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Abstract

In this paper, a new type of solitary surface waves in a finite water depth is

found by analytically solving the fully nonlinear wave equations. Using a new

type of base functions which decays exponentially in the horizontal direction,

this new type of solitary surface waves is gained first by means of linear wave

equations, and then confirmed by the fully nonlinear wave equations. The new

type of solitary surface waves have many unusual characteristics. First, it has

a peaked crest. Secondly, it may be in the form of depression, which has been

often reported for internal solitary waves but never for free-surface solitary ones,

to the best of author’s knowledge. Third, its phase speed has nothing to do

with wave height, say, the peaked solitary waves are non-dispersive. Finally,

its horizontal velocity at bottom is always larger than that on surface. All of

these are so different from the traditional periodic and solitary waves that they

clearly indicate the novelty of the peaked solitary waves. Based on the new

peaked solitary surface waves, a new explanation to the so-called rogue waves

and some theoretical predictions are given. All of these are helpful to deepen

our understandings and enrich our knowledge about solitary waves.

Key words Solitary wave, peaked crest, progressive wave, fully nonlinear

1 Introduction

Since the solitary surface wave was discovered by John Scott Russell in 1834, various
types of solitary waves have been found. The mainstream models of shallow water
waves, such as the Boussinesq equation [1], the KdV equation [2], the BBM equation
[3] and so on, admits dispersive smooth periodic and solitary waves of permanent
form: the wave elevation is infinitely differentiable in the whole domain. Especially,
the phase speed of these smooth water waves is closely related to the wave height:
in general, a wave with higher amplitude travels faster than a lower one. Such kind
of smooth periodic and solitary waves have been the mainstream of the teaching and
investigating of water waves for quite a long time.

However, in theory, the discontinuity of water wave elevation appears accidentally.
It is well-known that the limiting gravity wave has a corner crest with 120 degree, as
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pointed out by Stokes [4] in 1894. It is a pity that the importance of such kind of
discontinuity is neglected since Stokes limiting gravity wave [4] is regarded to hardly
appear in practice. About one hundred years later, Camassa & Holm [5] proposed a
model for the shallow water waves, called today the Camassa-Holm (CH) equation

ut + 2ωux − uxxt + 3uux = 2uxuxx + uuxxx, (1)

where u(x, t) denotes the wave elevation, x and t are the spatial and temporal vari-
ables, ω = c0/4 is a constant related to the critical shallow water wave speed c0 =√
gD, g denotes the acceleration due to gravity and D the water depth, respectively.

As pointed out by Camassa & Holm [5], the CH equation (1) has the solitary wave
when 0 ≤ ω < 1/2. Especially, when ω = 0, i.e. c0 =

√
gD → 0, the CH equation (1)

admits the peaked solitary wave in the closed-form

u(x, t) = c exp(−|x− ct|),
whose first derivative is discontinuous at the crest, where c denotes the phase speed.
Unlike the KdV equation and Boussinesq equation, the CH equation (1) can model
both phenomena of soliton interaction and wave breaking, as mentioned by Constantin
[6]. Mathematically, the CH equation is integrable and bi-Hamiltonian, thus possesses
an infinite number of conservation laws in involution, as pointed out by Camassa &
Holm [5]. In addition, it is associated with the geodesic flow on the infinite dimensional
Hilbert manifold of diffeomorphisms of line, as mentioned by Constantin [6]. Thus,
the CH equation (1) has many intriguing physical and mathematical properties. As
pointed out by Fushsstainer [7], the CH equation (1) “has the potential to become
the new master equation for shallow water wave theory”.

The peaked solitary waves of the CH equation (1) when ω = 0 have been in-
vestigated in details, and hundreds of related articles have been published. However,
Camassa & Holm [5] pointed out that the discontinuity of wave elevation appears only
when ω → 0, i.e. D → 0, and the solitary wave of the CH equation (1) “becomes C∞

and there is no derivative discontinuity at its peak” in case of ω 6= 0. It implies that
the discontinuity of wave elevation is not a common property of water waves.

In contrast to the above-mentioned theoretical results, the discontinuity widely
appears in practical flows, such as the dam break in hydrodynamics and shock wave
in aerodynamics. In fact, such kind of discontinuous problems belong to the Riemann
problem, a classic research field. Therefore, the discontinuity of wave elevation are
reasonable not only in mathematics but also in physics.

Currently, the closed-form solutions of peaked solitary waves of the Boussinesq
equation, the KdV equation, the BBM equation, and the modified KdV equation are
found by Liao [8]. Besides, it is also found by Liao [9] that the CH equation (1)
admits peaked solitary waves even when ω 6= 0. Like the peaked solitary waves of the
peaked solitary waves of the CH equation (when ω = 0) found by Camassa & Holm,
all of these solitary waves are reasonable not only in mathematics but also in physics.
Therefore, nearly all mainstream models of the shallow water waves admit the peaked
solitary waves. It indicates that the discontinuity and the peaked crest might be a
common property of shallow water waves.
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Where does this discontinuity come from? Are there any peaked waves in finite
water depth?

Note that all of the above-mentioned mainstream models of shallow water waves
are approximations of the fully nonlinear wave equations. So, the correct answers to
these two questions should exist in the exact nonlinear water wave equations.

In this article, using the fully nonlinear wave equations, we indeed obtain a new
type of solitary surface waves in finite water depth, which have a peaked crest and
many unusual characteristics quite different from the traditional ones. So, the tra-
ditional nonlinear water wave equations admit two different kinds of waves: one is
infinitely differentiable with phase speed closely related to the wave height, the other
has a peaked crest whose phase speed has nothing to do with the wave height. There-
fore, the discontinuity is a common property of water waves.

In § 2, the governing equation and boundary conditions for progressive waves with
permanent form in finite water depth are described, which admit all traditional smooth
periodic and solitary progressive waves. In § 3, a new type of peaked solitary surface
waves are obtained, for the first time, by means of the linearized wave equations. In
§ 4, the existence of such kind of new solitary surface waves is confirmed by the fully
nonlinear wave equations. This kind of new peaked solitary surface waves have unusual
characteristics different from traditional ones, as described in § 5. The concluding
remarks, discussions and some theoretical predictions are given in § 6.

2 Mathematical formulations

First of all, we provide the mathematical formulations for progressive waves with
permanent form in finite water depth. Especially, we must be extremely careful not
to lose the discontinuous solutions.

Consider a progressive surface gravity wave propagating on a horizontal bottom
with a constant phase speed c and a permanent form. Assumed that the fluid is
inviscid and incompressible, the flow is irrotational, the surface tension is neglected
and the wave elevation has a symmetry. Let D denote the water depth and g the
acceleration due to gravity. For simplicity, let us consider the problem in the frame
moving with the same phase speed c, with φ denoting the velocity potential, ζ the
free surface, x, z the horizontal and vertical co-ordinates with x = 0 corresponding to
the wave crest, respectively. All of these variables are dimensionless by means of D
and

√
gD as the characteristic scales of length and velocity. The z axis is upward so

that z = −1 corresponding to the bottom. Due to the symmetry ζ(−x) = ζ(x), we
only need consider the flow in the domain x ∈ [0,+∞), governed by

∇2φ(x, z) = 0, z ≤ ζ(x), 0 ≤ x < +∞, (2)

subject to the boundary conditions on the unknown free surface z = ζ(x):

α2∂
2φ

∂x2
+
∂φ

∂z
− α

∂

∂x
(∇φ · ∇φ) +∇φ · ∇

(

1

2
∇φ · ∇φ

)

= 0, 0 ≤ x < +∞, (3)
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ζ − α
∂φ

∂x
+

1

2
∇φ · ∇φ = 0, 0 ≤ x < +∞, (4)

and the bottom condition

∂φ

∂z
= 0, z = −1, 0 ≤ x < +∞, (5)

where ∇2 is a Laplace operator,

α =
c√
gD

(6)

is the dimensionless wave-speed, respectively. On the vertical boundary x = 0, we
have the additional condition

∂φ

∂x
= U(z), x = 0, z ≤ ζ(x), (7)

where U(z) is such an unknown horizontal velocity at x = 0 that the velocity potential
φ(x, z) and the corresponding progressive wave elevation ζ(x) with permanent form
exist. Besides, letHw denote the dimensionless wave-elevation at x = 0, corresponding
to the wave crest. For given Hw, one has an addition condition

ζ(0) = Hw. (8)

In addition, the wave elevation must be bounded, i.e.

|ζ(x)| < C, 0 ≤ x < +∞, (9)

for a large enough constant C. The corresponding velocities u(x, z) and v(x, z) is
given by

u(x, z) =
∂φ

∂x
, v(x, z) =

∂φ

∂z
, 0 ≤ x < +∞.

Due to the symmetry, in the domain −∞ < x ≤ 0, we have

ζ(x) = ζ(−x), u(x, z) = u(−x, z), v(x, z) = −v(−x, z). (10)

In this way, the problem is well defined mathematically.

Note that, according to the above symmetry, the wave elevation ζ(x) and the
horizontal velocity u are continuous at the vertical boundary x = 0. Besides, using
the Bernoulli’s principle and the symmetry (10) of the flow, it is easy to prove that
the pressure is also continuous at the vertical boundary x = 0, too. In fact, due
to the symmetry (10), the boundary condition (7) is equivalent to the continuous
condition of the horizontal velocity u at the vertical boundary x = 0. It is well-known
that the Laplace equation (2) needs only one boundary condition at each boundary.
Therefore, at the vertical boundary x = 0, (7) is sufficient for the Laplace equation
(2), and any other conditions for the vertical velocity v and the smoothness of the
horizontal velocity u at x = 0 are unnecessary: at x = 0, there are no restrictions
for the vertical velocity v since the fluid is inviscid, and besides the higher-order
derivatives of the horizontal velocity

∂2φ

∂x2
,
∂3φ

∂x3
,
∂4φ

∂x4
, · · ·
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are unnecessary to be continuous at x = 0, since one and only one boundary condition
at x = 0 is enough for the Laplace equation (2). Thus, any other boundary conditions
such as that φ and ζ should be infinitely differentiable at x = 0 may lead to the
loss of the solutions and thus must be avoided. In other words, both of φ and ζ are
unnecessary to be infinitely differentiable at x = 0.

Note that the two nonlinear boundary conditions (3) and (4) must be satisfied on
the unknown free surface z = ζ(x). This leads to the mathematical difficulty to solve
the nonlinear partial differential equations (PDEs). In case of small wave-amplitude,
the linear boundary condition

α2∂
2φ

∂x2
+
∂φ

∂z
= 0, on z = 0, (11)

is a good approximation of (3), and

ζ = α
∂φ

∂x

∣

∣

∣

∣

z=0

(12)

is a good approximation of (4), respectively. The above two linearized free-surface
boundary conditions, combined with the Laplace equation (2) and the bottom condi-
tion (5), provide us the so-called linear wave equations.

