/(φmKca
2Vp),

where J is the flux of particles, η(φ) = (1−φ)−α (with α = 1.82) is the relative viscosity
of the suspension, and

Γ =
[

|4vx,xvz,z − v2x,z − v2z,x − 2vx,zvz,x|
]1/2

, (2.2)

is the magnitude of the local shear rate. Γ is the second invariant of the rate of strain
tensor. Throughout this paper, (.),s denotes the partial differentiation operator ∂(.)/∂s.
a is the typical radius of spherical particles in the suspension, and D0 = kBT/(6πηsa)
is the coefficient of Brownian diffusion where ηs and T are, respectively, the solvent vis-
cosity and temperature. kB is Boltzmann’s constant. The coefficients of diffusion fluxes
Kc and Kη = βKc are ‘phenomenological’ constants. Kc and Kη indicate the strength of
two-body interactions due to the spatial variations of collision frequency and suspension
viscosity, respectively. In the absence of Brownian diffusion, Merhi et al. (2005) experi-
mented two flow geometries, parallel-plate and Couette flows, and concluded that β & 1
is independent of flow geometry. Although they use β = 2.1 to fit the steady concen-
tration profiles in both geometries, their numerical results are satisfactory only for the
Couette flow. The model of Phillips et al. (1992) performs well for Poiseuille flow studied
here (Stickel & Powell 2005, section 5).
One can define the intrinsic time scale tB of the suspension flow based on the Brownian

motion of particles across the channel width described by 〈x2〉 = 4Dt. Since −1 6 x 6

+1, we set the mean square displacement 〈x2〉 to 22 and define tB = 〈x2〉/(4D) = 1/D.
In §2.2, tB will be used to quantify the period of transient oscillations. For suspensions,
the elements of the stress tensor T = [Tij ] are given as (Carpen & Brady 2002, equation
2.4b)

Tij = −δijp+ η(φ)
[

∇v+ (∇v)
T
]

, (2.3)

where the superscript T denotes transpose. The suspension pressure p is a superposition
of the solvent and particle-phase pressures. Equation (2.3) is obtained from the stress
tensor of rheological models (e.g., Yurkovetsky & Morris 2008) by neglecting differences
between normal stresses. This assumption is valid when the migration of particles occurs
in the shear plane, as in the straight channels studied here.
Defining Re = ρWVp/ηs as the channel Reynolds number in the limit of φ → 0, the

normalized continuity and momentum equations read

∇ · v = 0, ∇ · T = Re [v,t + (v · ∇) v] . (2.4)

Since Re is very small (10−2 . Re . 1) in most microchannel experiments (Semwogerere et al.
2007; Rusconi & Stone 2008), it is reasonable to work with a constant suspension density
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Figure 1. (a) Channel geometry; big arrow indicates flow direction. (b) Variation of Pe versus
φbulk for several choices of Re and β. We have set Kc = 0.03. (c) Steady-state solution of
the normalized particle concentration φ for β = 5. Circles show the experimental results of
Semwogerere et al. (2007, figures 3). (d) Solid line: the velocity profile vz0(x) corresponding to
φ0(x); dashed line: the velocity profile of Poiseuille flow in the limit of φ = 0. Model parameters
are Kc = 0.03, φ0(±1) = 0.21/φm, W = 25µm, a = 0.7µm, Vp = 2.1 × 10−3m/s, T = 22◦,
ηs = 2.18 × 10−3Pa.s, ρ = 1232.5kg/m3 and D = 8.4 × 10−2. The actual velocity is computed
as Vpvz0(x). Using these parameters, we obtain Q = 16.92 nl/s, Pe = 137 and φbulk = 0.25/φm.

ρ and drop terms like φ∆ρ/ρ where ∆ρ is the difference between the particle and fluid
phase densities. After solving (2.4) for the velocity field, the particle Péclet number is
determined as Pe = a2Vpvz,max/(D0W ).

