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Abstract New exact analytic solutions are introduced for the rotational

motion of a rigid body having two equal principal moments of inertia and

subjected to an external torque which is constant in magnitude. In partic-

ular, the solutions are obtained for the following cases: (1) Torque parallel

to the symmetry axis and arbitrary initial angular velocity; (2) Torque per-

pendicular to the symmetry axis and such that the torque is rotating at a

constant rate about the symmetry axis, and arbitrary initial angular veloc-

ity; (3) Torque and initial angular velocity perpendicular to the symmetry

axis, with the torque being fixed with the body. In addition to the solutions

for these three forced cases, an original solution is introduced for the case

of torque-free motion, which is simpler than the classical solution as regards
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its derivation and uses the rotation matrix in order to describe the body ori-

entation. This paper builds upon the recently discovered exact solution for

the motion of a rigid body with a spherical ellipsoid of inertia. In particular,

by following Hestenes’ theory, the rotational motion of an axially symmetric

rigid body is seen at any instant in time as the combination of the motion

of a “virtual” spherical body with respect to the inertial frame and the mo-

tion of the axially symmetric body with respect to this “virtual” body. The

kinematic solutions are presented in terms of the rotation matrix. The newly

found exact analytic solutions are valid for any motion time length and rota-

tion amplitude. The present paper adds further elements to the small set of

special cases for which an exact solution of the rotational motion of a rigid

body exists.

Keywords rigid body dynamics, kinematics, rotation, integrable cases of

motion, revolution ellipsoid of inertia, analytical reduction

1 Introduction

The study of angular motion of a rigid body is at the very basis of clas-

sical physics. Besides the theoretical interest, the subject is of considerable

practical importance for the fields of astronautics and celestial mechanics.

The problem of the rotational motion of a rigid body can be divided into

two parts. The dynamic problem aims to obtain the angular velocity of the

body with respect to an inertial reference by starting from the knowledge of

the initial angular velocity and the history of the applied torque. On the other

hand, the kinematic problem focuses on determining the current orientation

of the body from the knowledge of the initial orientation and the history of

the angular velocity.

The exact analytic solution for the rotational motion of a rigid body exists

only for a small number of special cases.
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When no external torque (other than the one due to gravity) acts on the

body, exact solutions exist for both the dynamic and kinematic problems

only in the following three cases:

1. Euler-Poinsot case: torque-free rotation of an asymmetric rigid body with

a fixed point coincident with the center of mass (Euler 1758; Poinsot 1834;

Jacobi 1849; Leimanis 1965; Morton et al. 1974);

2. Lagrange-Poisson heavy top case: rigid body under gravity force with

two equal principal moments of inertia at the fixed point and the center

of mass along the third axis of inertia (Lagrange 1788; Poisson 1813;

Golubev 1960; Leimanis 1965);

3. Kovalevskaya heavy top case: rigid body under gravity force with two

equal principal moments of inertia at the fixed point, value of the third

moment of inertia equal to half of the value of the moment inertia about

the other two axes, and the center of mass in the plane of equal moments

of inertia (Kovalevskaya 1890; Leimanis 1965).

On the contrary, when the rigid body is subjected to an external torque,

the complete (i.e. for both the kinematics and the dynamics) exact analytic

solution exists only for a rigid body with spherical ellipsoid of inertia sub-

jected to a constant torque and arbitrary initial angular velocity (Romano

2008), in addition to the straightforward single degree-of-freedom case of

rotation with a torque along a principal axis of inertia and initial angular

velocity along the same axis.

Furthermore, a partial (limited to the dynamic problem) exact analytic

solution exists for the case of an axially symmetric body subjected to a

constant torque (Longuski 1991, Tsiotras and Longuski 1991). In particular,

Longuski 1991 and Tsiotras and Longuski 1991 use a complex form expression

of the Euler’s dynamic equations and give an exact solution for the angular

velocity involving the Fresnel integral function, and an approximate solution

for the kinematic problem in terms of Euler angles. Nevertheless, no exact

analytic solution has been found for the kinematic problem.
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Several researchers have proposed approximate solutions. In particular,

Longuski 1991, and Longuski and Tsiotras 1995 use asymptotic and series

expansion to get the approximate solution of the dynamics and kinematics

for both the constant torque case and the more difficult case of time-varying

torque. Livneh and Wie 1997 analyze qualitatively, in the phase space, the

dynamics of a rigid-body subjected to constant torque. As regards the kine-

matic problem, Iserles and Nørsett 1999 study the solution in terms of series

expansion for the more general problem of solving linear differential equation

in Lie Groups, building upon the work of Magnus 1954. Finally, Celledoni

and Saefstroem 2006 propose ad-hoc numerical integration algorithms.

