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Abstract. We give integrable quad equations which are multi-quadratic (degree-

two) counterparts of the well-known multi-affine (degree-one) equations classified by

Adler, Bobenko and Suris (ABS). These multi-quadratic equations define multi-valued

evolution from initial data, but our construction is based on the hypothesis that

discriminants of the defining polynomial factorise in a particular way that allows

to reformulate the equation as a single-valued system. Such reformulation comes

at the cost of introducing auxiliary (edge) variables and augmenting the initial

data. Like the multi-affine equations listed by ABS, these new models are consistent

in multidimensions. We clarify their relationship with the ABS list by obtaining

Bäcklund transformations connecting all but the primary multi-quadratic model back

to equations from the multi-affine class.

1. Introduction

We consider quad equations defined in terms of a polynomial in four variables, Q, that

is equations of the form

Q(u, ũ, û, ˆ̃u) = 0, (1)

where in the simplest setting u = u(n,m), ũ = u(n + 1,m), û = u(n,m + 1) and
ˆ̃u = u(n + 1,m + 1) are values of a dependent variable taking values in C ∪ {∞} as a

function of independent variables n,m ∈ Z. The quad equation is called multi-affine if

the defining polynomial, Q, is degree one in each variable, and we call it multi-quadratic

if Q is degree two in each variable.

An important integrability feature that is possible for the quad equation is the

multidimensional consistency [1, 2]; it has proven to be a natural property of many

integrable equations in the multi-affine class. Significant work on this is the list of multi-

affine quad equations with the consistency property obtained by Adler, Bobenko and

Suris (ABS) in [3, 4]. Quad equations beyond the multi-affine class were considered in [5]
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where several multidimensionally consistent examples (also beyond the multi-quadratic)

were obtained. In fact these equations appeared naturally in relation to underlying

models in a different class, namely the Yang-Baxter maps [6, 7], and emerge from a

generalisation of results connecting the Yang-Baxter maps with the multi-affine quad

equations [3, 8, 9]. One multidimensionally consistent multi-quadratic quad equation

identified in [5] was known earlier due to observations of Adler and Veselov in [10], it

in fact arises as the superposition principle for Bäcklund transformations of the KdV

equation. Recently it has also come to light that the well-known discrete version of

the KdV equation due to Hirota [11], which is multi-affine but absent from the ABS

list, is naturally understood within the consistency framework as a special case of a

multi-quadratic quad equation [12]. The few known examples therefore indicate that

multi-quadratic quad equations are a quite natural and potentially rich class of integrable

systems.

A feature of higher degree discrete models, like the multi-quadratic quad equations,

is that they define multivalued evolution from initial data. This adds richness, but

also another level of difficulty in dealing with such systems. This difficulty is however

mitigated in the mentioned integrable cases because they can be reformulated as a single-

valued system with augmented initial data. For the models in [5] this is because the

variables present in the associated Yang-Baxter map themselves satisfy a single-valued

system. But that situation can actually be viewed as a special case of a more general

constructive approach to this kind of reformulation [12]. In this approach auxiliary

variables are introduced on lattice edges, which are similar to variables of an associated

Yang-Baxter map, however, rather than satisfying an independent system, they instead

participate in a mixed system involving both vertex and edge variables. The resulting

model is of a type similar to the class introduced in [13] but with the additional feature

of preserving algebraic relations on the lattice edges. The reformulation procedure relies

completely on a discriminant factorisation property of the defining polynomial. It is this

special property that is the departure point and the main emphasis of the present work,

we use it as a foundation to enable some systematic investigations of the multi-quadratic

quad equations.

The main result presented here is a list of multi-quadratic quad equations with the

discriminant factorisation property. To construct the models we start from biquadratic

polynomials (the factors of the discriminant) which are associated with the edges of the

lattice, and this provides a natural correspondence with the multi-affine ABS equations

whose construction also involves edge biquadratics. Due to the factorised discriminant

hypothesis the models we list admit reformulation as single-valued systems. However

the more important property of these equations, which is actually rather remarkable

because it is not explicitly built into the construction, is the integrability feature of

multidimensional consistency.

The second part of our paper is devoted to developing the transformation theory

of the obtained models. The most pressing question we seek to address relates to

existence of transformations of Bäcklund or Miura type connecting these multi-quadratic
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models back to the better studied multi-affine ABS equations. Such transformations

are not inherent from our construction, rather we tackle the problem of obtaining

transformations a posteriori using separate methods. The main result is to connect

all except the primary model, namely the multi-quadratic counterpart of Q4, back to

equations in the multi-affine (ABS) class.

We proceed as follows. In Section 2 we explain the basic discriminant factorisation

hypothesis for the multi-quadratic quad equations. Additional assumptions are

explained in Section 3 and the obtained models are listed in Section 4. The method to

reformulate these models as systems that define single-valued evolution from initial data

is given in Section 5 and their multidimensional consistency is described in Section 6.

Section 7 is devoted to the transformation theory of the models, in particular we recall

the multi-affine equations from the ABS list in Section 7.1 and give transformations

connecting the multi-quadratic models to them in Section 7.2. The methods used to

obtain these transformations are explained in Sections 7.3, 7.4 and 7.5. Some questions

raised by the results reported here are discussed in Section 8.

2. The factorised-discriminant hypothesis

In the multi-quadratic case considered here, the defining polynomial Q of the quad

equation (1) is of degree two in each of the four variables. To calculate the evolution

defined by (1) from some initial data requires solving this equation locally as a quadratic

equation for one of the arguments, and in particular taking the square root of its

discriminant with respect to that argument. In general this discriminant is a polynomial

of degree four in each of the remaining three arguments; the property of polynomial Q
that we study here is the factorisation of this discriminant into a product of three factors:

∆[Q(u, ũ, û, ˆ̃u), ˆ̃u] = H1(u, ũ)H2(u, û)G1(ũ, û),

∆[Q(u, ũ, û, ˆ̃u), û] = H1(u, ũ)H2(ũ, ˆ̃u)G2(u, ˆ̃u),

∆[Q(u, ũ, û, ˆ̃u), ũ] = H1(û, ˆ̃u)H2(u, û)G3(u, ˆ̃u),

∆[Q(u, ũ, û, ˆ̃u), u] = H1(û, ˆ̃u)H2(ũ, ˆ̃u)G4(ũ, û),

(2)

where H1 and H2 are degree-two polynomials in each of two variables, i.e., biquadratics,

and G1, . . . , G4 are degenerate biquadratics of the form Gi(ũ, û) = (ai+biũ+ciû+diũû)2,

i ∈ {1, 2, 3, 4}, i.e., the square of a polynomial which is degree-one in each variable. This

is the most general hypothesis that allows replacement of (1) by an associated single-

valued system through introduction of auxiliary edge variables σ1 and σ2 satisfying the

edge relations

σ2
1 = H1(u, ũ), σ2

2 = H2(u, û). (3)

The key features allowing this are that all discriminants in (2) are squares which clearly

leads locally to a rational model, and furthermore that the edge relations on opposite

sides of the quad are the same, allowing the rational model to replace the quad equation

globally (for instance in the simplest setting throughout Z2). The procedure to obtain
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the single-valued system is straightforward, it was explained in detail in [12] and an

example will also be included later in this paper (Section 5).

We remark that the restriction to G1, . . . , G4 being degenerate seems unnatural in

some regards, in fact there exist sets of polynomials {Q, H1, H2, H3} satisfying system

(2) with G1 = G2 = G3 = G4 = H3, and where H3 is also non-degenerate. These

more symmetric solutions of the problem are interesting, however to understand the

sense in which the resulting polynomial Q defines an integrable discrete model requires

a substantial alteration of the setting, and this will be studied in detail elsewhere.

Also we remark that the assumed symmetry can be relaxed, for instance replacing H1

appearing in the third and fourth equations of (2) with Ĥ1 6= H1. Such systems are of

interest too but the associated polynomial Q in that case is more naturally interpreted

as defining a Bäcklund transformation between models.

3. Additional assumptions

The solution of (2), in the sense of obtaining a set of polynomials

{Q, H1, H2, G1, G2, G3, G4}
for which system (2) is identically satisfied, is a difficult classification problem in its full

generality. Further assumptions allow this problem to be solved using computer algebra,

these come from looking at examples identified in [12].

We assume invariance of Q when the arguments are permuted by the Klein four-

group (the Kleinian symmetry)

Q(u, ũ, û, ˆ̃u) = Q(ũ, u, ˆ̃u, û) = Q(û, ˆ̃u, u, ũ). (4)

This reduces the generic multi-quadratic polynomial Q to the form

Q(u, ũ, û, ˆ̃u) = a1 + a2

(
u+ ũ+ û+ ˆ̃u

)
+ a3

(
u2 + ũ2 + û2 + ˆ̃u

2
)

+ a4

(
ûˆ̃u+ uũ

)
+a5

(
ũû+ uˆ̃u

)
+ a6

(
ũˆ̃u+ uû

)
+ a7

(
ũûˆ̃u+ uûˆ̃u+ uũˆ̃u+ uũû

)
+a8

(
uũ2 + ûˆ̃u

2
+ u2ũ+ û2 ˆ̃u

)
+ a9

(
uû2 + u2û+ ũˆ̃u

2
+ ũ2 ˆ̃u

)
+a10

(
uˆ̃u

2
+ u2 ˆ̃u+ ũû2 + ũ2û

)
+ a11uũûˆ̃u+ a12

(
ũˆ̃u+ uû

)(
ũû+ uˆ̃u

)
+a13

(
ũû+ uˆ̃u

)(
ûˆ̃u+ uũ

)
+ a14

(
ũˆ̃u+ uû

)(
ûˆ̃u+ uũ

)
+ a15

(
û2 ˆ̃u

2
+ u2ũ2

)
+a16

(
ũ2û2 + u2 ˆ̃u

2
)

+ a17

(
ũ2 ˆ̃u

2
+ u2û2

)
+ a18uũûˆ̃u

(
u+ ũ+ û+ ˆ̃u

)
+a19

(
ũû2 ˆ̃u

2
+ u2ũ2 ˆ̃u+ uû2 ˆ̃u

2
+ u2ũ2û

)
+ a20

(
ũ2ûˆ̃u

2
+ uũ2 ˆ̃u

2
+ u2û2 ˆ̃u+ u2ũû2

)
+a21

(
ũ2û2 ˆ̃u+ uũ2û2 + u2ûˆ̃u

2
+ u2ũˆ̃u

2
)

+ a22uũûˆ̃u
(
ûˆ̃u+ uũ

)
+a23uũûˆ̃u

(
ũû+ uˆ̃u

)
+ a24uũûˆ̃u

(
ũˆ̃u+ uû

)
+a25

(
ũ2û2 ˆ̃u

2
+ u2û2 ˆ̃u

2
+ u2ũ2 ˆ̃u

2
+ u2ũ2û2

)
+a26uũûˆ̃u

(
ũûˆ̃u+ uûˆ̃u+ uũˆ̃u+ uũû

)
+ a27u

2ũ2û2 ˆ̃u
2
,

(5)
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for some set of coefficients {a1, . . . , a27}. This symmetry is a strong additional

assumption, for instance by itself it is actually sufficient for integrability of quad

equations in the multi-affine class [4, 14].

We also assume that both biquadratic polynomials H1 and H2 are symmetric, and

furthermore that they are taken from one of the following one-parameter families (the

parameter being denoted by p)

q4∗ :
c

2

(
1 + u2ũ2 + ũ2p2 + p2u2

)
− 1

2c

(
u2ũ2p2 + u2 + ũ2 + p2

)
−
(
c2 − 1

c2

)
uũp, (6)

q3∗ :
1

2
(u2 + ũ2) +

δ2

2
(p2 − 1)− uũp, (7)

q2∗ :
1

4

(
u2 + ũ2 + p2

)
− 1

2
(uũ+ ũp+ pu) , (8)

q1∗ : (ũ− u)2 − p, (9)

a2∗ :
1

2
(1 + u2ũ2)− puũ, (10)

a1∗ : (ũ+ u)2 − p, (11)

h3∗ : uũp+ δ2, (12)

h2∗ : u+ ũ+ p. (13)

Where it appears δ ∈ {0, 1}, whilst in (6) c ∈ C \ {0, 1,−1, i,−i} is a fixed constant.