Based on the above linearized or fully nonlinear wave equations, hundreds of
articles have been published for the periodic and solitary progressive waves. Nearly
all of these traditional waves are based on the base functions

cosh[nk(z + 1)] sin(nkx), n ≥ 1, (13)

for the velocity potential φ, which automatically satisfy the Laplace equation (2) and
the bottom condition (5), where k denotes the wave number and n ≥ 1 is an integer.
For periodic progressive waves with small wave-amplitude, substituting the velocity
potential

φ(x, z) = αA0 cosh[k(z + 1)] sin(kx) (14)

into the linear boundary condition (11), one has the dimensionless phase speed

α =

√

tanh(k)

k
≤ 1, (15)

say, the phase speed of a spatially periodic progressive wave in a finite water depth D
is always less then

√
gD. Besides, substituting (14) into (12) gives the wave elevation

with small amplitude

ζ =
Hw

2
cos(kx), (16)

where Hw = 2A0 sinh(k). The corresponding horizontal velocity reads

u(x, z) =
αHwk cosh[k(z + 1)] cos(kx)

2 sinh(k)
=

Hw

2α cosh(k)
cosh[k(z + 1)] cos(kx), (17)
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which gives
u

U0
=

cosh[k(z + 1)] cos(kx)

cosh(k)
, (18)

where U0 = Hw/(2α). At the left boundary x = 0, we have the corresponding
horizontal velocity

U(z) = u(0, z) =
Hw

2α cosh(k)
cosh[k(z + 1)].

Note that the velocity potential and the wave elevation given by the above traditional
linear wave theory automatically satisfies the symmetry (10). In other words, we
can gain exactly the same results by first solving the PDEs (2) to (9) in the domain
0 ≤ x < +∞ and then expanding the result to the domain −∞ < x ≤ 0 by means
of the symmetry (10). Note that, for given x, the horizontal velocity u of periodic
progressive Airy’s waves decreases exponentially as z varies from the surface (z = 0)
to the bottom (z = −1). Especially, based on the base functions (13), the elevation of
the Airy’s wave and the corresponding velocities are infinitely differentiable, although
such kind of smoothness conditions do not exist at all.

For the periodic progressive surface waves with large amplitude, the fully nonlin-
ear wave equations must be considered. As pointed out by Cokelet [10], the phase
speed c of the progressive periodic waves depends not only on the water depth D and
the wave number k but also on the wave height Hw: in most cases, the larger the wave
amplitude, the faster the periodic wave propagates. In other words, the traditional
progressive periodic waves are dispersive. Besides, the periodic progressive surface
waves have a smooth crest with the exponentially decaying velocity u(x, z) from the
surface to the bottom. Like the Airy’s linear waves, the traditional nonlinear periodic
progressive waves are also infinitely differentiable, although such kind of smoothness
conditions do not exist at all. Note that the exactly same results for the traditional
progressive periodic waves can be obtained by first solving the PDEs (2) to (9) in the
domain 0 ≤ x < +∞ and then expanding the results to the domain −∞ < x ≤ 0 by
means of the symmetry (10).

It should be emphasized that, in the frame of the linear wave theory, solitary
waves have never be reported, to the best knowledge of the author. For details, please
refer to Mei et al [11]. Solitary wave solutions for nonlinear and dispersive long waves
had been found by Boussinesq [1] and Rayleigh [12]. For dispersive long waves of
permanent form, the so-called KdV equation [2] gives the periodic cnoidal wave for a
finite wavelength λ, which tends to the solitary wave

ζ(x̃) = Hw sech2

[

1

2

√

3Hw

D

(x̃− c t)

2D

]

(19)

with the phase speed

c =

√

g D

(

1 +
Hw

D

)

, (20)
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as λ → +∞. Note that these cnoidal and solitary waves have a smooth elevation,
say, ζ(x) is infinitely differentiable for all x ∈ (−∞,+∞). Besides, its phase speed c
depends upon the wave height Hw: the larger the wave height, the faster the solitary
wave propagates, as shown by (20). All of these results can be gained by first solving
the KdV equation in the domain 0 ≤ x < +∞ and then expanding the results to the
domain −∞ < x ≤ 0 by means of the symmetry (10).

Both of the solitary wave and the Airy linear waves are special cases of the so-
called cnoidal waves. By means of perturbation methods and using the fully nonlinear
wave equations, Fenton [13,14] gave respectively a high-order cnoidal wave theory and
a ninth-order solution for the solitary wave in the form

ζ(x) =

+∞
∑

i=1

i
∑

j=1

ai,j ǫ
i
[

sech2(βx)
]j
, (21)

where ai,j, ǫ, β are constants determined by the physical parameters. It should be
emphasized that all of these traditional cnoidal and solitary waves have a smooth
crest: ζ(x) is infinitely differentiable for all x ∈ (−∞,+∞). Besides, the velocity
u(x, z) at bottom is always larger than that at crest. Furthermore, the phase speed is
dependent upon wave height. Finally, to the best of author’s knowledge, all traditional
solitary surface waves have a crest higher than the still water: the solitary waves in the
form of depression have been reported for interfacial waves, but never for the surface
waves. It should be emphasized that all of these traditional results can be gained
by first similarly solving the PDEs (2) to (9) in the domain 0 ≤ x < +∞ and then
expanding the results to the domain −∞ < x ≤ 0 by means of the symmetry (10).
This indicates that the PDEs (2) to (9) with the symmetry condition (10) are indeed
consistent with the traditional linear and nonlinear progressive waves with smooth
wave crest.

Indeed, the traditional periodic and solitary progressive waves are infinitely dif-
ferentiable. This kind of smoothness is however unnecessary, since no such kind of
smoothness conditions are enforced to the PDEs (2) to (9). In essence, such kind of
perfect smoothness of the wave elevation and velocities come from the base functions
(13), which are infinitely differentiable at x = 0.

There exist a little thing in the traditional wave theory that should be reconsidered
carefully. Note that the traditional cnoidal waves are periodic and thus have an
infinite number of wave crests. As a special case of the cnoidal waves as the wave-
length λ→ +∞, the solitary waves (19) of the KdV equation should have an infinite
number of wave crest, although the distance between the two crests is infinite. So,
seriously speaking, the solitary waves (19) given by the KdV equation is not truly
“solitary”, since it might have an infinite number of crests.

Note that, like the base functions (13) that are widely used for the traditional
periodic and solitary progressive waves, the following base functions

cos[nk(z + 1)] exp(−nkx), n ≥ 1, k > 0, 0 ≤ x < +∞, (22)



8

also automatically satisfy the Laplace equation (2), the bottom condition (5) and the
bounded condition (9). However, different from the traditional base functions (13),
the above base functions decays exponentially in the x direction and thus seem to be
more convenient to express a solitary wave that has truly only one crest. In addition,
unlike the traditional base functions (13), the high-order derivatives of the above base
functions with respect to x are not differentiable at x = 0. Mainly due to such kind
of discontinuity, the base functions (22) have been completely neglected.

As mentioned above, mathematically speaking, no smoothness conditions are en-
forced to the PDEs (2) to (9). Physically, such kind of discontinuity widely appears
in practice, such as dam break and shock waves, which have clear physical meanings.
Thus, like the peaked solitary waves of the CH equation (1), the peaked solitary waves
of the PDEs (2) to (9) should be reasonable and acceptable not only in mathematics
but also in physics.

Can we find any kinds of solutions of peaked solitary surface waves of the fully
nonlinear wave equations (2) to (9) by means of the new type of base functions (22)?
The answer to the above question is positive: we demonstrate in the following part
of this article that the same nonlinear wave equations (2) to (9) indeed admit such a
new type of solitary surface waves with peaked crest and some unusual characteristics
that are completely different from the traditional ones.

3 Peaked solitary waves by linear equations

As mentioned in § 2, both of the base functions (13) and (22) automatically satisfy
the Laplace equation (2), the bottom condition (5) and the bounded condition (9).
In the frame of linear wave theory, the former gives the well-known Airy wave, which
is infinitely differentiable and horizontally periodic, as mentioned above. It is a pity
that the base function (22) was neglected, which corresponds to a velocity potential
decaying exponentially as x→ +∞.

In the domain 0 ≤ x < +∞, we have the velocity potential in the form

φ = αA0 cos[k(z + 1)] e−kx, 0 ≤ x < +∞, (23)

where k > 0 is a given parameter and A0 is a constant to be determined. Note that
the above expression automatically satisfies the Laplace equation (2), the bottom con-
dition (5) and the bounded condition (9). Substituting (23) into the linear boundary
condition (11) gives

αkA0

(

α2k cos k − sin k
)

exp(−kx) = 0, 0 ≤ x < +∞,

which leads to

α2 =
tan k

k
. (24)

Since k > 0 and α2 > 0, the above expression implies

nπ < k < nπ +
π

2
, (25)
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z
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0

traditional linear wave

new linear wave

Figure 1: Velocity profile u/U0 at x = 0 in case of k = π/3. Solid line: traditional
linear wave theory; Dashed line: new linear wave theory.

where n ≥ 0 is an integer. Therefore, the dimensionless phase speed reads

α =

√

tan k

k
, nπ < k < nπ +

π

2
.

Obviously, α ≥ 1, i.e. c ≥ √
gD. This is quite different from the traditional Airy wave

whose phase speed has the property c ≤ √
gD. Besides, using the linear boundary

condition (12), we have the corresponding elevation of the solitary wave

ζ(x) = α
∂φ

∂z

∣

∣

∣

∣

z=0

= −kα2A0 cos(k)e
−kx = Hw e

−kx, 0 ≤ x < +∞, (26)

where Hw = −A0 sin(k) denotes the wave height. Then, using the symmetry condition
(10), the wave elevation has a uniform expression

ζ = Hw e
−k|x|, −∞ < x < +∞. (27)

This is a solitary wave that seriously has only one crest, with a discontinuous deriva-
tive ζ ′(x) at crest! This is quite different from the traditional periodic and solitary
progressive waves, which are infinitely differentiable. This clearly indicates the novelty
of the new type of peaked solitary waves.

In the domain 0 ≤ x < +∞, the corresponding horizontal velocity reads

u(x, z) =
∂φ

∂x
=
αHwk cos[k(z + 1)]e−kx

sin(k)
. (28)

Using the symmetry (10), we have

u(x, z) = u(−x, z) = αHwk cos[k(z + 1)]ekx

sin(k)
, −∞ < x ≤ 0. (29)
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At the vertical boundary x = 0, u is continuous and we gain the corresponding
horizontal velocity

U(z) =
αHwk cos[k(z + 1)]

sin(k)
. (30)

Thus, in the whole domain −∞ < x < +∞, we have a uniform expression

u

U0
=

cos[k(z + 1)]e−k|x|

cos(k)
, x ∈ (−∞,+∞), (31)

where U0 = Hw/α. So, for given x, the horizontal velocity u of the peaked solitary
wave increases as z varies from the surface (z = 0) to the bottom (z = −1): in
other words, u at bottom is always greater than that on surface. For example, when
k = π/3, the horizontal velocity at bottom beneath crest of the peaked solitary wave is
twice of that on surface, as shown in Fig. 1. This is quite different from the traditional
ones whose horizontal velocity u at bottom is always less than that on surface. This
also indicates the novelty of the new solitary waves.