For the first time, to the knowledge of the author, the present paper

introduces the complete exact analytic solutions for the rotation of an axially

symmetric rigid body in the following three cases

1. External torque constant in magnitude and parallel to the symmetry axis,

with arbitrary initial angular velocity and body orientation.

2. External torque constant in magnitude, perpendicular to the symmetry

axis and rotating at a constant rate about the symmetry axis, with arbi-

trary initial angular velocity and body orientation.

3. External torque and initial angular velocity perpendicular to the symme-

try axis, with the torque constant in magnitude and fixed with the body

and arbitrary initial body orientation.

The solution for the kinematics are given in terms of the rotation matrix.

This paper builds upon the recently found exact analytic solution for

the motion of a rigid body with a spherical ellipsoid of inertia (Romano

2008), and the Hestenes’ method of decomposing the rotational motion of

an axially symmetric rigid body into the combination of the motion of a

“virtual” spherical body with respect to the inertial frame and the motion

of the axially symmetric body with respect to this “virtual” body (adapted

from Hestenes 1999).
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In addition to the three cases listed above, an original complete solution

of the Euler-Poinsot’s classical case of torque-free motion is also presented

in this paper, which is simpler than the classical solution (Leimanis 1965) as

regards its derivation and uses the rotation matrix in order to describe the

body orientation.

The newly introduced exact analytic solutions are of high theoretical in-

terest, as they add new elements to the set of few special cases for which

an exact solution of the rotational motion of a rigid body exists. Addition-

ally, they are also of interest from the applied mathematics point of view as

they constitute significant new comparison cases for the validation and error

analysis of approximate algorithms. Indeed, the analytic solutions presented

in this paper are valid for any length of time and rotation amplitude: they

only require the numerical evaluation of mathematical expressions, without

needing any numerical propagation.

Finally, the solutions introduced in this paper are valid for any rigid body

which has an ellipsoid of inertia of revolution, i.e. two equal principal mo-

ments of inertia. This class of bodies, having a dynamic axial symmetry,

contains as a subset the class of bodies having geometric axial symmetry

(Hestenes 1999). However, following the common practice adopted in liter-

ature, in this paper the definition of “axially symmetric body” and “body

with revolution ellipsoid of inertia” are used interchangeably.

The paper is organized as follows: Section 2 briefly introduces the dynamic

and kinematic equations for the rotational motion of a generic rigid body and

Section 3 summarizes the known results for a rigid body having spherical

ellipsoid of inertia. Section 4 introduces the method used to analyze the

motion of a rigid body with revolution ellipsoid of inertia, and Section 5

presents the new exact analytic solutions listed above. Finally, Section 6

concludes the paper.
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2 General Rigid-Body Problem Statement

For a generic rigid body the Euler’s rotational equation of motion, in vectorial

form, is (Goldstein 1980)

ḣ = m (1)

where the the dot symbol denotes the time derivative with respect to an

inertial reference frame, m is the resultant external torque acting on the

body, and

h = I ω (2)

is the absolute angular momentum of the body, I is the inertia dyadic of the

body with respect to its center of mass, and ω is the angular velocity of the

body with respect to an inertial reference frame.

By resolving all of the vectors and the inertia dyadic along a body-fixed

Cartesian coordinate system B with axis equal to the principal axes of inertia,

Eq. 1 can be written in scalar form as

I1ṗ = (I2 − I3) q r + m1

I2q̇ = (I3 − I1) r p + m2 (3)

I3ṙ = (I1 − I2) p q + m3,

where {Ii : i = 1, 2, 3} are the principal moments of inertia, {p, q, r} are the

components in the coordinate system B of ω, and elements of the column

matrix BωBN . Finally {mi : i = 1, 2, 3} are the components of m along the

same axes.

The rotation matrix RNB ∈ SO(3) from the body fixed coordinate sys-

tem B to an inertial coordinate system N obeys the following differential

equation (Leimanis 1965)

ṘNB = RNB Ω
(

BωBN

)

, (4)
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where

Ω
(

BωBN

)

=











0 −r q

r 0 −p

−q p 0











, (5)

In general, Equations 3 and 4, which solve the dynamic and kinematic motion

problem of a rigid body respectively, do not have exact analytic solutions. In

particular, the following straightforward direct solution of Eq. 4

RNB(t) = RNB(0) exp

(
∫ t

0

Ω(ξ) dξ

)

, (6)

where exp(•) indicates the matrix exponential, is only valid for the very par-

ticular cases when the matrix Ω(t) commutes with its integral (Adrianova

1995). This commutativity is lost when the initial angular velocity is arbi-

trary; therefore, Eq. 6 is not valid anymore in that case. The limitation in

the validity of the solution of Eq. 6 is not clearly stated in Bödewadt 1952

and Leimanis 1965, as already noticed in Longuski 1984.