Up to a point transformation of the parameters these biquadratic polynomials coincide

with those associated with the ABS equations [3, 4] (precise parameter associations will

be given later in Section 7.1). Note that (12) and (13) are considered to be biquadratics

here also, but this is in a projective sense, so loosely speaking we view for instance (13)

as the polynomial (u+ ũ+ p)(u−∞)(ũ−∞). We remark that by a Möbius change of

variables a symmetric biquadratic polynomial can always be brought to one of the forms

(6)–(13) for some choice of parameter p, or else is the square of a multi-affine polynomial

(like G1, . . . , G4 above), a possibility which we therefore exclude by restricting to (6)–

(13). The discriminant of biquadratics (6)–(13) with respect to ũ is a polynomial of

degree at most four in u, the main characterising feature of the biquadratic families is

that roots of this discriminant polynomial do not change upon altering parameter p.

Finally, the assumed symmetry of Q together with (2) implies already that

G1 = G2 = G3 = G4 =: G,

in fact we will go further and make the assumption that

G(ũ, û) = (ũ− û)2, (14)

which is our last additional assumption.
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4. The obtained multi-quadratic quad equations

The additional assumptions enable solution of the discriminant factorisation hypothesis

directly by computer algebra, which gives the main result of our paper as follows.

Proposition 1 Let Q be a polynomial of degree two in each of four variables with the

Kleinian symmetry

Q(u, ũ, û, ˆ̃u) = Q(ũ, u, ˆ̃u, û) = Q(û, ˆ̃u, u, ũ), (15)

such that the discriminants factorise as follows

∆[Q(u, ũ, û, ˆ̃u), ˆ̃u] ∝ (ũ− û)2H1(u, ũ)H2(u, û), (16)

where H1 and H2 are biquadratic polynomials. If H1 and H2 are taken from one

of the biquadratic families (6)–(13) with generic parameter choices denoted p and q

respectively, then Q is determined up to an overall constant and defines respectively the

quad equations (17)–(24) below.

Q4∗:

(p− q)[(c−2p− c2q)(uũ− ûˆ̃u)2 − (c−2q − c2p)(uû− ũˆ̃u)2]

−(p− q)2[(u+ ˆ̃u)2(1 + ũ2û2) + (ũ+ û)2(1 + u2 ˆ̃u
2
)]

+[(u− ˆ̃u)(ũ− û)(c−1 − cpq)− 2(p− q)(1 + uũûˆ̃u)]

×[(u− ˆ̃u)(ũ− û)(c−1pq − c)− 2(p− q)(uˆ̃u+ ũû)] = 0,

(17)

Q3∗:

(p− q)[p(uũ− ûˆ̃u)2 − q(uû− ũˆ̃u)2]− δ2(p− q)2[(u+ ˆ̃u)2 + (ũ+ û)2]

+[(u− ˆ̃u)(ũ− û)− 2δ2(p− q)][(u− ˆ̃u)(ũ− û)(pq − 1)− 2(p− q)(uˆ̃u+ ũû)] = 0,
(18)

Q2∗:

(p− q)[p(uũ− ûˆ̃u)(u+ ũ− û− ˆ̃u)− q(uû− ũˆ̃u)(u+ û− ũ− ˆ̃u)]

+(u− ˆ̃u)(ũ− û)[p(u− û)(ũ− ˆ̃u)− q(u− ũ)(û− ˆ̃u)− pq(p− q)] = 0,
(19)

Q1∗:

(p− q)[p(u+ ũ− û− ˆ̃u)2 − q(u+ û− ũ− ˆ̃u)2]

+4(u− ˆ̃u)(ũ− û)[p(u− û)(ũ− ˆ̃u)− q(u− ũ)(û− ˆ̃u)] = 0,
(20)

A2∗:

(p− q)[p(uû− ũˆ̃u)2 − q(uũ− ûˆ̃u)2]

+(u− ˆ̃u)(ũ− û)[(u− ˆ̃u)(ũ− û)(pq − 1) + 2(p− q)(1 + uũûˆ̃u)] = 0,
(21)

A1∗:

(p− q)[p(u− ũ+ û− ˆ̃u)2 − q(u− û+ ũ− ˆ̃u)2]

+4(u− ˆ̃u)(ũ− û)[p(u+ û)(ũ+ ˆ̃u)− q(u+ ũ)(û+ ˆ̃u)] = 0,
(22)

H3∗:

(p− q)[p(uû− ũˆ̃u)2 − q(uũ− ûˆ̃u)2]

+(u− ˆ̃u)(ũ− û)[(u− ˆ̃u)(ũ− û)pq − 4δ2(p− q)] = 0,
(23)
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H2∗:

(p− q)[p(u− ũ+ û− ˆ̃u)2 − q(u− û+ ũ− ˆ̃u)2]

+(u− ˆ̃u)(ũ− û)[(u− ˆ̃u)(ũ− û)− 2(p− q)(u+ ũ+ û+ ˆ̃u)] = 0.
(24)

We have denoted the list of models here Q4∗, . . . , H2∗ due to their natural

correspondence with equations from the ABS list, which are denoted Q4, . . . , H1 [3].

(The ABS list and its precise relationship with (17)–(24) will be given in Section 7.1.)

The biquadratic polynomials associated with ABS equations Q1δ=0, A1δ=0 and H1 are

already squares, which means the multi-quadratic counterparts of those models factorise

into products of multi-affine polynomials, cases we exclude here as degenerate.

Similar to the situation for ABS equations, all of (18)–(24) can be obtained

from the primary model (17) by limiting procedures. All listed models are non-

equivalent by autonomous Möbius changes of variables and point transformations of the

parameters. However, the models A2∗ and Q3∗δ=0 are related by the non-autonomous

point transformation u→ u(−1)
n+m

, whilst A1∗ and Q1∗ are related by u→ (−1)n+mu.

To our knowledge the equations in the list (17)–(24) are new except for the following

cases. The model H2∗ (24) appeared as the superposition principle for solutions of the

KdV equation in [10] and in relation to Yang-Baxter maps in [5]. The model A1∗ (22)

was obtained, although not in explicit form, in [15]. The model A2∗ (21) was obtained

originally in [12] as the superposition principle for Bäcklund transformations of Hirota’s

discrete KdV equation [11].