Like Airy’s wave, since the elevation (27) of the peaked solitary wave is gained
by the linear wave equations, the value of Hw can be negative, corresponding to a
peaked solitary wave in the form of depression. For example, ζ(x) = − exp(−|x|)/10
is a peaked solitary wave of depression. Such kind of peaked solitary waves have been
never reported for surface waves. This once again indicates the novelty of the new
solitary waves.

Note that, unlike the traditional linear wave theory, the parameter k of the peaked
solitary waves does not denote the wave number, but the decaying rate of the wave
elevation as x→ +∞: the larger the value of k, more quickly the wave elevation decays
to zero. According to (24), the new peaked solitary wave can propagate very quickly
even if the water depth D and the wave height Hw are small, since tan(k)/k → +∞
as k → π/2.

Traditionally, it is widely believed that solitary waves are always governed by
nonlinear differential equations. However, we illustrate here, for the first time, that
the solitary waves exist even in the frame of the linear wave equations in finite water
depth! Note also that the peaked solitary wave (27) is the same as the peaked solitary
wave found by Casamma & Holm [5]. This reveals the origin of the peaked solitary
waves of the CH equation (1) that is an approximation of the fully nonlinear wave
equations in shallow water. However, the new peaked solitary wave (27) is valid not
only in shallow water but also in finite water depth, with the detailed horizontal
velocity (31), and thus is more general.

4 Peaked solitary waves by nonlinear equations

As shown in § 3, the new type of peaked solitary surface waves given by the linear wave
equations has some unusual characteristics quite different from the traditional periodic
and solitary ones. Does the fully nonlinear wave equations (2) to (9) indeed admit
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such kind of new peaked solitary waves? Does this kind of new peaked solitary waves
have the same unusual characteristics as those given by the linear wave equations, if
the answer of the above question is positive?

To answer these questions, we consider here the solitary surface waves with a
finite wave-amplitude so that the nonlinear terms of the boundary conditions (3) and
(4) are not negligible and besides z = 0 is not a good approximation of the free surface
ζ(x). In other words, we had to solve the fully nonlinear wave equations (2) to (9)
accurately.

Analytically, the fully nonlinear wave equations (2) to (9) are often solved by
means of perturbation methods which are based on some assumptions such as small
wave height, large wave length and so on. For example, in case of small wave height
Hw, Fenton [13] gave a ninth-order approximation of dispersive solitary waves with a
smooth crest by means of perturbation methods, whose phase speed increases as the
wave height Hw enlarges.

In this paper, an analytic technique, namely the homotopy analysis method
(HAM) proposed by Liao [15–20], is applied to solve the fully nonlinear wave equations
(2) to (9). Unlike perturbation techniques, the HAM does not need any assumptions
of small physical parameters, since it is based on the homotopy, a basic concept in
topology. Besides, the HAM provides us great freedom to choose base functions for
solutions of considered nonlinear equations. Especially, by means of the so-called
“convergence-control parameter” that has no physical meanings, the HAM provides
us a convenient way to guarantee the convergence of approximation series: in essence,
it is the so-called “convergence-control parameter” that differs the HAM from all other
analytic approximation techniques, as pointed out currently by Liao [20]. Therefore,
the HAM is valid for highly nonlinear problems, as shown by many successfully appli-
cations in fluid mechanics, applied mathematics, physics and finance. For example, by
means of the HAM, Liao [16] gained, for the first time, convergent series solution for
Blasius and Falker-Skan boundary-layer flows, which are uniformly valid in the whole
field of flow. Note that the traditional power series given by Blasius [21] is valid only in
the near field, and thus had to be marched with another asymptotic approximation of
flow in far field. Besides, using the HAM as a tool, the exact Navier-Stokes equations
were solved by Turkyilmazoglu [22] for a compressible boundary layer flow due to a
porous rotating disk, and by Xu et al [23] for viscous flows in a porous channel with
orthogonally moving walls. Furthermore, the limit cycle of Duffing - van der Pol equa-
tion was solved by Turkyilmazoglu [24], and the two coupled Van der Pol equations
were solved by Li et al [25]. Especially, by means of the HAM, some new boundary
layer flows have been found by Liao [26] and by Liao & Magyari [27], which have been
neglected by other analytic and even numerical techniques. In addition, the HAM has
been also successfully applied to solve some nonlinear PDEs with moving boundary
conditions, such as those about American put option. For example, Zhu [28] success-
fully applied the HAM to give a series approximation of the American put option,
which gives optimal exercise boundary valid for a couple of years, while perturbative
and/or asymptotic formulas are accurate only in a few days or weeks. All of these
illustrate the potential and validity of the HAM for highly nonlinear problems.
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It should be emphasized that the HAM has been successfully applied to solve
the fully nonlinear wave equations. Using the traditional base functions (13), Liao
& Cheung [29] applied the HAM to solve the periodic progressive surface waves in
deep water and obtained convergent solutions for waves with high amplitude even
close to the limiting case. Their analytic results agree quite well with those given
by Schwartz [30] and Longuet-Higgins [31]. Besides, using the same traditional base
functions (13), Tao et al [32] successfully applied the HAM to solve the fully nonlinear
wave equations (2) - (9) for periodic progressive waves in finite water depth, and their
analytic results agree well not only with the analytic ones given by Cokelet [10] and
Fenton [33] but also with the experimental ones reported by Mehaute et al [34]. All
of these demonstrate the validity of the HAM for the fully nonlinear wave equations
(2) - (9).

4.1 Analytic approach based on the homotopy analysis

As shown below, the fully nonlinear wave equations (2) to (9) can be solved by means
of the HAM and the new base functions (22) in a similar way as those by Liao &
Cheung [29] and Tao et al [32], although they used the traditional base functions
(13).

Due to the symmetry (10), we need consider the case x ≥ 0 only. Since the solitary
wave elevation ζ(x) decays to zero as x→ +∞, it is natural and straightforward that
φ(x, z) should be expressed in the form

φ(x, z) =
+∞
∑

n=1

an cos[nk(z + 1)] exp(−nkx), x ≥ 0, k > 0, (32)

which automatically satisfies the governing equation (2), the bottom boundary con-
dition (5) and the bounded condition (9), where k > 0 is a scale parameter and an is
a coefficient to be determined. We search for the solitary surface waves in the form

ζ(x) =

+∞
∑

n=1

bn exp (−nkx) , x ≥ 0, k > 0, (33)

where bn is a constant coefficient to be determined. The above expressions (32) and
(33) provide us the so-called solution-expression of φ(x, z) and ζ(x), respectively,
which play important role in the frame of the HAM, as shown below.

Let φ0(x, z), ζ0(x) denote the initial guess of the velocity potential φ(x, z) and the
wave elevation ζ(x) in x ≥ 0, respectively. To apply the HAM, we should first of all
construct two continuous variations from the initial guess φ0(x, z), ζ0(x) to the exact
solution φ(x, z), ζ(x), respectively. This can be easily done by means of the homotopy,
a basic concept in topology, as shown below.

First, according to the solution expression (32), we choose

φ0(x, z) = A0 cos[k(z + 1)] e−kx, x ≥ 0, k > 0, (34)
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as the initial guess of the velocity potential φ(x, z), where A0 is a constant to be
determined later. Note that, different from Liao & Cheung [29] and Tao et al [32], the
new base function (22) is used here. Note also that φ0(x, z) automatically satisfies
the Laplace equation (2), the bottom condition (5) and the bounded condition (9).
Besides, following Liao & Cheung [29] and Tao et al [32], we choose

ζ0(x) = 0 (35)

as the initial guess of wave elevation ζ(x).

Secondly, according to (3), we define a nonlinear operator

Nφ = α2∂
2φ

∂x2
+
∂φ

∂z
− α

∂

∂x
(∇φ · ∇φ) +∇φ · ∇

(

1

2
∇φ · ∇φ

)

. (36)

Let q ∈ [0, 1] denote an embedding parameter, cφ and cη be two non-zero auxiliary
parameters without physical meanings, called the convergence-control parameters,
and L denote an auxiliary linear operator, respectively. Following Liao & Cheung [29]
and Tao et al [32], we construct the so-called zeroth-order deformation equation

∇2Φ(x, z; q) = 0, z ≤ η(x; q), (37)

subject to the boundary conditions on the unknown free surface z = η(x; q):

(1− q)L [Φ(x, z; q)− φ0(x, z)] = cφ q N [Φ(x, z; q)] , (38)

(1− q)η(x; q) = cη q

[

η(x; q)− α
∂Φ

∂x
+

1

2
∇Φ · ∇Φ

]

, (39)

and the boundary condition at the bottom

∂Φ

∂z
= 0, z = −1. (40)

If wave height Hw is given, there exists the additional condition:

η(0; q) = Hw. (41)

Note that Φ(x, z; q) and η(x; q) depend not only on the original physical variables
x, z but also on the embedding parameter q ∈ [0, 1] and the two convergence-control
parameter cφ, cη that have no physical meanings at all. It should be emphasized that
we have great freedom to choose the values of the convergence-control parameters cφ
and cη. Following Liao & Cheung [29] and Tao et al [32], we choose the auxiliary
linear operator

Lφ = α2∂
2φ

∂x2
+
∂φ

∂z
, (42)

which has the property L[0] = 0. Note that L is exactly the linear part of the nonlinear
operator N defined by (36). In this way, the zeroth-order deformation equations (37)
to (41) are well defined.
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When q = 0, we have from (39) that

η(x; 0) = 0 = ζ0(x), (43)

and then the corresponding zeroth-order deformation equations become

∇2Φ(x, z; 0) = 0, z ≤ 0, 0 ≤ x < +∞, (44)

subject to the boundary conditions on the known free surface

L [Φ(x, z; 0)− φ0(x, z)] = 0, when z = 0, 0 ≤ x < +∞, (45)

and the boundary condition at the bottom

∂Φ(x, z; 0)

∂z
= 0, z = −1, 0 ≤ x < +∞. (46)

Since the auxiliary linear operator L has the property L[0] = 0 and besides the
initial guess φ0(x, z) defined by (34) satisfies the Laplace equation (2) and the bottom
condition (5), it is straightforward that

Φ(x, z; 0) = φ0(x, z). (47)

When q = 1, since cφ 6= 0 and cη 6= 0, the zeroth-order deformation equations
(37) to (41) are equivalent to the original fully nonlinear wave equations (2) to (8),
respectively, so that we have the relationship

Φ(x, z; 1) = φ(x, z), η(x; 1) = ζ(x). (48)

Thus, as the embedding parameter q increases from 0 to 1, Φ(x, z; q) and η(x; q)
indeed vary continuously from the initial guess φ0(x, z), ζ0(x) to the exact solution
φ(x, z), ζ(x) of the fully nonlinear wave equations (2) to (8), respectively. Therefore,
the zeroth-order deformation equations (37) to (41) truly construct such a kind of
continuous variation that provides a base of our analytic approach, as shown below.