2.1. Steady-state solutions

In a steady-state fully developed flow, the gradients of physical quantities are nonzero
only in the x direction, and the maximum velocity occurs at x = 0 (channel centreline).
The steady solutions φ = φ0(x), vx = 0 and vz = vz0(x) of equations (2.1) and (2.4) are
obtained by setting ∇ · T = 0 and J = 0. The first relation gives Γ0 = 2|x|/η0(x), and
the latter yields the first-order ordinary differential equation

dφ

dx
=−2 sign(x)φ2(1− φ)α

[

D+2|x|φ(1− φ)α+2α(β − 1)|x|φ2(1 − φ)α−1
]−1

, (2.5)

where η0(x) = η(φ0(x)). We numerically integrate equation (2.5) and obtain φ = φ0(x).
The corresponding profile of vz0(x) is then determined from vz0(x) =

∫ x

−1
2ξ[η0(ξ)]

−1dξ
with the boundary condition vz0(±1) = 0. Our numerical experiments show that for large
values of β the concentration φ0(x) develops a cusp as x→ 0± and its tails become flat
for |x| → 1. The velocity profile is flattened near the channel centreline by decreasing
β. The profile of vz0(x) approaches to 1 − x2 (vz,max → 1) as φ → 0. The physical
values of Kc and β are determined through fitting the computed profiles of φ0(x) and
vz0(x) to experimental data. In this paper we explore the perturbations of models with
1 . β . 5. In the limit D = 0 the steady solutions are obtained from xφ0(x)η

β−1 =
constant (Phillips et al. 1992) while φ0(0) is always saturated to 1. We are not interested
in this extreme case.
We have used the solution of (2.5) and plotted Pe versus φbulk in figure 1(b) for sev-

eral choices of Re and β. Figures 1(c) and 1(d) show the steady-state solutions of a
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suspension flow with β = 5. The material and geometrical parameters—given in the
figure caption—of this example come from Semwogerere et al. (2007) for the solvent cy-
clohexylbromide/decalin mixture. Using an evolution parameter, they have confirmed the
steady state condition of the flow. We find φbulk = 0.25/φm and Pe = 137, which agree
with the experimental data within 5% (see Semwogerere et al. 2007, figures 3 and 10c).
The solid line in figure 1(c) accurately reproduces the concentration profile in figure 10(c)
of Semwogerere et al. (2007) whose own analytical predictions (see also Morris & Boulay
1999; Miller & Morris 2006) show remarkable deviations from the measurements at the
fully developed stage. This can be due either to electrical stresses, or particle random
walks. The impressive match between the results of the steady-state model (2.5) and
experimental data is mainly due to D 6= 0 and supports the latter possibility. The signif-
icance of having a non-zero D had not already been discussed/explored in the original
work of Phillips et al. (1992) because they worked with very large Péclet numbers of
O(105).

2.2. Perturbed equations and eigenvalue problem

The steady concentration of particles in microchannels can easily be disturbed. For in-
stance, unavoidable surface roughness, sedimentation, particle-wall and particle-particle
interactions near a wall can induce small amplitude fluctuations on the boundary values
of φ and generate global modes. To understand the transient response of suspensions, we
carry out a linear stability analysis by perturbing the concentration and velocity fields as
φ = φ0(x) + φ̃(x, z, t) and v = vz0(x)ez + ṽ(x, z, t). The magnitude of the shear rate and
the normalized viscosity then become Γ = Γ0(x)+Γ̃(x, z, t) and η = η0(x)+η,φ(φ0(x)) φ̃,

where Γ̃ = sign (∂vz0/∂x) (ṽx,z + ṽz,x). It is remarked that the transient response can
develop structures in the y-direction as well. Since the steady-state quantities do not de-
pend on y, the linear response in that direction will include a simple harmonic waveform
with a wavelength ℓy. The magnitudes of all gradients in the y-direction are determined
by 1/ℓy. This study is conducted in the long wavelength limit ℓy → ∞.

The perturbed equations are simplified by assuming the stream function ψ = ψ0(x) +
ψ̃(x, z, t) to express the velocity field: v = (ψ,z,−ψ,x). This implies v0(x) = (0,−ψ0,x)

and ṽ = (ψ̃,z,−ψ̃,x), and the continuity equation is satisfied automatically both in the
steady and perturbed states. We now take the curl of (2.4) and remove the pressure p
from computations. The resulting equation together with (2.1) are linearized to obtain:

L11ψ̃ + L12φ̃ = Re
(

∇2ψ̃,t + ψ0,xxxψ̃,z −∇2ψ̃,z

)

, (2.6)