5. Reformulation as single-valued systems

One of the most salient features of quad equations from the multi-quadratic class

is that they define multivalued evolution from initial data. However, built into the

construction of models (17)–(24) is the discriminant factorisation property, and this

allows the quad equation to be reformulated as a system that defines single-valued

evolution from augmented initial data [12]. Here we perform this reformulation on the

primary model Q4∗ (17), and give a proposition that makes precise the sense in which

the quad equation and its reformulation are equivalent.

As described in Section 2, the auxiliary variables on lattice edges (see Figure 1) are

introduced through the relations

σ2
1 =

c

2

(
1 + u2ũ2 + ũ2p2 + p2u2

)
− 1

2c

(
u2ũ2p2 + u2 + ũ2 + p2

)
−
(
c2 − 1

c2

)
uũp,

σ2
2 =

c

2

(
1 + u2û2 + û2q2 + q2u2

)
− 1

2c

(
u2û2q2 + u2 + û2 + q2

)
−
(
c2 − 1

c2

)
uûq,

(25)

which are in terms of the associated biquadratic polynomial given earlier in (6). By

solving equation (17) as a quadratic equation for ˆ̃u and exploiting these edge variables

we obtain an equation of the form

F(u, ũ, û, ˆ̃u, σ1σ2) = 0 (26)
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σ2

σ1

σ̃2

σ̂1

r r

r r

u ũ

û ˆ̃u

Figure 1. Variables assigned to the vertices of a quadrilateral, and auxiliary variables

to the edges.

which is by construction of polynomial degree one in ˆ̃u and σ1σ2, for instance:

F(u, ũ, û, ˆ̃u, σ1σ2) := u[(c−2p− c2q)(uũ− ûˆ̃u) + (c−2q − c2p)(uû− ũˆ̃u)]

−(u− ˆ̃u)[(c−1 − cpq)(u2 + ũû) + (c−1pq − c)(1 + u2ũû) + 2σ1σ2]

−(p− q)(ũ− û)(1 + u3 ˆ̃u)

(27)

(the precise form of this expression is chosen because it is simple, but it is not unique).

Sequentially solving for each of the quad variables of (17) in the same way leads to the

following system

F(u, ũ, û, ˆ̃u, σ1σ2) = 0,

F(ũ, u, ˆ̃u, û, σ1σ̃2) = 0,

F(û, ˆ̃u, u, ũ, σ̂1σ2) = 0,

F(ˆ̃u, û, ũ, u, σ̂1σ̃2) = 0,

(28)

up to the choice of sign of the discriminant terms appearing in the last argument.

The system (28), (25) is the single-valued model associated with (17). It is easily

verifiable that each equation in (28) implies (17) is satisfied modulo the relations

(25). The signs of the discriminant terms in (28) have been chosen for self-consistency

(ensuring that any one equation in (28) is a consequence of the other three), to preserve

the Kleinian symmetry, and to preserve the consistency property described in the

following section.

The usual initial value problem for a quad-equation involves specifying the

dependent variable on vertices along some admissible lattice path or collection of paths.

The modification required for system (28) is that variables on path edges, subject to the

constraint (25), also need to be specified. The system (28), (25) is therefore actually

a model of vertex-bond type as described in [13], but it has the additional feature of

preserving algebraic relations (25) on lattice edges. In this setting the multivalued

evolution defined by equation (17) is reflected in the non-uniqueness of initial edge

variables when they are defined in terms of the initial vertex variables through (25).

In Table 1 the polynomial F that appears in the single-valued system associated

with each equation from the list (17)–(24) is also given. The auxiliary variables present
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Q4∗ u[(c−2p− c2q)(uũ− ûˆ̃u) + (c−2q − c2p)(uû− ũˆ̃u)]

−(u− ˆ̃u)[(c−1 − cpq)(u2 + ũû) + (c−1pq − c)(1 + u2ũû) + 2σ1σ2]

−(p− q)(ũ− û)(1 + u3 ˆ̃u)

Q3∗ u[p(uũ− ûˆ̃u) + q(uû− ũˆ̃u)]− (u− ˆ̃u)[u2 + ũû− δ2(1− pq)− 2σ1σ2]

−δ2(p− q)(ũ− û)

Q2∗ u[p(u+ ũ− û− ˆ̃u) + q(u− ũ+ û− ˆ̃u)] + p(uũ− ûˆ̃u) + q(uû− ũˆ̃u)

−(u− ˆ̃u)[(u− ũ)(u− û) + pq + 4σ1σ2]

Q1∗ p(u+ ũ− û− ˆ̃u) + q(u− ũ+ û− ˆ̃u)− 2(u− ˆ̃u)[(u− ũ)(u− û)− σ1σ2]
A2∗ u[p(uû− ũˆ̃u) + q(uũ− ûˆ̃u)]− (u− ˆ̃u)(1 + u2ũû− 2σ1σ2)

A1∗ p(u+ û− ũ− ˆ̃u) + q(u− û+ ũ− ˆ̃u)− 2(u− ˆ̃u)[(u+ ũ)(u+ û)− σ1σ2]
H3∗ u[p(uû− ũˆ̃u) + q(uũ− ûˆ̃u)] + 2(u− ˆ̃u)(δ − σ1σ2)
H2∗ p(u+ û− ũ− ˆ̃u) + q(u− û+ ũ− ˆ̃u) + (u− ˆ̃u)(ũ+ û+ 2u− 2σ1σ2)

Table 1. Polynomials F(u, ũ, û, ˆ̃u, σ1σ2) that define the single-valued system (28)

associated with the multi-quadratic models (17)–(24) of Proposition 1. The auxiliary

variables σ1 and σ2 satisfy edge relations σ2
1 = H1(u, ũ) and σ2

2 = H2(u, û) in terms of

the associated biquadratic polynomials listed in (6)–(13).

in the table are introduced through the edge relations which can be written generically

as

σ2
1 = H1(u, ũ), σ2

2 = H2(u, û), (29)

in terms of the associated biquadratic polynomials (cf. Proposition 1).

To clarify the relationship between the multi-quadratic quad equations and their

formulation as a single-valued system we give the following Proposition.