Since both of Φ(x, z; q) and η(x; q) are dependent upon the embedding parameter
q ∈ [0, 1], we can expand them in Maclaurin series with respect to q to gain the
so-called homotopy-Maclaurin series

Φ(x, z; q) = φ0(x, z) +
+∞
∑

m=1

φm(x, z) q
m, (49)

η(x; q) =

+∞
∑

m=1

ζm(x) q
m, (50)

where

φm(x, z) =
1

m!

∂mΦ(x, z; q)

∂qm

∣

∣

∣

∣

q=0

, ζm(x) =
1

m!

∂mη(x; q)

∂qm

∣

∣

∣

∣

q=0
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and the relationship (43) and (47) are used. However, it is well known that a Maclaurin
series often has a finite radius of convergence. Fortunately, both of Φ(x, z; q) and
η(x; q) contain the two convergence-control parameters cφ and cη, which have great
influence on the convergence of the Maclaurin series of Φ(x, z; q) and η(x; q), as shown
by Liao & Cheung [29] and Tao et al [32]. Here, it should be emphasized once again
that we have great freedom to choose the values of cφ and cη. Thus, if the convergence-
control parameters cφ, cη are properly chosen so that the above homotopy-Maclaurin
series are convergent at q = 1, we have the homotopy-series solution

φ(x, z) = φ0(x, z) +
+∞
∑

m=1

φm(x, z), (51)

ζ(x) =

+∞
∑

m=1

ζm(x). (52)

The equations for the unknown φm(x, z) and ζm(x) can be derived directly from
the zeroth-order deformation equations. Like Liao & Cheung [29] and Tao et al [32],
substituting the series (49) and (50) into the zeroth-order deformation equations (37)
to (41), then equating the like-power of q, we gain

ζm(x) =
{

cη ∆
η
m−1 + χm ζm−1

}
∣

∣

z=0
, m ≥ 1, 0 ≤ x < +∞, (53)

where
∆η

m = ζm − α φ̄m,1 + Γm,0, (54)

and the mth-order deformation equation

∇2φm(x, z) = 0, m ≥ 1, z ≤ 0, 0 ≤ x < +∞, (55)

subject to the boundary condition on the known free surface z = 0:

L̄ (φm) =

(

α2 ∂
2φm

∂x2
+
∂φm

∂z

)
∣

∣

∣

∣

z=0

= Rm(x), 0 ≤ x < +∞, (56)

and the bottom condition

∂φm

∂z
= 0, z = −1, 0 ≤ x < +∞, (57)

where

Rm(x) =
{

cφ ∆φ
m−1 + χm Sm−1 − S̄m

}
∣

∣

∣

z=0
, 0 ≤ x < +∞, (58)

χn =

{

0, when n ≤ 1,
1, when n > 1.

(59)

The detailed derivations of ∆η
m−1,∆

φ
m−1, Sm−1, S̄m with all related formulas are given

explicitly in the Appendix. Note that, unlike Liao & Cheung [29] and Tao et al [32],
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we explicitly give all formulas in details so that high-order approximations can be
gained more efficiently.

Note that the dimensionless phase speed α of the new peaked solitary waves is
unknown up to now. According to the linear wave theory mentioned in § 3, the peaked
solitary waves exist only when

α2 =
tan k

k
, nπ < k < nπ +

π

2
, (60)

where n ≥ 0 is an integer. If the above expression also holds for the fully nonlinear
wave equations, the auxiliary linear operator defined by (42) have the property

L
{

cos[k(z + 1)]e−kx
}

= 0, x ≥ 0, k > 0, (61)

and the corresponding inverse operator of L̄ defined by (56) has the property

L̄−1 {exp (−nkx)} =
cos[nk(z + 1)] exp(−nkx)

(nk) [α2(nk) cos(nk)− sin(nk)]
, k > 0, n 6= 1, x ≥ 0, (62)

where n ≥ 2 is an integer. Note that the above expression does not hold when n = 1.
Fortunately, it is found that Rm(x) indeed does not contain the term exp(−kx) as
long as the phase speed is given by α2 = tan(k)/k. Mathematically, this is because
the nonlinear terms of (36) do not contain the term exp(−kx) at all, since

exp(−mkx) × exp(−nkx) = e−(m+n)kx

with m + n ≥ 2 for any integers m ≥ 1 and n ≥ 1. So do the linear terms of (36),
since

{

(

α2 ∂
2

∂x2
+

∂

∂z

) +∞
∑

n=1

bn cos[nk(z + 1)] exp(−nkx)
}
∣

∣

∣

∣

∣

z=0

=

+∞
∑

n=1

(nk)
[

α2(nk) cos(nk)− sin(nk)
]

bn exp(−nkx)

=
+∞
∑

n=2

(nk)
[

α2(nk) cos(nk)− sin(nk)
]

bn exp(−nkx)

does not contain the term exp(−kx), too. This is the essential reason why the phase
speed

α =

√

tan(k)

k
(63)

given by the linear wave equations still holds for the fully nonlinear wave equations
(2) to (8). Physically speaking, the dimensionless phase speed c/

√
gD of the new

solitary waves has nothing to do with the wave height: this is quite different from the
traditional periodic and solitary progressive waves. It indicates that the new peaked
solitary waves are non-dispersive. We will illustrate this point later.
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Keeping (63) in mind and using the property (62) of the inverse operator L̄−1, it is
straightforward to gain the common solution of the high-order deformation equation
(55) to (57):

φm(x, z) = φ∗
m(x, z) + Am cos [k (1 + z)] e−kx, x ≥ 0, (64)

where φ∗
m(x, z) = L̄−1[Rm(x)] is a special solution, and the coefficient Am is deter-

mined by the given wave height

m+1
∑

n=1

ζn(0) = Hw. (65)

This is mainly because, according to (53), ζm+1(x) is dependent upon φm(x, z) that
contains the unknown parameter Am, where m ≥ 1. Note that, according to (62),
φm(x, z) is in the form of (32) and thus automatically satisfies the Laplace equation
(2), the bottom condition (5) and the bounded condition (9). Thus, using the explicit
formulas given in the Appendix, it is computationally efficient to gain high-order
analytic approximations successively, especially by means of computer algebra system
such as Mathematica and Maple, since our approach needs only algebra computations.

For example, using the initial guess (34) and (53), we directly have

ζ1(x) = −cη
(

α
∂φ0

∂x
− 1

2
∇φ0 · ∇φ0

)
∣

∣

∣

∣

z=0

= cηA0k

[

α cos(k)e−kx +
A0k

2
e−2kx

]

, x ≥ 0. (66)

Thus, at the first-order of approximation, we have an algebraic equation for the given
wave height

Hw = cηkA0

(

α cos k +
1

2
kA0

)

,

which gives two different solutions

A0 = k−1

[

−α cos k ±
√

α2 cos2(k) + 2Hw/cη

]

. (67)

We simply choice

A0 = −k−1

[

α cos k −
√

α2 cos2(k) + 2Hw/cη

]

(68)

to calculate A0 for a given Hw, since it has a smaller absolute value.

Furthermore, using the initial guess (34), we have

∆φ
0 = kA0

(

α2k cos k − sin k
)

e−kx + 2αk3A2
0e

−2kx + k4A3
0 cos(k)e

−3kx.

Using the phase speed (63), the term exp(−kx) of the above expression disappears,
say,

∆φ
0 = 2αk3A2

0e
−2kx + k4A3

0 cos(k)e
−3kx, x ≥ 0.
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Thus, the first-order deformation equation reads

∇2φ1(x, z) = 0, z ≤ 0, 0 ≤ x < +∞, (69)

subject to the boundary condition on the known free surface z = 0:

L̄ (φm) =

(

α2 ∂
2φm

∂x2
+
∂φm

∂z

)
∣

∣

∣

∣

z=0

= cφ
[

2αk3A2
0e

−2kx + k4A3
0 cos(k)e

−3kx
]

, (70)

and the bottom condition

∂φ1

∂z
= 0, z = −1, 0 ≤ x < +∞. (71)

Using the property of the inverse operator (62), it is easy to gain the common solution

φ1(x, z) = cφ

{

αk2A2
0 cos[2k(z + 1)]e−2kx

2α2k cos(2k)− sin(2k)
+
k3A3

0 cos k cos[3k(z + 1)]e−3kx

3[3α2k cos(3k)− sin(3k)]

}

+ A1 cos[k(z + 1)]e−kx, 0 ≤ x < +∞, (72)

where A1 is an unknown constant to be determined. Similarly, using (53), we gain
ζ2(x), which contains the unknown constant A1. Then, for the given wave height Hw,
we have a linear algebraic equation

Hw = ζ1(0) + ζ2(0),

which determines A1. In this way, φ1(x, z) is completely determined. Similarly, we
further gain φ2(x, z), ζ3(x), and so on. Finally, using the symmetry (10), it is easy
to gain the corresponding wave elevation ζ(x) and the velocities u(x, z), v(x, z) in the
whole domain −∞ < x < +∞.

Our computations confirm that, for all m ≥ 0, Rm(x) in (56) indeed does not
contain the term exp(−kx) at all. Thus, the fully nonlinear wave equations (2) -
(9) indeed give the same dimensionless phase speed α =

√

tan k/k as that by the
linear ones. Therefore, the phase speed of the new peaked solitary wave has nothing
to do with the wave height Hw, say, the peaked solitary waves are non-dispersive!
This is indeed completely different from the traditional periodic and solitary waves
with smooth crest. This unusual characteristic clearly demonstrates the novelty of
the new peaked solitary surface waves. We will confirm and discuss this interesting
characteristic of the new peaked solitary waves later.

Note that our HAM-based analytic approach mentioned above is rather similar to
those by Liao & Cheung [29] and Tao et al [32] for the traditional progressive waves
in deep and finite water, except that we use here the new base function (22) and the
explicit formulas given in Appendix A, and besides regard the dimensionless phase
speed α as a constant.

Finally, we should emphasize that, unlike perturbation methods, our HAM-based
analytic approach does not need any assumptions about small/large physical parame-
ters. More importantly, both of φ(x, z) and ζ(x) contain the two convergence-control
parameters cφ and cη, which provide us a convenient way to guarantee the convergence
of approximation series, as illustrated below.