−ǫ∇ · (J̃xex + J̃zez) = φ̃,t + φ0,xψ̃,z − ψ0,xφ̃,z , (2.7)

where the perturbed components of the flux vector defined as J̃x = L21ψ̃ + L22φ̃ and
J̃z = L31ψ̃ + L32φ̃. The linear operators Lij are functions of ψ0(x), φ0(x) and their
x-derivatives. They are obtained by evaluating

L11 = (∇×∇ ·T),ψ̃ , L12 = (∇×∇ · T),φ̃ , L21 = (J · ex),ψ̃ ,
L22 = (J · ex),φ̃ , L31 = (J · ez),ψ̃ , L32 = (J · ez),φ̃ ,

(2.8)

at (ψ̃, φ̃) = 0. The partial derivatives ∂/∂ν and ∂/∂g are noncommutative over the
extended space (ν, g) when ν ≡ (x, z, t) and g ≡ (ψ̃, φ̃) are independent and dependent
variables, respectively. We have applied the rule [f(ν)g(ν)],νg = f∂/∂ν+∂f/∂ν to calcu-
late the partial derivatives in (2.8); i.e., we first differentiate with respect to independent
variables, then perform the partial differentiations ∂/∂ψ̃ and ∂/∂φ̃. The boundary con-
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ditions associated with the perturbed equations are ṽ(±1, z, t) = 0 and J̃x(±1, z, t) = 0.
It is remarked that J̃z(±1) can vary arbitrarily.
We consider ψ̃(x, z, t) = exp(ikz− iωt)Ψ(x) and φ̃(x, z, t) = exp(ikz− iωt)Φ(x), where

ω = Ω+ ζ i (i =
√
−1) and ℓz = 2π/k is the wavelength of oscillations along the channel.

Ω = 2π/(λtB) = 2πD/λ is the wave frequency and ζ is the growth/decay rate. Short-
period transient oscillations with λ≪ 1 are dissolved by thermal fluctuations. Therefore,
only long-period oscillations of λ & 1 can exist. The linear solutions are decoupled in
the k-space, and equations (2.6) and (2.7) remain invariant under the transformation
x → −x if ψ̃(x, z, t) = ∓ψ̃(−x, z, t) and φ̃(x, z, t) = ±φ̃(−x, z, t). This means that both
symmetric and anti-symmetric modes are supported by the governing equations, and
that degenerate pairs may exist in the eigenspectrum of ω. Equation (2.6) reduces to
Orr-Sommerfeld stability equation when φ = 0.
Most microchannels have typical widths of 2W ∼ 10−4m. For a ∼ 10−6m, we will

get ǫ ∼ O(10−5) and 0.01 . Re . 1. On the other hand, the response time of φ̃ to
particle migrations is scaled by ǫ, which is understood from equation (2.7). Therefore,
the growth/decay rates of modes supported by diffusion, and not by the perturbations of
streamlines, can be as small as ζ ∼ O(ǫ) ∼ 10−5, which requires a sophisticated numerical
procedure to be resolved.
We utilise the Chebyshev tau algorithm (Orszag 1971; Dongarra et al. 1996) to com-

pute the wave functions Ψ(x) and Φ(x), and assume Ψ(x) =
∑

pnTn(x) and Φ(x) =
∑

qnTn(x) where Tn(x) are Chebyshev polynomials defined over the region−1 6 x 6 +1.
There are six boundary conditions associated with ψ̃ and φ̃. This suggests to assume six
new unknowns, the so-called τ variables. Introducing a complex vector z, which contains
the variables pn, qn (n = 0, 1, · · · , N) and τj (j = 1, 2, · · · , 6), and the Galerkin weighting
of (2.6) and (2.7), leave us with the linear eigensystem A · z = ωB · z where A and B

are complex matrices. In our implementation of the Chebyshev tau method, we use the
formula dmTn(x)/dx