Proposition 2 Consider any one of the equations from the list (17)–(24) and denote

that equation by Eq. Then the function u = u(n,m) appearing in a solution (u, σ1, σ2) of

the single-valued system (28), (29) associated with Eq (cf. Table 1) necessarily satisfies

Eq. Conversely, given a generic solution u = u(n,m) of Eq there exist two choices of

auxiliary functions σ1 = σ1(n,m) and σ2 = σ2(n,m) such that (u, σ1, σ2) satisfies the

single-valued system (28), (29) associated with Eq. Furthermore, one choice is obtained

from the other by the symmetry (u, σ1, σ2)→ (u,−σ1,−σ2) of the single-valued system.

The first statement of this proposition follows immediately from the fact that Eq is a

consequence of eliminating auxiliary variables between any one equation of (28) and

(29). The second statement of the proposition can be verified as follows. Suppose u

satisfies Eq and choose some edge on which to specify one of the auxiliary functions,

either σ1 or σ2 depending on the orientation, subject to the edge relations (29) there

will generically be two choices. Take this as initial data and use the system (28) to

obtain the functions σ1 and σ2, the key feature that can be verified by calculation is the
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Figure 2. Variables assigned to the vertices of a cube. In the case of the multi-

quadratic quad equations (17)–(24) the system (32) determines four possible values of
ˆ̃̄u from initial data u, ũ, û and ū.

consistency of this system for σ1 and σ2 due to the supposition that u satisfies Eq. The

third statement of the proposition can be seen by inspection.

6. Multidimensional consistency

The purpose of this section is to explain a key integrability feature of models (17)–

(24), namely their multidimensional consistency [1, 2, 3]. This emerges quite naturally,

although it has not been explicitly built into the construction of these equations.

The multidimensional consistency involves not just one equation in isolation, and

in fact for the equations listed it involves the whole family of equations obtained by

varying parameters p and q. The consistency is between members of this family with

different choices of the parameters. Due to the central role they play it is therefore

convenient to explicitly include the dependence on parameters p and q when writing a

generic equation from (17)–(24):

Qp,q(u, ũ, û, ˆ̃u) = 0. (30)

The key properties (involving the parameter dependence) of the generic defining

polynomial are first the symmetry

Qp,q(u, ũ, û, ˆ̃u) = Qq,p(u, û, ũ, ˆ̃u), (31)

and second the consistency of the system

Qp,q(u, ũ, û, ˆ̃u) = 0, Qp,q(ū, ˜̄u, ¯̂u, ˆ̃̄u) = 0,

Qq,r(u, û, ū, ¯̂u) = 0, Qq,r(ũ, ˆ̃u, ˜̄u, ˆ̃̄u) = 0,

Qr,p(u, ū, ũ, ˜̄u) = 0, Qr,p(û, ¯̂u, ˆ̃u, ˆ̃̄u) = 0,

(32)

for any choice of the parameters p, q and r, which is usually visualised by assigning

variables to vertices of a cube as in Figure 2, and equations to faces. By consistency we

mean that for generic initial data {u, ũ, û, ū} the system (32) has at least one solution
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for the remaining variables {ˆ̃u, ¯̂u, ˜̄u, ˆ̃̄u}. Directly by polynomial manipulation it can be

confirmed that for each quad-equation (17)–(24) the system (32) is consistent in this

sense, and in fact determines four possible solutions {ˆ̃u, ¯̂u, ˜̄u, ˆ̃̄u}.
Alternatively, and more explicitly, the consistency property can be verified by

reformulating the equation as a single-valued system as described in Section 5. For

instance in the case of the primary model (17) a direct calculation yields the following

expression that determines ˆ̃̄u in terms of the initial data on the cube:

u(c2 − c−2)[p(q − r)2(ûū− ũˆ̃̄u) + q(r − p)2(ūũ− ûˆ̃̄u) + r(p− q)2(ũû− ūˆ̃̄u)]

−(q − r)(r − p)(ū− ˆ̃̄u)[(c−1 − cpq)(u2 + ũû) + (c−1pq − c)(1 + u2ũû) + 2σ1σ2]

−(r − p)(p− q)(ũ− ˆ̃̄u)[(c−1 − cqr)(u2 + ûū) + (c−1qr − c)(1 + u2ûū) + 2σ2σ3]

−(p− q)(q − r)(û− ˆ̃̄u)[(c−1 − crp)(u2 + ūũ) + (c−1rp− c)(1 + u2ūũ) + 2σ3σ1] = 0,

(33)

where σ1, σ2 and σ3 are determined from the initial data through equations (25) and

σ2
3 =

c

2

(
1 + u2ū2 + ū2r2 + r2u2

)
− 1

2c

(
u2ū2r2 + u2 + ū2 + r2

)
−

(
c2 − 1

c2

)
uūr. (34)

Although the transformation group (σ1, σ2, σ3) 7→ (±σ1,±σ2,±σ3) leaving (25), (34)

invariant contains eight elements, the initial data {u, ũ, û, ū} leads to only four distinct

values of ˆ̃̄u due to the symmetry (σ1, σ2, σ3) 7→ (−σ1,−σ2,−σ3) of (33).

It is important to note that the consistency property of the associated single-valued

system can be broken by reversing sign of all discriminant terms in (28). This subtlety

reflects the fact that polynomial system (32) determines only four possible values of ˆ̃̄u

from the initial data, and not eight as might be expected. Other polynomials given in

Table 1 are also chosen with the consistency property in mind, so that in particular the

sign chosen for the discriminant terms is important.

The consistency property of models (17)–(24) means that their more general setting

is for a dependent variable u defined on Zd, where d > 1 is the dimension, determined

by the system

Qpi,pj(u,Tiu,Tju,TiTju) = 0, i, j ∈ {1 . . . d}. (35)

Here p1, . . . , pd are some set of parameters, while T1, . . . ,Td are shift operators in each

dimension. Probably the simplest Cauchy problem for (35) is to specify initial data on

coordinate axes, but actually this multidimensional setting is the departure point for

an extremely rich variety of initial value problems and lattice configurations [2, 10, 16].

This also aligns with the notion of solvability for models in statistical mechanics [17].