3 Exact analytic solution for the motion of a rigid body with a

spherical ellipsoid of inertia

This section summarizes the results introduced by Romano 2008 for the

motion of a rigid body with spherical ellipsoid of inertia and subjected to

a constant torque. The developments reported in this section will be used

in the following sections of this paper in order to analyze the motion of an

axially symmetric rigid body.

For a rigid body having a spherical ellipsoid of inertia, the kinematic

differential equations in terms of the stereographic complex rotation variables

wk (Tsiotras and Longuski 1991, Schaub and Junkins 2003) are (Romano

2008)

ẇk =
1

2
(p0 − i q0) w2

k − i (r0 + U t) wk +
1

2
(p0 + i q0) , k = 1, 2, 3. (7)
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Theorem 1 Given p0, q0, r0 and U real numbers, with p0 and q0 not both

zero, the general solution for each one of the Eq. 7, governing the rotational

kinematics of a rigid body with spherical ellipsoid of inertia, initial angular

velocity components p(0) = p0, q(0) = q0, and r(0) = r0 along the three body

fixed axes σ1, σ2 and σ3, and subjected to a constant torque U , normalized

by the value of the moment of inertia and directed along the axis σ3, is the

following

w(t, c) =
(1 + i)

√
U

3 (p0 − iq0)
[6z + G(z, c)] , (8)

with

(9)

G(z, c) :=
2 1F1

(

3−ν
2

, 5

2
; z2

)

(ν − 1) z2 + 6 1F1

(

1− ν
2
, 3

2
; z2

)

c νz − 3 1F1

(

1−ν
2

, 3

2
; z2

)

1F1

(

−ν
2
, 1

2
; z2

)

c + 1F1

(

1−ν
2

, 3

2
; z2

)

z
,

where 1F1 denotes the confluent hypergeometric function (Lebedev 1965), c ∈
C is the constant of integration and

z :=
(1 + i) (r0 + Ut)

2
√

U
, ν := −1− i

(

p2

0
+ q2

0

)

4 U
. (10)

Corollary 1 The solution in terms of the rotation matrix, which corresponds

to the solution given by theorem 1 in terms of stereographic rotation variables,

is

RNB(t) = [rkj(t)] , k, j = 1, 2, 3, (11)

with

rk1 =
i (wk − wk)

1 + |wk|2
, rk2 =

wk + wk

1 + |wk|2
, rk3 =

1− |wk|2
1 + |wk|2

, k = 1, 2, 3,

(12)

where wk = w(t, ck), being w(t, ck) given by Eq. 8 with the following values

for the initial conditions (obtained by considering the rotation matrix RNB

to be equal to the identity matrix at the initial time t = 0, without loss of

generality).

c1 = − (1 + i)

6
√

U







1F1

(

1−ν
2

, 3

2
;

ir2

0

2U

)

[

6r2

0
+ 3 (p0 − iq0) r0 + 6iU

]

+ 2g

2 1F1

(

1− ν
2
, 3

2
;

ir2

0

2U

)

νr0 + 1F1

(

−ν
2
, 1

2
;

ir2

0

2U

)

(p0 − iq0 + 2r0)
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c2 =
(1− i)

6
√

U







1F1

(

1−ν
2

, 3

2
;

ir2

0

2U

)

[

6ir2

0
− 3 (p0 − iq0) r0 − 6U

]

− 2g

2 1F1

(

1− ν
2
, 3

2
;

ir2

0

2U

)

νr0 + 1F1

(

−ν
2
, 1

2
;

ir2

0

2U

)

(ip0 + q0 + 2r0)







c3 =
(1 + i)

6r0

√
U







g − 3 1F1

(

1−ν
2

, 3

2
;

ir2

0

2U

)

(

r2

0
+ iU

)

1F1

(

1− ν
2
, 3

2
;

ir2

0

2U

)

ν + 1F1

(

−ν
2
, 1

2
;

ir2

0

2U

)







, (13)

where ν is defined as in Eq. 10, and

g := 1F1

(

3− ν

2
,
5

2
;
ir2

0

2U

)

(ν − 1) r2

0
. (14)

In the general case when the constant torque is not directed along the axis

σ3, and the coordinate system B is not coincident with N at the initial time,

the results of Theorem 1 and Corollary 1 are still applicable, as reported in

the following corollary, which constitutes a new development with respect to

Romano 2008.