m = 2m−1n(m − 1)!Cmn−m(x) (Gradshteyn & Ryzhik 2007) where
Cmn−m(x) are Gegenbauer polynomials. We find the generalized complex eigenvalues ω
and their associated right eigenvectors using the routine zggev.f of LAPACK library. We
begin our calculations with N = 20 and increase N until min[|Ω|, |ζ|] converges within
0.5% for the mode with the smallest |ζ| in the spectrum. The major source of errors is
the numerical evaluation of the inner products 〈Tn′ ,LijTn〉, especially when the deriva-
tives of φ0(x) and Γ0(x) with jump discontinuities at x = 0 appear in the integrand.
We compute the inner products using a mid-point rule to avoid x = 0, and use finer
grids in the x-domain as n or n′ increase. A uniform grid helps us simultaneously resolve
the strong near-wall features of certain modes and handle the central cusp. Reaching to
0.5% error threshold occasionally needs N & 80 to capture short wavelength modes when
ζ ∼ O(ǫ). To calibrate our code, we have solved the Orr-Sommerfeld stability equation
and reproduced the results of Orszag (1971) up to the 8th decimal place. To assure that
the physical eigenfrequencies are not sensitive to the choice of basis functions, we used
Fourier series to reconstruct Φ(x) and Ψ(x), and compared the resulting spectra with
Chebyshev tau algorithm. The results of two methods match very well for modes that
peak near the channel centreline. The Chebyshev tau method, however, gives more ac-
curate results for modes that develop bumps near the walls. Our numerical calculations
show that Fourier series increase the number of spurious modes.

3. Long-lived and unstable modes

We first carry out the stability analysis for the steady β = 5 model of §2.1 (see figure
1). The main properties of this model, which we call model A, are (i) relatively low φbulk;
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Mode D Pe Re φmφbulk k β ω↑↓ = Ω+ ζ i ω↑↑ = Ω+ ζ i

S1,S2 0.084 137 0.03 0.24 1.0 5 0.017958 − 0.010418 i 0.017886 − 0.010543 i
S3 0.084 137 0.03 0.24 1.0 5 0.482467 − 0.000397 i
S4 0.084 137 0.03 0.24 1.0 5 0.471442 − 0.000425 i

U1,U2 0.030 53.5 0.08 0.55 0.1 2 0.000844 + 0.000282 i 0.000851 + 0.000303 i
U3 0.030 53.5 0.08 0.55 0.1 2 0.006675 + 0.000053 i

Table 1. Eigenfrequencies of long-lived and unstable modes for a suspension flow with
Kc = 0.03 and ǫ = 1.6 × 10−5. Degenerate pairs appear in a single row. The shape of each
mode is identified through the symmetric (↑↑) or anti-symmetric (↑↓) shape of Φ(x).
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Figure 2. The wave functions Φ(x) (left) and −dΨ(x)/dx (right) for the long-lived modes S1
(top row) and S3 (bottom row). Note the strong near-wall features of mode S1. This property
is also shared by its symmetric partner S2. Solid and dashed lines correspond to the real and
imaginary parts of the wave functions.

(ii) almost no flattening of the velocity profile near the channel centreline. The matrices
A and B depend explicitly on ǫ and Re. In the limit ǫ = 0, the evolution of φ̃ is only
dictated by the deformations of streamlines, and we find only highly-damped, stable
discrete modes (ζ ≪ −1), which are the characteristics of incompressible Newtonian
flows at low Reynolds regimes. Turning on the effect of particle migration, ǫ 6= 0, gives
birth to new long-lived modes with −1 ≪ ζ < 0. The eigenfrequencies of long-lived
modes have been calculated for k = 1 and given in Table 1. These modes belong to two
general families: degenerate and single modes. The oscillation periods and decay rates of
modes S1 and S2 are ≈ 26 times larger than those of modes S3 and S4. We have plotted
Φ(x) and the x-dependent part of ṽz(x, z, 0) = − exp(ikz)dΨ(x)/dx in figure 2 for modes
S1 and S3. It is seen that the concentration profile of mode S1 has strong peaks near
the walls while the dominant peaks of mode S3 have been generated near the channel
centreline. Modes S1 and S2 have a better chance for being excited because particle-wall
interactions can easily disturb the particle concentration and velocity field near the wall.
Modes S3 and S4 are most likely due to collective random motions because they have
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Figure 3. The shapes of the unstable modes U1 and U3. Top panels demonstrate the contour
plots of φ̃ (left) and ṽz (right) at t = 0 for mode U1. Dashed lines in the panels of φ̃ and ṽz show,
respectively, the forms of the associated steady solutions φ0(x) and vz0(x). The blank region
corresponds to the lowest 10% of the mode magnitude, which has not been shaded to highlight
the major near-wall features. Middle and bottom panels show the wave functions Φ(x) (left)
and −dΨ(x)/dx (right) for modes U1 and U3, respectively. Solid and dashed lines correspond
to the real and imaginary parts of the wave functions.