From a slightly different perspective the consistency property yields a great deal of

control over the solution structure of these models by providing immediately a natural

auto-Bäcklund transformation. This allows for example to construct exact solutions

as periodic Bäcklund chains (the discrete analogue of finite-gap solutions), as well as

soliton-type solutions from Bäcklund iteration.
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7. Transformations to ABS equations

All equations listed by ABS in [3], with the exception of Q4, are mutually related

via Bäcklund or Miura type transformations [18, 19, 20, 21]. Table 2 here lists

similar transformations connecting all except the primary multi-quadratic model Q4∗,

specifically equations (18)–(24), back to multi-affine equations from the ABS list. Before

describing these transformations in more detail we first recall the ABS list in (36)–(44)

below.

7.1. The ABS list

Q4:

sn(α)(vṽ + v̂ˆ̃v)− sn(β)(vv̂ + ṽˆ̃v)

− sn(α− β)[ṽv̂ + vˆ̃v − k sn(α) sn(β)(1 + vṽv̂ˆ̃v)] = 0,
(36)

Q3:

(α− 1/α)(vṽ + v̂ˆ̃v)− (β − 1/β)(vv̂ + ṽˆ̃v)

−(α/β − β/α)[ṽv̂ + vˆ̃v + δ2(α− 1/α)(β − 1/β)/4] = 0,
(37)

Q2:

α(v − v̂)(ṽ − ˆ̃v)− β(v − ṽ)(v̂ − ˆ̃v)

+αβ(α− β)(v + ṽ + v̂ + ˆ̃v − α2 + αβ − β2) = 0,
(38)

Q1:

α(v − v̂)(ṽ − ˆ̃v)− β(v − ṽ)(v̂ − ˆ̃v) + δ2αβ(α− β) = 0, (39)

A2:

(α− 1/α)(vv̂ + ṽˆ̃v)− (β − 1/β)(vṽ + v̂ˆ̃v)− (α/β − β/α)(1 + vṽv̂ˆ̃v) = 0, (40)

A1:

α(v + v̂)(ṽ + ˆ̃v)− β(v + ṽ)(v̂ + ˆ̃v)− δ2αβ(α− β) = 0, (41)

H3:

α(vṽ + v̂ˆ̃v)− β(vv̂ + ṽˆ̃v) + δ(α2 − β2) = 0, (42)

H2:

(v − ˆ̃v)(ṽ − v̂)− (α− β)(v + ṽ + v̂ + ˆ̃v + α + β) = 0, (43)

H1:

(v − ˆ̃v)(ṽ − v̂)− α + β = 0. (44)

In (36)–(44) we have reproduced the ABS list. Where it appears δ ∈ {0, 1} and

for Q4 (36) k ∈ C \ {0, 1,−1} is the modulus of the Jacobi elliptic function sn. The

parametrisations coincide with the ones given by ABS in [3] except for the case of Q4,

this canonical form (the Jacobi form) was obtained by Hietarinta in [22]. Each ABS
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equation is defined by a polynomial Q = Q(v, ṽ, v̂, ˆ̃v) that is degree one in four variables.

It was shown in [3] that this polynomial is characterised in terms of biquadratics through

a generalised discriminant formula as follows

(∂v̂Q)(∂ˆ̃vQ)− (∂v̂∂ˆ̃vQ)Q ∝ H1(v, ṽ), (∂vQ)(∂ṽQ)− (∂v∂ṽQ)Q ∝ H1(v̂, ˆ̃v),

(∂ṽQ)(∂ˆ̃vQ)− (∂ṽ∂ˆ̃vQ)Q ∝ H2(v, v̂), (∂vQ)(∂v̂Q)− (∂v∂v̂Q)Q ∝ H2(ṽ, ˆ̃v).
(45)

The polynomials H1 and H2 appearing in (45) coincide with those in (16) up to an

overall constant, provided we make the following associations between parameters α and

β appearing in the multi-affine equations (36)–(43) and parameters p and q appearing

in their multi-quadratic counterparts (17)–(24),

Q4 : p =
√
k sn(α +K), q =

√
k sn(β +K), c =

√
k,

Q3, A2 : p = (α + 1/α)/2, q = (β + 1/β)/2,

Q2 : p = α2, q = β2,

Q1, A1 : p = δ2α2, q = δ2β2,

H3 : p = 1/α, q = 1/β, δ2 → δ,

H2 : p = α, q = β,

(46)

where in the case of Q4 the parameter K is standard notation for the quarter period of

the sn function (with modulus k) satisfying sn(K) = 1, sn′(K) = 0.

We remark that for the multi-affine equations H1 (the lattice potential KdV

equation [23, 18]), Q1δ=0 (the lattice Schwarzian KdV equation [18]) and A1δ=0 the

associated biquadratic is the square of a polynomial which is degree one in each variable,

and as mentioned before their multi-quadratic counterparts factorise into products of

multi-affine polynomials which we have excluded as degenerate cases here.

7.2. An example transformation

To explain precisely the meaning of the entries in Table 2 we give here an explicit

example, specifically the second entry of the table. Consider the coupled system of

equations

(v − ṽ)(uv − ũṽ) + αvṽ = 0, (v − v̂)(uv − ûv̂) + βvv̂ = 0, (47)

which involve two functions u = u(n,m) and v = v(n,m), where as usual n,m ∈ Z,

ũ = u(n+ 1,m) and û = u(n,m+ 1), etc.