Corollary 2 Let us consider that the direction of the external torque is iden-

tified in the coordinate system B by the unit vector

u =



















u1

u2

u3



















, (15)

and that the initial orientation of B with respect to the inertial coordinate

system N is given by RBN (0). Then, by exploiting the property of successive

rotations, it results

RBN (t) = RBK RKN (t) RKB RBN (0), (16)

where RKB is any time-independent rotation matrix which brings the direc-

tion of the torque to coincide with the third axis of the auxiliary body-fixed

coordinate system K. In other words, the matrix RKB needs to satisfy the

condition

RKB



















u1

u2

u3



















=



















0

0

1



















. (17)



10

For instance, RKB can be obtained by combining a first elementary rotation

of an angle α = arctan 2(u2, u1) (indicating by arctan 2 the four quadrant

inverse tangent) about the third axis of B with a second elementary rotation of

an angle β = arctan 2(u2/sin(α), u3) about the resulting second axis, yielding

RKB =











cos (β) 0 − sin (β)

0 1 0

sin (β) 0 cos (β)





















cos (α) sin (α) 0

− sin (α) cos (α) 0

0 0 1











. (18)

Furthermore, RKN (t) is obtained by transposing the resulting matrix of Eq. 11

of Corollary 1, with the subindex B substituted by K, and the following val-

ues of the components along the coordinate system K of the initial angular

velocity of the body with respect to the inertial frame


















p0

q0

r0



















= RKB



















p′
0

q′
0

r′
0



















, (19)

where the prime symbol is used to denote the initial conditions expressed in

the B coordinate system.

4 Analysis of the rotational motion of a rigid body with a

revolution ellipsoid of inertia

Let us assume, from now on, that the rigid body has ellipsoid of inertia

which is a revolution ellipsoid. Consequently, let us assume that the principal

moments of inertia satisfy the following relation

I1 = I2 = I 6= I3. (20)

By following the development of Hestenes 1999, the absolute angular mo-

mentum of the body can be expressed by

h = I ω = Iω + (I3 − I)(ω · e) e, (21)

where e is the unit vector along the direction of the symmetry axis.
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Additionally, the angular velocity can be seen, at any instant of time, as

the sum of two vectorial components, whose one is parallel to the angular

momentum vector (ωh) and the other one is parallel to the body symmetry

axis (ωe), i.e.

ω = ωh + ωe. (22)

In particular, from Eq. 21, it yields

ωh =
h

I
, ωe =

(I − I3)

I3

(

h

I
· e

)

e = A(ωh · e) e, (23)

with the constant A defined as A = (I − I3)/I3.

From Eq. 23 it results

h = Iωh, (24)

and, from the Euler’s equation (Eq. 1),

ḣ = Iω̇h = m (25)

Equations 22 and 25 are the mathematical expression of the Reduction

Theorem (Hestenes 1999) which can be formally stated as follows: the evo-

lution in time of the absolute angular momentum of an axially symmetric

body subjected to an external torque vector m is corresponding to the mo-

tion of a “virtual” homogeneous spherical body with the same value of the

transversal inertia of the axially symmetric body and subjected to the same

external torque.

In other words, to exemplify, the rotational motion of an axially symmet-

ric rigid body (with two equal moments of inertia I and third moment of

inertia I3) is decomposed into the combination of the motion of a “virtual”

spherical body (with principal moment of inertia I) with respect to the iner-

tial frame and the spinning motion, about its symmetry axis, of the axially

symmetric rigid body with respect to this “virtual” spherical body.

In order to analyze in more details the motion of the axially symmetric

body, we consider the following three Cartesian coordinate systems:
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1. A principal coordinate system B attached to the axially symmetric body

and centered at its center of mass.

2. A coordinate system S attached to the “virtual” spherical body and cen-

tered at its center of mass.

3. An inertially fixed coordinate system N .

Assumptions 1. Without loosing generality we assume that the coordinate

system B has its third axis parallel to the axis of symmetry of the body, and

that the coordinate systems B and S have superimposed axes at the initial

time (t = 0), i.e. that RBS(0) is an identity matrix.

We now take advantage of the reduction theorem by subdividing the

procedure to reach the final goal of solving the motion of the coordinate

system B with respect to the inertial frame into two subproblems: first we

solve for the motion of the coordinate system B with respect to S, and then

we look for a solution of the motion of the coordinate system S with respect

to N . The advantage of this procedure stays in the fact that the problem of

solving the motion for an axially symmetric body is reduced to the simpler

problem of solving the motion for a body having spherical ellipsoid of inertia.