19

Order of approx. U(−1) U(−0.5) U(−0.25) U(Hw) ζ ′(0+)

1 0.07222 0.06570 0.05762 0.04289 -0.04690

3 0.06833 0.06236 0.05466 0.04205 -0.04859

5 0.06796 0.06219 0.05489 0.04213 -0.04823

10 0.06799 0.06221 0.05490 0.04213 -0.04823

15 0.06799 0.06221 0.05490 0.04213 -0.04823

20 0.06799 0.06221 0.05490 0.04213 -0.04823

25 0.06799 0.06221 0.05490 0.04213 -0.04823

Table 1: Analytic approximations of U(z) = u(0, z) and ζ ′(0+) in case of Hw = 1/20
and k = 1 by means of cφ = −1 and cη = −1.

Order of approx. U(−1) U(−0.5) U(−0.25) U(Hw) ζ ′(0+)

1 -0.07047 -0.06377 -0.05101 -0.03840 0.05248

3 -0.08133 -0.06737 -0.05218 -0.03779 0.05220

5 -0.08140 -0.06749 -0.05218 -0.03772 0.05192

10 -0.08145 -0.06750 -0.05218 -0.03772 0.05183

20 -0.08145 -0.06750 -0.05218 -0.03772 0.05183

25 -0.08145 -0.06750 -0.05218 -0.03772 0.05183

Table 2: Analytic approximations of U(z) = u(0, z) and ζ ′(0+) in case of Hw = −1/20
and k = 1 by means of cφ = −1 and cη = −1.

4.2 Convergence of series solution

Note that, unlike perturbation results, φm(x, z) and ζm(x) gained in above-mentioned
analytic approach contain two convergence-control parameters cφ and cη, which pro-
vide us a convenient way to guarantee the convergence of the series (51 ) and (52), as
shown below. Obviously, the convergence rate of the series (51 ) and (52) is greatly
influenced by cφ and cη. As pointed out by Liao & Cheung [29] and Tao et al [32],
one can choose cφ = −1 and cη = −1 for weakly nonlinear waves.

First, let us consider the case of k = 1 and Hw = 1/20, with the corresponding
dimensionless phase velocity α = c/

√
gD =

√

tan(1) = 1.24796. Since the wave
height is only 5% of the water depth D, the nonlinearity is weak. Thus, as suggested
by Liao & Cheung [29] and Tao et al [32], we choose cφ = −1 and cη = −1 for
such a kind of weakly nonlinear wave problem. It is found that, the corresponding
series of analytic approximation indeed converges quickly, as shown for examples in
Table 1 for ζ ′(0+) and the horizontal velocity U(z) = u(0, z) beneath the wave crest at
z = −1, z = −1/2, z = −1/4 and z = Hw, respectively, where 0+ denotes x→ 0 from
the right along the x axis. It is found that the velocity potential φ(x, z) converges
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Order of approx. U(−1) U(−0.5) U(−0.25) U(Hw) ζ ′(0+)

1 0.1696 0.1543 0.1347 0.09362 -0.08561

3 0.1246 0.1180 0.1090 0.08837 -0.09332

5 0.1270 0.1196 0.1098 0.08813 -0.09142

10 0.1254 0.1183 0.1090 0.08788 -0.09285

15 0.1254 0.1183 0.1090 0.08789 -0.09299

20 0.1254 0.1183 0.1090 0.08789 -0.09299

25 0.1254 0.1183 0.1090 0.08789 -0.09299

Table 3: Analytic approximations of U(z) = u(0, z) and ζ ′(0+) in case of Hw = 1/10
and k = 1 by means of cφ = −1/2 and cη = −1.

Order of approx. U(−1) U(−0.5) U(−0.25) U(Hw) ζ ′(0+)

1 -0.1418 -0.1191 -0.09328 -0.07474 0.1091

3 -0.1704 -0.1343 -0.09684 -0.07211 0.1130

5 -0.1768 -0.1368 -0.09664 -0.07070 0.1107

10 -0.1801 -0.1379 -0.09650 -0.07016 0.1079

15 -0.1805 -0.1380 -0.09649 -0.07013 0.1075

20 -0.1806 -0.1380 -0.09648 -0.07012 0.1075

25 -0.1806 -0.1380 -0.09648 -0.07012 0.1075

Table 4: Analytic approximations of U(z) = u(0, z) and ζ ′(0+) in case of Hw = −1/10
and k = 1 by means of cφ = −3/4 and cη = −1.

quickly in the whole domain x ∈ [0,+∞) and z ≤ ζ(x), as shown for examples in
Fig. 2 for the corresponding horizontal velocity profile U(z) = u(0, z) beneath the
crest. This confirms that the new solitary waves is indeed a solution of the fully
nonlinear wave equations (2) - (9)!

Secondly, let us consider the case with k = 1 and Hw = −1/20, with the same
dimensionless phase velocity α = c/

√
gD = 1.24796. It is found that the correspond-

ing series of analytic approximations given by cφ = −1 and cη = −1 converge quickly
in the whole domain x ≥ 0, as shown for examples in Table 2 for ζ ′(0+) and the hor-
izontal velocity U(z) = u(0, z) beneath the crest at z = −1,−0.5,−0.25 and z = Hw,
respectively. Besides, the corresponding velocity potential φ(x, z) converges quickly
in the whole domain x ∈ [0,+∞) and z ≤ ζ(x), as shown for examples in Fig. 3 for
the horizontal velocity profile U(z) = u(0, z) beneath the crest. This confirms that
the new peaked solitary wave in the form of depression is truly a solution of the fully
nonlinear wave equations (2) - (9)!

Similarly, in case of k = 1/2 and Hw = ±1/20, with the corresponding dimen-
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Figure 2: Analytic approximations of the dimensionless horizontal velocity profile
U(z) = u(0, z) beneath the crest in case of k = 1 and Hw = 0.05 given by cφ = −1
and cη = −1. Dashed-line: zeroth-order of approx.; Dash-dotted line: 1st-order of
approx.; Solid line: 4th-order of approx.; Symbols: 25th-order of approximation.
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Figure 3: Analytic approximations of the dimensionless horizontal velocity profile
U(z) = u(0, z) beneath the crest in case of k = 1 and Hw = −0.05 given by cφ = −1
and cη = −1. Dashed-line: zeroth-order of approx.; Dash-dotted line: 1st-order of
approx.; Solid line: 4th-order of approx.; Symbols: 25th-order of approximation.
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Figure 4: Analytic approximations of the dimensionless horizontal velocity profile
U(z) = u(0, z) beneath the crest in case of k = 1 and Hw = 0.1 given by cφ = −1/2
and cη = −1. Dashed-line: zeroth-order of approx.; Dash-dotted line: 2nd-order of
approx.; Solid line: 6th-order of approx.; Symbols: 25th-order of approximation.
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Figure 5: Analytic approximations of the dimensionless horizontal velocity profile
U(z) = u(0, z) beneath the crest in case of k = 1 and Hw = −0.1 given by cφ = −3/4
and cη = −1. Dashed-line: zeroth-order of approx.; Dash-dotted line: 1st-order of
approx.; Solid line: 10th-order of approx.; Symbols: 25th-order of approximation.
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Figure 6: Analytic approximations of elevation of the new solitary waves when k = 1
(corresponding to c/

√
gD = 1.24796). Solid line: 5th-order approximation when

Hw = 0.1 given by cφ = −0.5 and cη = −1; Filled circles: 25th-order approximation
when Hw = 0.1 given by cφ = −0.5 and cη = −1; Dashed line: 5th-order approxi-
mation when Hw = 0.05 given by cφ = −1 and cη = −1; Open circles: 25th-order
approximation when Hw = 0.05 given by cφ = −1 and cη = −1.
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Figure 7: Analytic approximations of elevation of the new solitary waves when k = 1
(corresponding to c/

√
gD = 1.24796). Solid line: 5th-order approximation when

Hw = −0.1 given by cφ = −0.75 and cη = −1; Filled circles: 25th-order approxi-
mation when Hw = −0.1 given by cφ = −0.75 and cη = −1; Dashed line: 5th-order
approximation when Hw = −0.05 given by cφ = −1 and cη = −1; Open circles:
25th-order approximation when Hw = −0.05 given by cφ = −1 and cη = −1.
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Figure 8: Analytic approximations of ζ(x) of the new soliton waves when Hw = 0.05
by means of cφ = −1 and cη = −1. Solid line: 5th-order approximation when k =
1/2 (corresponding to c/

√
gD = 1.04528); Filled circles: 25th-order approximation

when k = 1/2; Dashed line: 5th-order approximation when k = 1 (corresponding to
c/
√
gD = 1.24796); Open circles: 25th-order approximation when k = 1.
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Figure 9: Analytic approximations of ζ(x) of the new soliton waves when Hw = −0.05
by means of cφ = −1 and cη = −1. Solid line: 5th-order approximation when k =
1/2 (corresponding to c/

√
gD = 1.04528); Filled circles: 25th-order approximation

when k = 1/2; Dashed line: 5th-order approximation when k = 1 (corresponding to
c/
√
gD = 1.24796; Open circles: 25th-order approximation when k = 1.
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sionless phase speed α = c/
√
gD = 1.04528, we gain convergent series of analytic

approximations of φ(x, z) and ζ(x) in the whole domain x ∈ [0,+∞) and z ≤ ζ(x) by
means of cφ = −1 and cη = −1, respectively.

Furthermore, let us consider the case of k = 1 and Hw = 0.1, with the corre-
sponding dimensionless phase velocity α = c/

√
gD = 1.24796. Since the wave weight

increases to 10% of the water depth, the nonlinearity becomes stronger. As suggested
by Liao & Cheung [29] and Tao et al [32], we should choose convergence-control pa-
rameters cφ and cη with smaller absolute values for the higher nonlinearity. It is
found that the series of analytic approximations given by cφ = −1/2 and cη = −1
converges quickly, as shown in Table 3 and Fig. 4 for the horizontal velocity profile
U(z) = u(0, z) beneath the wave crest. Similarly, in case of k = 1 and Hw = −0.1, we
gain convergent series of analytic approximation by means of cφ = −3/4 and cη = −1,
as shown in Table 4 and Fig. 5. This illustrates that the two convergence-control
parameters cφ and cη indeed provide us a convenient way to guarantee the conver-
gence of approximation series. Note that the absolute value of the horizontal velocity
at bottom in case of Hw = −0.1 is 44% larger than that in case of Hw = 0.1. So,
there does not exist symmetry between these two wave elevations for Hw = 0.1 and
Hw = −0.1, respectively.

It should be emphasized that, in case of k = 1, we gain convergent series solutions
of the new peaked solitary waves with the same phase speed but different positive
and negative values of Hw such as Hw = ±0.05 and Hw = ±0.1. This confirms that
the phase speed of the new peaked solitary waves indeed does not depend upon the
wave height, say, the peaked solitary waves are non-dispersive. This is an unusual
characteristic of the new peaked solitary waves.