For a fixed function v = v(n,m) the equations (47) are coupled discrete Riccati

equations for u, which are compatible if v satisfies Q1δ=0. Due this choice of v the

function u = u(n,m) that emerges as the solution of (47) then satisfies equation Q2∗,

that is (19), with parameter associations p = α and q = β (notice that this parameter

association is different from the one in (46)). For brevity the second equation in (47)

and the parameter association between q and β are omitted from Table 2 because they

can be inferred from the first equation in (47) and the association between p and α that

have been listed.
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Eq. in u Bäcklund transformation Eq. in v

Q3∗p=2α2−1 α[(ũ+ δ)ṽ2 + (u+ δ)v2] = (ũ+ u+ 2δα2)ṽv Q3δ=0

Q2∗p=α (ṽ − v)(ũṽ − uv) + αṽv = 0 Q1δ=0

A2∗p=2(α2+1)/(α2−1) α(ṽ2v2 + 1) = ṽv[ũu(α2 − 1) + (α2 + 1)] A2

H3∗p=4/α2 ũu = ṽv(ṽv + δα) H3

H3∗p=4/α 4αũu = (ṽ + v)2 − δ2α2 A1

A1∗p=α2 2ṽv(ũ+ u) = α(ṽ2v2 + 1) H3δ=0

A1∗p=α 2(ṽ + v)(ũ+ u) = (ṽ + v)2 + α A1δ=0

H2∗p=−α ũ+ u− α = (ṽ + v)2 H1

A2∗p=2α2−1 α(ũuṽ2v2 + 1) = (ũu+ 1)ṽv A2

H3∗p=4/α 4αũu = (ṽ − v)2 − δ2α2 Q1

Q1∗p=α2 2ṽv(ũ− u) = α(ṽ2v2 + 1) H3δ=0

Q1∗p=α 2(ṽ − v)(ũ− u) = (ṽ − v)2 + α Q1δ=0

Table 2. Bäcklund transformations connecting equations from the multi-quadratic

class to the multi-affine (ABS) class. Details of implementing the transformations

are explained in Section 7.2. Transformations are given up to composition with point

symmetries of the equations in u and v. For completeness we include in the second part

of the table some transformations that can be obtained from those in the first part

by composition with (non-autonomous) point transformations. The transformation

connecting H2∗ to H1 was given originally in [10] up to composition with point

symmetries. Methods to obtain the transformations are described in the text, first

by non-symmetric degeneration of the auto-Bäcklund transformation in Section 7.3,

second by taking advantage of a natural connection with Yang-Baxter maps in Section

7.4, and third in Section 7.5 by exploiting the fact that the transformations, like the

equations themselves, can be characterised by discriminant properties of the defining

polynomial.

The transformation defined by (47) from v to u is therefore a quite standard

discrete-Riccati type of Bäcklund transformation, see for instance [18, 2, 19]. However

the system (47) also defines an inverse transformation from u to v which is less standard

because the equations for v are not of Riccati type. Similar to verifying the consistency

property of the multi-quadratic models (17)–(24) (cf. Section 6), it is convenient to

handle this system by introducing auxiliary variables. Specifically for the example (47)

the auxiliary variables enter through the edge relations

σ2
1 =

1

4

(
u2 + ũ2 + α2

)
− 1

2
(uũ+ ũα + αu) ,

σ2
2 =

1

4

(
u2 + û2 + β2

)
− 1

2
(uû+ ûβ + βu) ,

(48)

so in fact they are the Q2∗ auxiliary variables. They allow (47) to be re-written as

2ũṽ = (u+ ũ− α− 2σ1)v, 2ûv̂ = (u+ v̂ − β − 2σ2)v, (49)



Multi-quadratic quad equations: integrable cases 15

which have degree-one polynomial dependence in v, ṽ and v̂. Implementation of the

transformation from u to v therefore decomposes into a two-stage procedure. At the

first stage we construct from u satisfying Q2∗ the auxiliary functions σ1 = σ1(n,m) and

σ2 = σ2(n,m), as in Proposition 2, to obtain a solution (u, σ1, σ2) of the single-valued

reformulation of Q2∗ (cf. Table 1). At the second stage we use (49) to construct from

(u, σ1, σ2) the function v, which then satisfies Q1δ=0. Again the single-valued inverse

Bäcklund transformation (49) is omitted from the table because it can be easily obtained

from (47).

Similar to the example we have focused on in this section, all transformations listed

in Table 2 are standard Riccati-type systems for u. The inverse transformation to

obtain v is always more involved, reducing to a Riccati type system for v only after the

introduction of auxiliary variables associated with the solution of the multi-quadratic

quad equation for u.

7.3. Obtaining the transformations

It is rare to have a systematic method to obtain non-local transformations of Bäcklund

or Miura type between a given pair of equations. The transformations obtained

here do however fit into a general framework, specifically they are defined in terms

of polynomials which are characterised by their discriminants, a framework which is

therefore consistent with the main theme of this paper. We exploit this general point of

view in Section 7.5 however, we instead use more direct methods to obtain most of the

transformations listed in Table 2. A method involving non-symmetric degeneration of

the auto-Bäcklund transformation is explained in this section, transformations obtained

through a connection with Yang-Baxter maps will be explained in detail in the following

section (Section 7.4).

There is a method to obtain Bäcklund transformations between distinct quad

equations that was developed in [19], it is constructive insofar as it takes as

a starting point the already obtained equations. It relies on the natural auto-

Bäcklund transformation, which for the equations in question is inherent from the

multidimensional consistency, and exploits this in conjunction with the hierarchical

relationships between equations. Specifically we seek to connect an equation to its

degenerate counterpart by making a non-symmetric degeneration of the auto-Bäcklund

transformation.

The principal example where the non-symmetric degeneration technique has been

used is to obtain the second transformation in Table 2 (which was also the example

considered in Section 7.2). We exploit the fact that the substitution

u =
v

ε(1 + v)
(50)

into equation Q2∗ yields equation Q1δ=0 to first order as ε −→ 0. The natural auto-

Bäcklund transformation for Q2∗ (19) is as follows

Qp,r(u, ũ, v, ṽ) = 0, Qq,r(u, û, v, v̂) = 0, (51)



Multi-quadratic quad equations: integrable cases 16

whereQp,q is the defining polynomial of this equation, and the transformation connects a

solution u = u(n,m) to another solution of the same equation v = v(n,m). Applying the

degeneration procedure to solution v and judiciously choosing the Bäcklund parameter

we are led to write

Qp,r(u, ũ, rv/(1 + v), rṽ/(1 + ṽ)) = 0, Qq,r(u, û, rv/(1 + v), rv̂/(1 + v̂)) = 0, (52)

which at leading order as r = 1/ε −→ ∞ yields exactly the desired non-auto Bäcklund

transformation (47).