Because of the definitions of ωh and ωe (see Eq 22 and Eq. 23) and of

the Assumptions 1, the coordinate system B is moving with respect to the

coordinate system S by rotating about its third axis with the angular rate

ωe = |ωe| = A(ωh · e). (26)

Indeed, the vector ωh is the angular velocity of the coordinate system S with

respect to the coordinate system N .

In particular, the solution for the kinematic description of the motion of

B with respect to S can be stated as follows (see also Eq. 4 and 6)

RBS(t) = RBS(0) exp

(
∫ t

0

Ω
(

SωSB

)

(ξ) dξ

)

=











cos [f(t)] sin [f(t)] 0

− sin [f(t)] cos [f(t)] 0

0 0 1











,

(27)
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with

f(t) =

∫ t

0

ωe(ξ) dξ. (28)

In developing Eq.27 it has been taken into account that RBS(0), without loss

of generality, is an identity matrix because of the Assumptions 1, and

SωSB = BωSB =



















0

0

−ωe(t)



















, Ω
(

SωSB

)

(t) =











0 ωe(t) 0

−ωe(t) 0 0

0 0 0











. (29)

In order to fully solve for the motion of the axially symmetric body it now

remains to find the solution for the motion of the coordinate system S with

respect to the coordinate system N .

In particular, the dynamics of the ‘virtual” spherical body with respect

to the inertial frame is governed by Eq. 25. By expressing all of the vectors of

that equation in scalar components along the coordinate system S, it yields

Sω̇h =
1

I
Sm =

1

I
RSB

Bm, (30)

where Sωh is the column matrix obtained by projecting the angular velocity

vector ωh along the coordinate system S, defined as

Sωh = SωSN =



















p

q

r



















, (31)

and Bm is the column matrix obtained by projecting the torque vector m

along the coordinate system B.

The initial conditions for Eq. 30 are (see Eq. 24 and Assumptions 1)

SωSN (0) =



















p
0

q
0

r0



















=
RSB(0) Bh0

I
=



















p0

q0

I3

I
r0



















, (32)

where p0, q0 and r0 are the initial conditions for the angular rate of the rigid

body with revolution ellipsoid of inertia.
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Furthermore, from Eq. 26 it yields

ωe(t) = A r(t). (33)

In particular, for all of the cases when the external acting torque depends at

most on time, from Equations 30 it results

ωe(t) = A

(

I3

I
r0 +

1

I

∫ t

0

me(ξ) dξ

)

, (34)

where me = m · e.
The kinematic equation in terms of motion of the coordinate system S

with respect to N is

ṘNS = RNS Ω
(

Sωh

)

. (35)

Finally, once obtained the solution for the Equations 34, 27, 30 and 35, the

complete solution for the dynamic description of the motion of the axially

symmetric rigid body is given at each time instant t by

BωBN (t) = BωBS(t) + RBS(t) SωSN (t), (36)

while the solution of the correspondent kinematic problem is

RBN (t) = RBS(t) RSN (t). (37)

Indeed, Eq. 36 is immediately obtained from Eq. 37 by taking the time

derivative of both sides of Eq. 37, by considering Equations 4 and 5, and

by exploiting the property

Ω
(

RBS
SωSN

)

= RBS Ω
(

SωSN

)

RSB . (38)

5 Exact analytic solutions for the motion of a rigid body with a

revolution ellipsoid of inertia

By leveraging the developments of previous sections, this section introduces

the exact analytic solutions for the dynamics and kinematics of a rigid body

having ellipsoid of inertia of revolution. Four cases are considered in the

following four subsections.
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5.1 Case with a constant external torque parallel to the symmetry axis

The following theorem introduces a previously unknown exact analytic solu-

tion for the complete dynamic and kinematic problems of an axially symmet-

ric rigid body with a constant external torque staying at any time parallel

to the symmetry axis, and arbitrary initial orientation and angular velocity.

Theorem 2 Given p0, q0, r0 and U3 real numbers, the solution of the dy-

namic problem of determining, at any time t, the absolute angular velocity

of a rigid body having two equal principal moments of inertia about the prin-

cipal body axes (σ1) and (σ2), initial angular velocity components p(0)=p0,

q(0) = q0, and r(0) = r0 along the three principal axes, and subjected to a

constant torque U3, normalized by the value of the equal principal moment of

inertia (I) and directed along the unequal inertia principal axis (σ3), is the

following

BωBN (t) =



















p0 cos [f(t)] + q0 sin [f(t)]