Finally, using the symmetry (10), it is straightforward to gain the wave elevation
in the whole domain −∞ < x < +∞. As shown in Figs. 6 to 9, the wave elevation
ζ(x) also converges quickly in all of above-mentioned cases. In case of k = 1, the wave
elevations when Hw = ±0.1 are compared with those with Hw = ±0.05, as shown in
Figs. 6 and 7. It is found that, for the same value of k, the larger the value of |Hw|,
the faster ζ(x) decays to zero. Note also that the wave elevation ζ(x) with larger k
decays to 0 more quickly, as shown in Figs. 8 and 9. In other words, the larger the
value of k, the faster ζ(x) → 0. This provides us a physical meaning of the parameter
k. For this reason, we call k the decaying-rate parameter.

Note that our HAM-based analytic approach contains two convergence-control
parameters cφ and cη. As illustrated above, we can gain convergent series of analytic
approximations by choosing proper values of cφ and cη, which indeed provide us a
convenient way to guarantee the convergence of approximation series.

Note that, as proved in general by Liao [17, 20], each series solution given by
the HAM satisfies its original equations as long as it is convergent. So, all of these
convergent series of φ(x, z) and ζ(x) are solutions of the fully nonlinear wave equations
(2) - (9), as further confirmed below.
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4.3 Validation check of analytic approximations

Note that the velocity potential φ(x, z) is expressed in the form (32), which automat-
ically satisfies the Laplace equation (2), the bottom condition (5), and the bounded
condition (9). Thus, it is only necessary for us to check the two nonlinear boundary
conditions (3) and (4) which are satisfied on the unknown wave elevation ζ(x).

To check the validation of our analytic approximations, we define the averaged
residual squares of the two free surface boundary conditions

Eφ
m(cφ, cη) =

1

(1 +M)

M
∑

n=0

(

N
[

φ̌(x, z)
])2
∣

∣

∣

x=xn,z=ζ(xn)
, (73)

E ζ
m(cφ, cη) =

1

(1 +M)

M
∑

n=0

[

ζ̌(x)− α
∂φ̌

∂x
+

1

2
∇φ̌ · ∇φ̌

]2
∣

∣

∣

∣

∣

x=xn,z=ζ(xn)

, (74)

where

φ̌(x, z) =

m
∑

n=0

φn(x, z), ζ̌ =

m
∑

n=1

ζn(x)

are the mth-order approximation of φ(x, z) and ζ(x), respectively, and

xn = n
(xR
M

)

, 0 ≤ i ≤ M,

with large enough xR and M . For all results given below, we choose xR = 10 and
M = 100, if not mentioned. Since the potential velocity φ(x, z) and the wave elevation
ζ(x) decay exponentially, xR = 10 is large enough.

In case of k = 1 and Hw = ±0.05, the averaged residual squares Eφ
m and E ζ

m of
the corresponding analytic approximations obtained by cφ = −1 and cη = −1 decay
quickly to the level 10−25 as the order of approximation increases to 25, as shown in
Table 5. In other words, our 25th-order approximation of φ(x, z) and ζ(x) satisfies
the Laplace equation (2), the bottom condition (5) and the bounded condition (9)
exactly, and besides the two nonlinear free surface boundary conditions (3) and (4)
very accurately (to the level 10−25). In addition, u(0, z) converges quickly so that
U(z) = u(0, z) corresponding to the peaked solitary waves is uniquely determined.
Therefore, without doubt, our convergent analytic approximation is a very accurate
solution of the fully nonlinear wave equations (2) to (9). Similarly, Eφ

m and E ζ
m decays

to the level 10−13 in case of k = 1 and Hw = ±0.1, and to the level 10−18 in case of
k = 1/2 and Hw = ±0.05, respectively, as shown in Tables 6 and 7. Theses guarantee
that the corresponding analytic approximations of φ(x, z) and ζ(x) are indeed quite
accurate solutions of the fully nonlinear wave equations (2) to (9), respectively. All of
these confirm once again the mathematical proof of Liao [17,20] that each convergent
series solution given by the HAM satisfies its original equations in general.

It should be emphasized that, in case of k = 1, correspond to the same dimension-
less phase speed c/

√
gD = 1.24796, we gain very accurate solutions of solitary waves

with different positive and negative wave heights such as Hw = ±0.05 and Hw = ±0.1,
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Order of approx. Hw = 0.05 Hw = −0.05
m Eφ

m E ζ
m Eφ

m E ζ
m

1 6.59 ×10−7 9.21 ×10−9 2.25 ×10−6 9.39 ×10−9

3 1.40 ×10−8 1.57 ×10−9 8.09 ×10−9 5.90 ×10−10

5 3.32 ×10−11 2.90 ×10−12 7.80 ×10−11 1.53 ×10−11

10 9.71 ×10−15 7.00 ×10−16 8.96 ×10−16 2.42 ×10−16

15 7.33 ×10−19 1.68 ×10−19 6.97 ×10−20 1.05 ×10−20

20 4.43 ×10−22 4.83 ×10−23 2.40 ×10−24 6.45 ×10−25

25 2.23 ×10−25 2.09 ×10−27 4.56 ×10−28 3.96 ×10−29

Table 5: Averaged residual squares of the two nonlinear free boundary conditions (3)
and (4) in case of k = 1 and Hw = ±0.05 by means of cφ = −1 and cη = −1, with the
corresponding dimensionless phase speed c/

√
gD = 1.24796.

Order of approx. Hw = 0.1 Hw = −0.1
m (cφ = −0.5, cη = −1) (cφ = −0.75, cη = −1)

Eφ
m E ζ

m Eφ
m E ζ

m

1 1.48 ×10−4 7.21 ×10−7 5.89 ×10−5 3.67 ×10−7

3 1.63 ×10−7 8.63 ×10−8 5.84 ×10−7 1.21 ×10−7

5 1.39 ×10−7 3.96 ×10−10 6.83 ×10−7 1.11 ×10−8

10 5.96 ×10−10 3.09 ×10−11 8.63 ×10−9 2.31 ×10−10

15 1.30 ×10−12 3.70 ×10−14 3.29 ×10−11 1.95 ×10−12

20 4.34 ×10−13 1.88 ×10−15 1.17 ×10−12 3.69 ×10−14

25 2.25 ×10−13 4.52 ×10−16 2.51 ×10−14 8.11 ×10−16

Table 6: Averaged residual squares of the two nonlinear free boundary conditions (3)
and (4) in case of k = 1 and Hw = ±0.1, with the corresponding dimensionless phase
speed c/

√
gD = 1.24796.
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Order of approx. Hw = 0.05 Hw = −0.05
m Eφ

m E ζ
m Eφ

m E ζ
m

1 2.75 ×10−8 1.04 ×10−6 3.74 ×10−7 9.09 ×10−7

3 3.76 ×10−10 4.85 ×10−8 4.48 ×10−10 9.61 ×10−9

5 4.13 ×10−12 2.00 ×10−9 4.85 ×10−13 4.18 ×10−12

10 1.80 ×10−14 2.21 ×10−12 1.08 ×10−16 3.16 ×10−17

15 5.23 ×10−15 1.55 ×10−15 7.93 ×10−20 1.06 ×10−19

20 1.86 ×10−16 1.50 ×10−16 1.67 ×10−23 1.52 ×10−24

25 2.56 ×10−18 9.46 ×10−18 3.87 ×10−29 2.57 ×10−28

Table 7: Averaged residual squares of the two nonlinear free boundary conditions (3)
and (4) in case of k = 1/2 and Hw = ±0.05 by means of cφ = −1 and cη = −1, with
the corresponding dimensionless phase speed c/

√
gD = 1.04528.

respectively. This confirms that the phase speed of the new solitary waves is indeed
independent of the wave height Hw.

In fact, one can choose the optimal values of cφ and cη by the minimum of
Eφ
m(cφ, cη) and E ζ

m(cφ, cη), say,

∂Eφ
m(cφ, cη)

∂cφ
= 0,

∂E ζ
m(cφ, cη)

∂cζ
= 0. (75)

It is found that, by means of the optimal values of cφ and cη, the corresponding series
of analytic approximations often converge quickly.

In addition, we also apply perturbation method to check the validity of our ana-
lytic solutions. It is found that the first-order perturbation approximation of φ(x, z)
is exact the same as (72) given by our HAM-based approach in case of cφ = −1 and
cη = −1. This confirms the validity of our analytic approximations in a different way.

All of these demonstrate that the convergent series obtained by our HAM-based
approach are indeed the solutions of the fully nonlinear wave equations (2) to (9).

5 Characteristics of new solitary surface waves

Based on the base functions (22), the new solitary waves have some unusual char-
acteristics that are quite different from those of the traditional waves with smooth
crest.

First, the new solitary waves have a peaked wave crest, since ζ ′(x) is discontinuous
at x = 0, i.e. ζ ′(0+) 6= ζ ′(0−), where 0+ and 0− denote x → 0 from the right and
left along the x axis, respectively. For example, in case of Hw = 0.1 and k = 1,
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ζ ′(0+) = −0.09299, but ζ ′(0−) = 0.09299. This is obviously different from traditional
periodic and solitary waves which are infinitely differentiable.

Secondly, the new peaked solitary waves may be in the form of depression, which
has been reported for internal waves but never for surface ones. Mathematically, it
is straightforward to gain such kind of solitary waves of depression even by means of
the linear wave equations, as shown in § 3.

Third, unlike traditional periodic and solitary waves, the dimensionless phase
speed of the new peaked solitary waves depends only upon k, the so-called decaying-
rate parameter, but has nothing to do with the wave height Hw. So, in the same water
depth D, the new solitary waves with the same k but different wave height Hw may
propagate with the same phase speed, where Hw may be either positive or negative.
For example, it is found that, in case of k = 1, all of the peaked solitary waves with
Hw = ±0.1 or Hw = ±0.5 propagate with the same phase speed c = 1.24796

√
gD : in

these cases, we gain different convergent series solution with the same phase speed, as
shown in § 4.2. On the other side, the peaked solitary waves with the same wave height
Hw but different decay-rate parameter k may propagate with different phase speed!
These are quite different from the traditional periodic and solitary waves whose phase
speed strongly depends upon wave height. In other words, the traditional periodic
and solitary waves with smooth crest are dispersive, but the peaked solitary waves
are non-dispersive.

Finally, as shown in Tables 1 to 4 and Figs. 2 to 5, the horizontal bottom velocity
beneath the crest of the new peaked solitary waves is always larger than that at
crest. For example, in case of k = 1 and Hw = 0.1, the horizontal velocity at bottom
beneath the crest is 43% larger than that at crest, as shown in Table 3. Especially, as
shown in Table 4, in case of k = 1 and Hw = −0.1, the horizontal velocity at bottom
beneath the crest is even 158% larger than that at crest! In general, for the same x,
the horizontal velocity u(x,−1) (at bottom) has always a larger absolute value than
u(x, ζ(x)) on the free surface, as shown for example in Figs. 10 and 11. This is quite
different from the traditional periodic and solitary waves whose horizontal velocity at
bottom is always less than that on surface. Besides, these also illustrate that there
does not exist symmetry between the two kinds of peaked solitary waves with Hw > 0
and Hw < 0, respectively.