small periods of ≈ 1.1 tB with ΩS1/ΩS3 ∼ O(D), decay slowly so that ζS3
/ζS1

∼ O(D),
and have wide-spread patterns. S1 and S2 are therefore viscous modes supported by SID.
We now define the actual decay time of mode X as tXd = −(W/Vp) ln(0.1)/ζX, which is

the duration that the amplitude of φ̃ decays to 10% of its initial value. The actual oscilla-
tion period of mode X is given by tXp = (W/Vp)λXtB. We find (tS1d , t

S1
p ) = (2.63 s, 4.16 s).

The characteristic times of mode S3 are quite surprising: (tS3d , t
S3
p ) = (69.05 s, 0.15 s),

which indicate an almost quasi-stationary oscillation in laboratory scales. All these modes
will exhibit a high signal to noise ratio and can be measured by currently available high-
speed imagers. The detection of S1 and S2 requires high spatial resolution, while S3 and
S4 need high frame rates due to their small periods. The ripples in the concentration pro-
files, and the near-wall excess/deficit of particles observed in experiments (see Frank et al.
2003; Semwogerere et al. 2007; Semwogerere & Weeks 2008; Brown et al. 2009) might be
long-lived modes. Since ζS3 ≈ ζS4, we anticipate the coexistence of modes S3 and S4.
The small difference between their frequencies can yield a quasi-periodic oscillation.
Increasing φbulk has a significant influence on the velocity profile and flattens it near the

channel centreline (e.g., Semwogerere et al. 2007, figure 4). Our calculations show that
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in models with φ(0) < 1 the flattening of the steady velocity curve is mainly controlled
by the parameter β. The flattening of vz0(x) at x = 0 is quantified by the curvature
C = vz0,xx(0), which equals −2 for Poiseuille flow. To investigate the effect of C on
the stability of suspension flows, we build another model B, and increase the average
concentration to φbulk = 0.55/φm. We then set Vp = 6 × 10−3m/s and β = 2 to obtain
a mass flow rate Q = 7nl/s. In this new flow regime, the curvature at x = 0 becomes
C = −0.02235 indicating a significant flattening. The perturbed equations now result in
three unstable modes (U1, U2 and U3) with ζ > 0. They have been reported in Table 1
for k = 0.1 (ℓz = 20π). We have used this particular long wavelength because it expands
the wavelengths of Φ(x) and Ψ(x) in the x-direction, and leads to more visible patterns.
Unstable modes U1 and U2 are degenerate pairs, and U3 is a single symmetric mode.

Modes U1 and U2 are the counterparts of S1 and S3. The oscillation periods of long
wavelength unstable modes are: tU1

p = 31, tU2
p = 30.76 and tU3

p = 3.92 seconds, and
their amplitudes are magnified by a factor of 10 within 32–34 seconds for the degenerate
pair and 181.7 seconds for mode U3. The dominant concentration and velocity peaks of
modes U1 and U2 are developed near the channel wall (figure 3). The likelihood of exciting
these modes is thus very high because of sedimentation or particle-wall interactions. In
figure 3, we have also demonstrated the contours of Re[φ̃] = Re[exp(ikz − iωt)Φ(x)] and
Re[ṽz ] = Re[− exp(ikz − iωt) dΨ(x)/dx] for mode U1 at t = 0. Prominent curved tails
have been developed in the wave packets of both φ̃ and ṽz . These features are shared
by Kelvin-Helmholtz type instabilities that are usually triggered at interfaces, but our
modes have emerged between the central region (where particles move with an almost
constant velocity) and highly-sheared zone near the walls.
The channel flow of suspensions with spherical particles involves five parameters (Re,