−p0 sin [f(t)] + q0 cos [f(t)]

r0 + I
I3

U3t



















, (39)

while the solution of the correspondent kinematic problem of determining, at

any time t, the orientation of the body with respect to the inertial frame, i.e.

of the coordinate system B with respect to N , is given by

RBN (t) = RBS(t)RSN (t) (40)

where RSN (t) is obtained from Eq. 16 of Corollary 2, by substituting the

subindex B by S, the RBK matrix by the identity matrix, the values of the

initial conditions by p′
0

= p0, q
′

0
= q0, r

′

0
= I3

I
r0 and the value of the torque

magnitude by U = U3. Finally, RBS(t) is given by Eq. 27 with

f(t) = A

(

I3

I
r0 t +

U3

2
t2
)

. (41)
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Proof In this case we suppose to have the following external torque acting

on the axially symmetric rigid body

Bm(t) =



















0

0

m3



















, (42)

with m3 a scalar constant.

From Equations 27 and 42, it results that the external torque has the

same scalar components as seen from both the coordinate system B and

the coordinate system S, which is attached to the “virtual” spherical body;

this results from the fact that the torque is directed along the rotation axis

between the two coordinate systems. Therefore, it yields

Sm(t) = RSB(t) Bm(t) = Bm(t). (43)

By taking into account the Equations 42 and 43, the solution of the

dynamic problem for the “virtual” spherical body, i.e. of Eq. 30 with initial

conditions 32, is immediately given by

SωSN (t) =



















p(t)

q(t)

r(t)



















=



















p0

q0

I3

I
r0 + U3t



















, (44)

where U3 = m3/I.

The solution of the kinematic problem for the “virtual” spherical body

correspondent to the kinematic solution of Eq.44, stated in Eq. 35 , i.e. the

determination of the rotation matrix RSN (t), is given by the Corollary 2 (see

Section 3 and the statement of Theorem 2).

Now, in order to reach the goal of fully solving the motion of the axially

symmetric rigid body with respect to the inertial frame, it just remains to

find the solution for the motion of the coordinate system B with respect to

the coordinate system S.
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In particular, BωSB is immediately given by Eq. 29 with (from Equa-

tions 34 and 44)

ωe(t) = A

(

I3

I
r0 + U3t

)

. (45)

Furthermore, the motion of the coordinate system B with respect to S is

governed by Eq. 27 with

f(t) =

∫ t

0

ωe(ξ) dξ = A

(

C +
I3

I
r0 t +

U3

2
t2
)

, (46)

where C = 0 because of Assumptions 1.

Finally, the complete solution of the dynamic problem is given by Eq. 39,

which follows from the Equations 36, 44, and 45, while the solution of the

kinematic problem is given by Eq. 40.

Theorem 2 results therefore proven.

5.2 Cases with a constant external torque perpendicular to the symmetry

axis

This section introduces the exact analytic solution for the complete dynamic

and kinematic problems of an axially symmetric rigid body with an external

torque which is constant in magnitude and stays at any time perpendicular

to the symmetry axis. Two cases are presented, in two different theorems.

In particular, the following theorem introduces a previously unknown

exact analytic solution for an axially symmetric rigid body with a constant

external torque staying at any time perpendicular to the symmetry axis and

rotating at a constant rate about the symmetry axis, with arbitrary initial

angular velocity and body orientation.

Theorem 3 Given p0, q0, r0 and U real numbers, the solution of the dy-

namic problem of determining, at any time t, the absolute angular velocity of

a rigid body having two equal principal moments of inertia (I) about the prin-

cipal body axes (σ1) and (σ2) and principal moment of inertia I3 about the

third axis (σ3), initial angular velocity components p(0)= p0, q(0)= q0, and
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r(0) = r0 along the three principal axes, and subjected to a constant torque

perpendicular to the third axis, rotating about the third axis at the angular

rate
(

I3−I
I

)

r0, and having magnitude U normalized by the value of the equal

principal moment of inertia (I), is the following

BωBN (t) =



















(p0 + U t) cos [f(t)] + q0 sin [f(t)]

−(p0 + U t) sin [f(t)] + q0 cos [f(t)]

r0



















, (47)

while the solution of the correspondent kinematic problem of determining, at

any time t, the orientation of the body with respect to the inertial frame, i.e.

of the coordinate system B with respect to N , is given by

RBN (t) = RBS(t) RSN (t), (48)

where RSN (t) is obtained from Eq. 16 of Corollary 2, by substituting the

subindex B by S, the time-independent matrix RBK by

RSK =











0 0 1

0 1 0

−1 0 0











, (49)

the values of the initial conditions by p′
0

= p0, q
′

0
= q0, r

′

0
= I3

I
r0. Finally,

RBS(t) is given by Eq. 27 with

f(t) =

(

I − I3

I

)

r0 t. (50)