Furthermore, as shown in Figs. 6 and 7, in case of the same k, the peaked solitary
wave with larger value of |Hw| is sharper at crest. It is found that, in general, the
larger the value of |Hw|, the sharper the peaked solitary waves at crest, as shown in
Fig. 12. Note that all of these peaked solitary waves with the same k but different Hw

propagate with the same phase speed! In addition, as shown in Figs. 8 and 9, in case
of the same value of Hw, the larger the value of k, the sharper the peaked solitary
wave at crest. This also holds in general: the larger the value of k, the shaper the
peaked solitary waves at crest, as shown in Fig.13. Therefore, generally speaking, the
larger the values of k and |Hw|, the sharper the peaked solitary waves.

All of these unusual characteristics clearly indicate the novelty of the peaked
solitary waves. It should be emphasized that these so-called peaked solitary waves
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Figure 10: Horizontal velocity at bottom and on free surface when k = 1 and
Hw = 0.05 by means of cφ = −1 and cη = −1. Solid line: 3rd-order approx. of
u(x,−1) (at bottom); Dashed line: 3rd-order approx. of u(x, ζ(x)) (on free surface);
Symbols: the corresponding 25th-order approximations.
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Figure 11: Horizontal velocity at bottom and on free surface when k = 1 and
Hw = −0.05 by means of cφ = −1 and cη = −1. Solid line: 3rd-order approx. of
u(x,−1) (at bottom); Dashed line: 3rd-order approx. of u(x, ζ(x)) (on free surface);
Symbols: the corresponding 25th-order approximations.
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Figure 12: ζ ′(0+) (as x → 0 from right) versus wave height Hw in case of k = 1 with
the same wave speed c/

√
gD = 1.24796.
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Figure 13: ζ ′(0+) (as x → 0 from right) versus k. Solid line: Hw = 0.05; Dashed
line: Hw = −0.05.
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given by the linear wave equations in § 3 also have the same unusual characteristics.

6 Concluding remarks, discussions and some the-

oretical predictions

In this article, a new type of peaked solitary surface waves is found first by means
of the linear wave equations in § 3 and then confirmed by using the fully nonlinear
wave equations (2) to (9) in § 4. Following Liao & Cheung [29] and Tao et al [32],
we successfully apply the homotopy analysis method (HAM) to gain convergent series
of the velocity potential φ(x, z) and the wave elevation ζ(x) for different k and posi-
tive/negative wave height Hw by meas of the new base functions (22). The validity of
these convergent analytic approximations are carefully checked: all linear governing
equations and boundary conditions are automatically satisfied, and besides the two
nonlinear free surface boundary conditions are satisfied very accurately, as shown in
Tables 5 to 7. So, we are quite sure that our convergent series of analytic approxima-
tions of the peaked solitary waves are indeed the solutions of the fully nonlinear wave
equations (2) to (9).

It is found that the peaked solitary waves have many unusual characteristics
different from the traditional periodic and solitary ones. First, it has a peaked crest.
Secondly, it may be in the form of depression, corresponding to a negative wave height
Hw, which has been often reported for internal solitary waves but never for free-surface
solitary ones, to the best of author’s knowledge. Third, its phase speed has nothing to
do with wave weight Hw, say, the peaked solitary waves are non-dispersive. Finally,
its horizontal velocity at bottom is always larger than that on free surface. All of
these are so different from the traditional periodic and solitary waves with smooth
crest that they clearly indicate the novelty of the peaked solitary ones.

All of these unusual characteristics come from the base functions instantaneously
of the peaked solitary waves, which is quite different from the base functions (13) of the
traditional periodic and solitary waves, although both of them automatically satisfy
the Laplace equation (2), the bottom condition (5) and the bounded condition (9).
Note that the traditional base functions (13) are infinitely differentiable everywhere,
but the high-order derivatives of the new base functions (22) with respect to x are
not differentiable at x = 0. This difference of the two kinds of base functions (13) and
(22) is the origin of the completely different characteristics between the smooth and
peaked waves.

Note that all traditional periodic and solitary progressive waves can be derived
by means of the fully nonlinear wave equations (2) to (9) with the symmetry (10). In
other words, Eqs. (2) to (9) with the symmetry (10) is consistent with the traditional
wave theory. Therefore, it is quite reasonable that the fully nonlinear wave equations
(2) to (9) contain two different types of solutions: one (the traditional progressive
periodic and solitary wave) has an infinitely differentiable wave elevation ζ(x) with
ζ ′(0) = 0 and the infinitely differentiable velocity u and v everywhere, the other (the
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peaked solitary wave found in this paper) has a peaked crest with the discontinuous
ζ ′(0) and a discontinuous first derivative of the horizontal velocity u(0, z) at x = 0,
corresponding to the two different base functions (13) and (22), respectively. It should
be emphasized that, according to the theory of differential equations, the Laplace
equation (2) needs one and only one boundary condition (7) at x = 0, so that any
other smoothness conditions at x = 0 such as the infinitely differentiable velocity
potential is unnecessary and must be avoided since they may lead to the loss of the
peaked solitary waves.

In theory, such kind of gravity waves with peaked crest are not new. It is well-
known that the limiting gravity wave has a corner crest with 120 degree, as pointed
out by Stokes [4] in 1894. In 1993, Camassa & Holm [5] found the peaked solitary
waves by means of the CH equation (1) in the special case of ω = 0, which is the same
as (27) found in this article by means of the linear wave equations. Currently, it is
found by Liao [9] that the CH equation also admits peaked solitary waves even in case
of ω 6= 0. Besides, the closed-form solutions of the peaked solitary waves of the KdV
equation [2] , the Boussinesq equation [1], the BBM equation [3] and modified KdV
equation are currently found by Liao [8]. Therefore, in theory, nearly all mainstream
models of shallow water waves admit the peaked solitary waves. Note that all of these
equations are approximations of the fully nonlinear wave equations in shallow water,
so that our peaked solitary waves derived from the fully nonlinear wave equations (2)
to (10) well explain why all of these shallow water equations admit peaked solitary
waves. This also indicates that the peaked crest is a common property of water waves.

Besides, in practice, it is well-known that solutions related to dam break and
shock waves are discontinuous. Such kind of discontinuous problems belong to the
so-called Riemann problems [35–38], a classic field of fluid mechanics. Such kind of
discontinuity (or singularity) of solutions of water wave equations have clear physical
meanings, which are often solved in different sub-domains by many numerical and an-
alytic methods. For such kind of Riemann problems, it is unnecessary for the related
differential equations and boundary conditions to be satisfied at points with discon-
tinuity. The numerical and analytic results of many Riemann problems agree well
with experimental results, indicating that such kind of discontinuity (or singularity)
is reasonable not only in mathematics but also in physics. So, physically, the peaked
solitary waves are not strange at all even from the traditional view-points. Therefore,
the new peaked solitary waves are reasonable and acceptable in hydrodynamics.

On the other hand, such kind of discontinuity (or singularity) of the peaked
solitary waves can be removed in the following way. Let U(z) = u(x, z) denote the
horizontal velocity at x = 0, corresponding to a progressive wave governed by the
fully nonlinear wave equations (2) to (9). Assume that, in the frame moving with the
solitary wave, one can instantaneously replace the boundary x = 0 by a porous vertical
plate, and at the same time enforce a horizontal velocity U(z) = u(0, z) through the
porous plate. Then, the corresponding velocity potential φ and wave elevation ζ(x)
in the domain x ∈ [0,+∞) are governed by the same wave equations (2) to (9).
Therefore, for a properly given U(z), one gains either the traditional periodic and
solitary waves with smooth crest (in the domain 0 ≤ x < +∞), if the traditional base
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Figure 14: Possible complicated elevation of three peaked solitary waves with the

same phase speed and the permanent form ζ(x) = e−|x|/10−e−|x−4|/20+3e−|x+3|/100,
predicted by the linear theory in § 3.

functions (13) are used, or the new peaked solitary waves reported in this article, if the
new base functions (22) are used, respectively. In this case, the Laplace equation (2)
is satisfied in the whole domain x ∈ [0,+∞) and z ≤ ζ(x) so that no discontinuity (or
singularity) exists at all. If necessary, using the symmetry (10), it is straightforward
to gain the wave elevation ζ(x) in the whole domain −∞ < x < +∞.

The peaked solitary surface waves may provide us new explanations for a few
natural phenomenon and some theoretical predictions. For example, the peaked soli-
tary wave has an unusual and interesting characteristic: its phase speed has nothing
to do with the wave height Hw that may be either positive or negative. According
to (24), the peaked solitary waves with small wave height Hw may propagate very
quickly, since tan(k)/k → +∞ as x → π/2. Thus, all of these peaked solitary waves
with small wave height and different phase speed may create a huge solitary surface
wave somewhere: this gives a new theoretical explanation about the so-called rogue
wave that can suddenly appear on ocean even when “the weather was good, with clear
skies and glassy swells”, as reported by Graham [39] and mentioned by Kharif [40].
On the other hand, several waves with different wave heights Hw but the same k can
propagate together with a permanent form and the same phase speed, as shown for
example in Fig. 14. However, such kind of complicated solitary waves have never been
observed in experiment and practice: this provides us a new theoretical prediction.

In addition, the new peaked solitary waves may be in the form of depression,
corresponding to a negative wave height Hw. To the best of the author’s knowledge,
such kind of solitary waves of depression have been reported only for internal waves
but never for surface waves. Obviously, such kind of peaked solitary surface waves
of depression should be more difficult to create than the traditional ones. However,
if this theoretical prediction is physically correct, sooner or later, we should be able
to observe it in laboratory experiments and/or in practice. This is an interesting but
challenging work: it could enrich and deepen our understanding about solitary waves,
no matter the final conclusions are positive or not.



35

Possibly, the new peaked solitary waves might change some traditional view-
points. Note that solitary waves are often regarded as a nonlinear phenomenon.
However, we illustrate in this article, for the first time, that solitary surface waves
may exist even in a system of linear differential equations! Besides, it is also widely
believed that solitary waves exist only in shallow water. However, we indicates in this
article that solitary waves can exist even in a finite water depth, say, D is unnecessary
to be small. For example, in case of D = 100 meter, k = 1 and the dimensionless wave
height Hw = 0.05, the corresponding new peaked solitary surface wave propagates
with the 5 meter wave-height in the phase speed c = 1.24796

√
gD ≈ 39.1 meter

per second, which is not very dangerous. However, in case of D = 1000 meter,
k = 1 and Hw = 0.05, the corresponding peaked solitary wave propagates with the 50
meter wave-height and the phase speed c = 123.5 meter per second, which is deadly
destructive if it indeed could occur on the earth.