Pe, φ0(0), β andD) and it is impractical to survey the entire parameter space and identify
its unstable zone. Here we vary only β, which also controls Pe and the normalized average
concentration φbulk, and attempt to understand how the gradients of φ0(x) and vz0(x)
near the channel centreline (see §2.1) correlate with the instability. We find that by
decreasing β in model A, the magnitude of ζ drops for all modes until mode S3 becomes
unstable for β . 1.8 (Pe ≈ 124.3, φbulk ≈ 0.29/φm). Other modes (S1, S2, and S4) are
destabilized by further decreasing β. In another experiment, we gradually increased β
in the initially unstable model B to obtain more cuspy concentrations and less flattened
velocity profiles as |x| → 0. We find that mode U3 is stabilized for β & 4.5 (Pe ≈ 65.4,
φbulk ≈ 0.52/φm). Modes U1 and U2 resist stabilization until β ≈ 4.8. It is seen that Pe
should decrease though mildly and φbulk should increase to get instability. Nonetheless,
both stable and unstable modes exist for 53 . Pe . 124, 0.42 . φbulk . 0.8 and
1.8 . β . 4.8. The only property shared by all unstable systems is the flattened velocity
profile, which constitutes a ‘necessary’ condition for instability.
Varying the wavelength ℓz = 2π/k has also a notable impact on eigenfrequencies.

Our calculations show that Ω and |ζ| increase proportional to k in both the stable and
unstable models. i.e., unstable modes grow faster for shorter wavelengths. Moreover, we
find that the wavelengths of Φ(x) and −dΨ(x)/dx are approximately proportional to ℓz,
and consequently, the wave packets of degenerate modes become more compact near the
walls for larger values of k (compare the graphs of −dΨ(x)/dx in figures 2 and 3). All
these suggest that short wavelength instabilities can rapidly ruin the flow structure in
the vicinity of the walls. Modes with longer wavelengths and lower oscillation frequencies
can survive far from the walls and be observed experimentally. In a full three dimensional
excitation with ℓy < ∞, we anticipate faster growth and oscillation of unstable modes
because clumps in the y-direction can probably enhance the migration of particles.
To this end, we argue that unstable modes U1 and U2 are amplified by the Brownian
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motion of particles. For a relatively low Pe and due to Brownian diffusion, some particles
can ‘leak’ from the region with flat velocity curve and move towards the channel walls.
Such particles will locally increase the volume fraction and viscosity, while the suspen-
sion velocity drops. Note that the positive bumps of φ̃ and ṽz are out of phase in the
upper panels of figure 3. Particles initially moving close to the channel walls can also
penetrate to inner regions through Brownian diffusion. When the overall velocity profile,
vz0(x) + ṽz(x, z, t), is flat near the channel centreline, SID cannot efficiently disperse
particles trapped in the cavities of (φ̃, ṽ). Sustained Brownian migration, back and forth
between highly-sheared and central regions, thus amplifies the concentration and velocity
anomalies and triggers a mode. This instability mechanism works for mode U3 as well
because the shape of ṽz is sufficiently flat in central regions (bottom panels in figure 3).
Modes will be damped when SID becomes dominant due to the steady form of Γ0(x).
In this condition SID will disperse particles participating in perturbations, and facilitate
their migration towards the channel centre. This is why the transition from unstable
to stable modes strongly correlates with the value of β, which controls the flatness of
velocity curve.

4. Conclusions

We showed that the steady-state solutions of the model of Phillips et al. (1992) can
reproduce recent experimental results of Brownian suspensions with spherical particles.
We calculated the eigenmodes of the corresponding perturbed equations, and found new
families of long-lived and unstable modes. Unstable modes that we find occur when the
fully-developed velocity profile is sufficiently flattened near the channel centreline. The
fastest growing modes appear as degenerate pairs, and they live inside the highly-sheared
region near the walls. Since our model has not taken particle-wall interactions into ac-
count, unstable modes seem to be triggered by the transverse Brownian migrations across
the streamlines of the fully developed flow. Mode amplification in models with flattened
velocity profiles is mainly due to inefficient shear-induced diffusion that can, in princi-
ple, disperse particles and force them to move towards the channel centreline. Rapidly
growing unstable modes destruct the flow structure near the walls, and they can explain
the experimentally observed excess and/or deficit of particles near the channel walls.
The instability mechanism that we suggested operates along the shortest direction of
the channel. Therefore, dynamics along the neglected y-direction may only affect the
wavelength and period of developing patterns, and not their general shapes. The three
dimensional response of Brownian suspensions, especially in channels with 2W ∼ H ,
requires further exploration.

We thank Howard Stone for his insightful comments. A.K. thanks the department of
Mechanical and Aerospace Engineering at Princeton University for their hospitality and
generous support. We are indebted to anonymous referees whose criticisms helped us to
substantially improve the presentation of the paper.
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