Proof In case of external torque perpendicular to the symmetry axis of the

body, the dynamics and kinematics of the motion of the coordinate system

B with respect to the coordinate system S are independent of the acting

torque. Indeed, Eq. 34, by taking into account that me = 0, yields

ωe = A

(

I3

I
r0

)

=

(

I − I3

I

)

r0. (51)

Then BωSB is immediately obtained by inserting Eq. 51 into Eq. 29. Fur-

thermore, RBS(t) is given by Eq. 27 with

f(t) = ωe t (52)
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In order to reach the goal of fully solving the motion of the axially sym-

metric rigid body with respect to the inertial frame, it just remains to be

solved the problem of finding the motion of the “virtual” spherical body with

respect to the inertial frame, i.e. the motion of the coordinate system S with

respect to the coordinate system N .

Because of the assumption made in the statement of Theorem 3 that the

external torque is rotating about the axis of symmetry at a constant angular

rate equal to −ωe, it yields

Bm(t) =



















m cos(ωet)

−m sin(ωet)

0



















, (53)

with m a scalar constant.

From Equations 27 and 53, it results that the external torque has the

following expression in components along the S coordinate system

Sm(t) = RSB(t) Bm(t) =



















m

0

0



















. (54)

By taking into account the Equations 53 and 54, the solution of the dy-

namic problem for the “virtual” spherical body, i.e. of Eq. 30, is immediately

given by

SωSN (t) =



















p(t)

q(t)

r(t)



















=



















p0 + Ut

q0

I3

I
r0



















, (55)

where U = m/I.

The solution of the kinematic problem for the “virtual” spherical body

correspondent to the kinematic solution of Eq. 55 is given by Corollary 2.

Finally, the complete solution of the dynamic problem is given by Eq. 47,

as it follows from the Equations 36, 51, and 55, while the solution of the

kinematic problem is given by Eq. 48.

Theorem 3 results therefore proven.
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The following theorem introduces the exact analytic solution for the com-

plete dynamic and kinematic problems of an axially symmetric rigid body

with a constant external torque fixed with the axially symmetric body and

perpendicular to its axis of symmetry, and with the initial absolute angular

velocity also perpendicular to the symmetry axis and arbitrary initial body

orientation.

Theorem 4 Given p0, q0 and U real numbers, the solution of the dynamic

problem of determining, at any time t, the absolute angular velocity of a rigid

body having two equal principal moments of inertia about the principal body

axes (σ1) and (σ2), initial angular velocity components p(0)= p0, q(0)= q0,

and r(0)= 0 along the three principal axes, and subjected to a constant torque

fixed with the axially symmetric body and perpendicular to its symmetry axis

(without loss of generality we can assume that the torque is directed as the

first axis of the coordinate system B), is the following

BωBN (t) =



















p0 + U t

q0

0



















, (56)

while the solution of the correspondent kinematic problem of determining, at

any time t, the orientation of the body with respect to the inertial frame, i.e.

of the coordinate system B with respect to N , is given by

RBN (t) = RSN (t), (57)

where RSN (t) is obtained from Eq. 16 of Corollary 2, by substituting the

subindex B by S, the time-independent matrix RBK by the matrix RSK de-

fined in Eq. 49, and the values of the initial conditions by p′
0

= p0, q
′

0
=

q0, r
′

0
= 0.

Proof In this case ωe = 0, i.e. the coordinate system B is at rest with respect

to the coordinate system S. In other words, in this case the axial symmetric

body moves under the effect of the acting constant torque analogously to a
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spherical symmetric body. Therefore, the theorem statement follows directly

from Eq. 3 and from Corollary 2.

5.3 Case without external torques

A solution to this classical case (Euler-Poinsot’s spontaneous motion) is well

known (see for instance Leimanis 1965). However, an original and simpler

solution, as regards its derivation, is presented here below in terms of the

rotation matrix. This solution is obtained by applying Hestenes’ reduction

theorem (Hestenes 1999). Hestenes 1999 reports a similar solution but he

uses the not widely familiar notion of Spinor of rotation in order to describe

the body orientation, while here below the solution is reported in terms of

the rotation matrix.

The solution developed here for both the dynamics and kinematics are

advantageous in that they are obtained with less algebraic steps than the

classical solution, which relies on the geometrical construction of the body-

fixed cone and the “space-fixed cone”.