According to the traditional wave theories, the velocity of fluid decreases expo-
nentially in the vertical direction (from surface to bottom) so that a submarine far
enough beneath ocean surface is safe even if there are huge waves on surface. How-
ever, different from traditional periodic and solitary waves with smooth crest, the
horizontal bottom velocity of the peaked solitary waves is always larger than that on
free surface. Certainly, due to the viscosity of fluid, the horizontal velocity at bottom
of all water waves must be zero, so that such kind of the peaked solitary waves might
not exist exactly in its theoretical form reported in this article, since there exists a
thin viscous boundary layer near the bottom. Thus, such kind of solitary waves with
a peaked crest and larger bottom velocity might be more difficult to create not only
in laboratory experiments but also in nature. This might be the reason why such kind
of peaked solitary surface waves have never been reported and observed. However, if
such kind of peaked solitary waves could indeed exist in nature even not in the exactly
same form, it would be quite dangerous to submarines, platforms and equipments in
underwater engineering.

Note that the peaked solitary waves found in this article are obtained under the
assumptions that the fluid is inviscid and incompressible, the flow is irrotational, the
surface tension is neglected and the wave elevation has a symmetry. Although the
same assumptions are widely used for the traditional periodic and solitary waves with
smooth crest, their physical reasonableness for the peaked solitary waves should be
reconsidered carefully in future.

Therefore, without doubts, further theoretical, numerical and experimental stud-
ies and especially practical observations about this new type of solitary surface waves
with peaked crest and many unusual characteristics are needed in future: all of these
could deepen our understandings and enrich our knowledge about solitary waves.

Finally, it should be emphasized that, the discontinuity and/or singularity exist
widely in natural phenomena, such as dam break in hydrodynamics, shock waves
in aerodynamics, black holes in general relativity equation and so on. Indeed, the
discontinuity and/or singularity are difficult to handle by traditional methods. But,
they can greatly enrich and deepen our understandings about the real world, and
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therefore should not be evaded.
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A Detailed derivation of formulas (54) - (59)

In this appendix, we explicitly give the formulas of all terms in (54) - (59).

Write
(

+∞
∑

i=1

ζi q
i

)m

=

+∞
∑

n=m

µm,n q
n, (76)

with the definition
µ1,n(x) = ζn(x), n ≥ 1. (77)

Then,
(

+∞
∑

i=1

ζi q
i

)m+1

=

(

+∞
∑

n=m

µm,n q
n

)(

+∞
∑

i=1

ζi q
i

)

=

+∞
∑

n=m+1

µm+1,n q
n, (78)

which gives

µm,n(x) =

n−1
∑

i=m−1

µm−1,i(x) ζn−i(x), m ≥ 2, n ≥ m. (79)

Define

ψn,m
i (x) =

∂i

∂xi

(

1

m!

∂mφn

∂zm

∣

∣

∣

∣

z=0

)

.

By Taylor series, we have for any z that

φn(x, z) =

+∞
∑

m=0

(

1

m!

∂mφn

∂zm

∣

∣

∣

∣

z=0

)

zm =

+∞
∑

m=0

ψn,m
0 zm (80)

and
∂iφn

∂xi
=

+∞
∑

m=0

∂i

∂xi

(

1

m!

∂mφn

∂zm

∣

∣

∣

∣

z=0

)

zm =
+∞
∑

m=0

ψn,m
i zm. (81)

Then, on the unknown free surface z = η(x; q), we have using (76) that

∂iφn

∂xi
=

+∞
∑

m=0

ψn,m
i

(

+∞
∑

s=1

ζs q
s

)m

= ψn,0
i +

+∞
∑

m=1

ψn,m
i

(

+∞
∑

s=m

µm,s q
s

)

=

+∞
∑

m=0

βn,m
i (x) qm, (82)
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where

βn,0
i = ψn,0

i , (83)

βn,m
i =

m
∑

s=1

ψn,s
i µs,m, m ≥ 1. (84)

Similarly, on the unknown free surface z = η(x; q), it holds

∂i

∂xi

(

∂φn

∂z

)

=

+∞
∑

m=0

γn,mi (x) qm, (85)

∂i

∂xi

(

∂2φn

∂z2

)

=

+∞
∑

m=0

δn,mi (x) qm, (86)

where

γn,0i = ψn,1
i , (87)

γn,mi =

m
∑

s=1

(s+ 1)ψn,s+1
i µs,m, m ≥ 1, (88)

δn,0i = 2ψn,2
i , (89)

δn,mi =

m
∑

s=1

(s+ 1)(s+ 2)ψn,s+2
i µs,m, m ≥ 1. (90)

Then, on the unknown free surface z = η(x; q), it holds using (82) that

Φ(x, ζ ; q) =

+∞
∑

n=0

φn(x, ζ) q
n =

+∞
∑

n=0

qn

[

+∞
∑

m=0

βn,m
0 (x) qm

]

=

+∞
∑

n=0

+∞
∑

m=0

βn,m
0 (x) qm+n =

+∞
∑

s=0

qs

[

s
∑

m=0

βs−m,m
0 (x)

]

=
+∞
∑

n=0

φ̄n,0(x) q
n, (91)

where

φ̄n,0(x) =

n
∑

m=0

βn−m,m
0 . (92)

Similarly, we have

∂iΦ

∂xi
=

+∞
∑

n=0

φ̄n,i(x) q
n, (93)

∂i

∂xi

(

∂Φ

∂z

)

=
+∞
∑

n=0

φ̄z
n,i(x) q

n, (94)

∂i

∂xi

(

∂2Φ

∂z2

)

=

+∞
∑

n=0

φ̄zz
n,i(x) q

n, (95)
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where

φ̄n,i(x) =
n
∑

m=0

βn−m,m
i , (96)

φ̄z
n,i(x) =

n
∑

m=0

γn−m,m
i , (97)

φ̄zz
n,i(x) =

n
∑

m=0

δn−m,m
i . (98)

Then, on the unknown free surface z = η(x; q), it holds using (93) and (94) that

f =
1

2
∇Φ · ∇Φ

=
1

2

[

(

∂Φ

∂x

)2

+

(

∂Φ

∂z

)2
]

=

+∞
∑

m=0

Γm,0(x) q
m, (99)

where

Γm,0(x) =
1

2

m
∑

n=0

(

φ̄n,1 φ̄m−n,1 + φ̄z
n,0 φ̄

z
m−n,0

)

. (100)

Similarly, it holds on z = η(x; q) that

∂f

∂x
= ∇Φ · ∇

(

∂Φ

∂x

)

=
∂Φ

∂x

∂2Φ

∂x2
+
∂Φ

∂z

∂

∂x

(

∂Φ

∂z

)

=

+∞
∑

m=0

Γm,1(x) q
m, (101)

where

Γm,1(x) =
m
∑

n=0

(

φ̄n,1 φ̄m−n,2 + φ̄z
n,0 φ̄

z
m−n,1

)

. (102)

Besides, on z = η(x; q), we have by means of (93), (94) and (95) that

∂f

∂z
= ∇Φ · ∇

(

∂Φ

∂z

)

=
∂Φ

∂x

∂

∂x

(

∂Φ

∂z

)

+
∂Φ

∂z

∂2Φ

∂z2

=

+∞
∑

m=0

Γm,3(x) q
m, (103)
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where

Γm,3(x) =
m
∑

n=0

(

φ̄n,1 φ̄
z
m−n,1 + φ̄z

n,0 φ̄
zz
m−n,0

)

. (104)

Furthermore, using (93), (101) and (103), we have on z = η(x; q) that

∇Φ · ∇f =
∂Φ

∂x

∂f

∂x
+
∂Φ

∂z

∂f

∂z
=

+∞
∑

m=0

Λm(x) q
m, (105)

where

Λm(x) =
m
∑

n=0

(

φ̄n,1 Γm−n,1 + φ̄z
n,0 Γm−n,3

)

(106)

Then, using (93), (94), (101) and (105), we have on z = η(x; q) that

N [Φ(x, z; q)]

= α2∂
2Φ

∂x2
+
∂Φ

∂z
− 2α

∂f

∂x
+∇Φ · ∇f

=

+∞
∑

m=0

∆φ
m(x) q

m, (107)

where

∆φ
m(x) = α2 φ̄m,2 + φ̄z

m,0 − 2α Γm,1 + Λm (108)

for m ≥ 0.

Using (49) and (82), we have on z = η(x; q) that

∂2

∂x2
(Φ− φ0) =

+∞
∑

n=1

∂2φn(x, η)

∂x2
qn =

+∞
∑

n=1

qn

(

+∞
∑

m=0

βn,m
2 qm

)

=
+∞
∑

n=1

qn

(

n−1
∑

m=0

βn−m,m
2

)

, (109)

and similarly

∂

∂z
(Φ− φ0) =

+∞
∑

n=1

∂φn(x, η)

∂z
qn =

+∞
∑

n=1

qn

(

+∞
∑

m=0

γn,m0 qm

)

=

+∞
∑

n=1

qn

(

n−1
∑

m=0

γn−m,m
0

)

, (110)

respectively. Then, on z = η(x; q), it holds due to the linear property of the operator
(42) that

L (Φ− φ0) =

+∞
∑

n=1

Sn(x) q
n, (111)
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where

Sn(x) =
n−1
∑

m=0

(

α2 βn−m,m
2 + γn−m,m

0

)

. (112)

Then, on z = η(x; q), it holds

(1− q)L (Φ− φ0) = (1− q)

+∞
∑

n=1

Sn q
n =

+∞
∑

n=1

(Sn − χn Sn−1) q
n, (113)

where

χn =

{

0, when n ≤ 1,
1, when n > 1.

(114)

Substituting (113), (107) into (38) and equating the like-power of q, we have the
boundary condition:

Sm(x)− χm Sm−1(x) = cφ ∆φ
m−1(x), m ≥ 1. (115)

Define

S̄n(x) =

n−1
∑

m=1

(

α2 βn−m,m
2 + γn−m,m

0

)

. (116)

Then,

Sn =
(

α2 βn,0
2 + γn,00

)

+ S̄n =

(

α2 ∂
2φn

∂x2
+
∂φn

∂z

)
∣

∣

∣

∣

z=0

+ S̄n. (117)

Substituting the above expression into (115) gives the boundary condition on z = 0:

(

α2 ∂
2φm

∂x2
+
∂φm

∂z

)
∣

∣

∣

∣

z=0

=
{

cφ ∆φ
m−1 + χm Sm−1 − S̄m

}
∣

∣

∣

z=0
, m ≥ 1. (118)

Substituting the series (50), (93) and (99) into (39), equating the like-power of q,
we have on z = 0 that

ζm(x) =
{

cη ∆
η
m−1 + χm ζm−1

}
∣

∣

z=0
, m ≥ 1, (119)

where
∆η

m = ζm − α φ̄m,1 + Γm,0.
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