Theorem 5 Given p0, q0, r0 real numbers, the solution of the dynamic prob-

lem of determining, at any time t, the absolute angular velocity of a rigid

body having two equal principal moments of inertia about the principal body

axes (σ1) and (σ2), initial angular velocity components p(0)= p0, q(0)= q0,

and r(0) = r0 along the three principal axes, and not subjected to external

torques is the following

BωBN (t) =



















p0 cos (ωe t) + q0 sin (ωe t)

−p0 sin (ωe t) + q0 cos (ωe t)

r0



















, (58)

with ωe = I−I3

I
r0 (Eq. 34). Furthemore, the solution of the correspondent

kinematic problem of determining, at any time t, the orientation of the body

with respect to the inertial frame, i.e. of the coordinate system B with respect
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to N , is given by

RBN (t) = RBS(t)RSN (t) (59)

where RSN (t) is obtained from Eq. 6, with ωSN = ωSN (0) as given by Eq. 32.

Finally, RBS(t) is given by Eq. 27 with

f(t) =

(

I − I3

I

)

r0 t. (60)

Proof In this case, Eq. 25 states the conservation of the angular momentum

h(t) = h
0
. (61)

Therefore, the dynamic solution is straightforwardly given by following the

development of Section 4, with the kinematic problem solved by considering

Eq. 6. An alternative to the use of Eq. 6 is the use of the Euler’s equation

(see for instance Goldstein 1980)

RSN (t) =
{

cos(φ(t)) I + [1− cos(φ(t))] a aT − sin(φ(t))Ω(a)
}

RSN (0),

(62)

where Ω(•) is the skew-symmetric matrix function appearing also in Eq. 5,

I indicates the three by three identity matrix, a indicates the unit vector of

the Euler’s axis projected in either the S or the N coordinate system, and

φ indicate the Euler’s angle of rotation, which is satisfying, in this case, the

following simple equation

φ(t) = |SωSN (0)| t. (63)

In writing Eq. 62 it has been taken into account that, in accordance with

Assumptions 1, RSN (0) = RBN (0). Finally, the axis of rotation a can be

immediately obtained by considering that it coincides with the direction of

the angular velocity SωSN (0), therefore yielding

a =
SωSN (0)

|SωSN (0)| . (64)
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Interestingly, the overall spontaneous motion of an axially symmetric rigid

body having three degrees of freedom is seen as intrinsically equivalent to the

one degree of freedom motion of the “virtual” spherical body with respect

to the inertial frame (motion of S with respect to N). This motion captures

the precession of the inertial symmetry axis of the physical body about the

constant and inertially fixed absolute angular momentum vector. On the

other hand, the motion of the coordinate system B with respect to S captures

the relative spinning of the axially symmetric body about its axis.

6 Conclusions

For the first time, to the knowledge of the author, the exact analytic solutions,

for both the kinematic and the dynamic problems, have been introduced in

this paper for the rotational motion of a rigid body having revolution ellipsoid

of inertia, in the following three cases

1. External torque constant in magnitude and parallel to the symmetry axis,

with arbitrary initial angular velocity and body orientation.

2. External torque constant in magnitude, perpendicular to the symmetry

axis and rotating at a constant rate about the symmetry axis, with arbi-

trary initial angular velocity and body orientation.

3. External torque and initial angular velocity perpendicular to the symme-

try axis, with the torque constant in magnitude and fixed with the body

and arbitrary initial body orientation.

The kinematic solutions are presented in terms of the rotation matrix.

In particular, the results of this paper are obtained by building upon the

recently found exact analytic solution for the motion of a rigid body with a

spherical ellipsoid of inertia, and by decomposing the motion of an axially

symmetric rigid body into the combination of the motion of a “virtual” spher-

ical body with respect to the inertial frame and that of the axially symmetric

body with respect to this “virtual” body.
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All of the analytical solutions introduced in this paper have been suc-

cessfully checked against numerical solutions obtained through differential

equations propagation, for sample cases.

Longuski 1991 and Tsiotras and Longuski 1991 give an exact analytic

solution for the dynamic equation of an axially symmetric body which is

applicable in a more general case (torque fixed with the body and having

a generic direction) than the cases introduced in the present paper. Never-

theless the exact analytic solutions introduced in the present paper, when

they apply, are critically advantageous because they are complete for both

the dynamics and the kinematics.

In conclusion, the newly introduced exact analytic solutions are of high

theoretical interest, as they add new elements to the set of few special cases

for which a complete exact solution of the rotational motion of a rigid body

exists. Additionally, they are also of interest from the applied mathematics

point of view as they constitute significant new comparison cases for the

validation and error analysis of approximate algorithms. In particular, the

analytic solutions presented in this paper are valid for any length of time and

rotation amplitude.
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