7.4. From Yang-Baxter maps to Bäcklund transformations

The Yang-Baxter maps given in [24], when suitably interpreted as a system of equations

for functions defined on edges of the lattice, are naturally connected with multi-affine

quad equations from the ABS list [3], in particular a potential function for the edge

variables is governed by a quad equation. A systematic method to obtain the Yang-

Baxter system on edge variables starting from the multi-affine equations from the

ABS list was given in [9]. Developments reported in [5, 15] go further, but in the

opposite direction, showing that also non-multi-affine multidimensionally consistent

quad equations can emerge as potential for the Yang-Baxter systems. And furthermore,

that two different quad equations emerging in this way from the same Yang-Baxter

system, as we shall see in this section, can immediately be connected through a

Bäcklund-type transformation.

Of particular relevance here are the models that have been considered in [25]

alongside the present work. This section is devoted to recalling the relevant models

from [24] and giving details of the theory developed in [5, 15, 25] which, combined with

the methods developed in this paper, can be used to obtain many of the transformations

in Table 2.

The starting point is a system of equations for two variables, say s and t, assigned

to the edges of Z2 oriented in the n and m directions respectively (similar to σ1 and

σ2 introduced in Section 5, cf. Figure 1). The particular systems relevant here are as

follows.

FI :

ŝ = t
α(1− β2)s− β(1− α2)t− α2 + β2

β(1− α2)s− α(1− β2)t+ (α2 − β2)st
,

t̃ = s
β(1− α2)t− α(1− β2)s− β2 + α2

α(1− β2)t− β(1− α2)s+ (β2 − α2)st
,

(53)

FII :

ŝ = t
αs− βt− δ(α2 − β2)

βs− αt
,

t̃ = s
αs− βt− δ(α2 − β2)

βs− αt
,

(54)
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FIII :

ŝ = t
αs− βt
βs− αt

,

t̃ = s
αs− βt
βs− αt

,

(55)

FV :

ŝ = t+
α− β
s− t

,

t̃ = s+
α− β
s− t

,

(56)

which are nothing but the quadrirational Yang-Baxter maps presented in [24] suitably

interpreted as an equation on the lattice (we have omitted model FIV because it is

not used here). The relevant feature of systems (53)–(56) is that they admit a three-

parameter family of potentials, we denote the potential here by f . The potentials

corresponding to these models, which are derived in [25], are as follows:

(FI)
f̃ + f = A ln(s) +B ln(s− α) + C ln(αs− 1) + 1

2
(B + C) ln(α2 − 1),

f̂ + f = A ln(t) +B ln(t− β) + C ln(βt− 1) + 1
2
(B + C) ln(β2 − 1),

(57)

(FII)
f̃ + f = Aα(2s− δα) +B ln(s) + C ln(s− δα),

f̂ + f = Aβ(2t− δβ) +B ln(t) + C ln(t− δβ),
(58)

(FIII)
f̃ + f = A ln(s) + αBs+ C/s,

f̂ + f = A ln(t) + βBt+ C/t,
(59)

(FV )
f̃ + f = As+B(s2 + α) + C(s3 + 3αs),

f̂ + f = At+B(t2 + β) + C(t3 + 3βt),
(60)

The parameters A, B and C may be chosen freely in each case.

For the purpose of illustration we focus on the system (53). In particular writing

f = ln(v) for the potential corresponding to the choice of the parameters A = 1,

B = C = 0 in (57) we find

ṽv = s, v̂v = t, (61)

whilst writing f = ln(u) for the potential corresponding to the choice of the parameters

A = −1, B = C = 1, (57) becomes

ũu =
(s− α)(αs− 1)

s(α2 − 1)
, ûu =

(t− β)(βt− 1)

t(β2 − 1)
. (62)

Eliminating s and t from (53) by means of (61) we find that v satisfies equation A2 (40),

whilst eliminating s and t from (53) using (62) we find that variable u satisfies equation

A2∗ (21) with the parameter associations

p = 2
α2 + 1

α2 − 1
, q = 2

β2 + 1

β2 − 1
.
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System Parameters (A,B,C) Potential Equation

FI (-1,1,1) f = ln(u) A2∗p=2(α2+1)/(α2−1)

(-1,1,-1) f = ln(u) A2∗p=2α2−1

(1,0,0) f = ln(v) A2

FII (0,1,1) f = ln(u) H3∗p=4/α2

(0,0,1) f = ln(v) H3

(1,0,0) f = v A1α→α2

FIII (0,1
2
,1
2
) f = u A1∗p=α2

(1,0,0) f = ln(v) H3δ=0

(0,1,0) f = v A1δ=0,α→α2

FV (0,1,0) f = u H2∗p=−α

(1,0,0) f = v H1

Table 3. Equations governing different potentials of the systems (53)–(56). The

potentials are introduced through equations (57)–(60) with the indicated choice of

parameters (A,B,C). It is explained in the text how to construct a transformation

between equations (idolons) that govern different potentials of the same system.

Parameter associations in the listed equations are given connecting α and p or

transforming α, similar associations connecting β and q or transforming β are implicit,

they are omitted from the table for brevity.

Equations governing the potential f for different choices of the parameters A, B and C

are referred to in [5] as idolons of the underlying system governing s and t, in particular

we have shown that equations A2 and A2∗ are idolons of (53).

A Bäcklund transformation can be obtained by composing these relations, that is

by eliminating s and t from formulas (61) and (62),

ũu =
(ṽv − α)(αṽv − 1)

ṽv(α2 − 1)
, ûu =

(v̂v − β)(βv̂v − 1)

v̂v(β2 − 1)
. (63)

This is the Bäcklund transformation between A2 and A2∗ that appears in the first part

of Table 2. The second transformation between these models can be obtained similarly

after observing that the potential corresponding to choice of parameters A = C = −1,

B = 1 is also governed by model A2∗.

Table 3 contains the data required to construct, by the same procedure, all but the

first two transformations in the first part of Table 2.

7.5. Discriminant properties of the transformations

All transformations listed in Table 2 are in the same class, they involve equations on

lattice edges and the defining polynomial B = B(u, ũ, v, ṽ) is degree-one in each of u and

ũ, and degree two in each of v and ṽ. This defining polynomial also has the following
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discriminant properties,

(∂uB)(∂ũB)− (∂u∂ũB)B ∝ µµ̃h(v, ṽ),

(∂ṽB)2 − 2(∂2ṽB)B ∝ η2h∗(u, ũ),
(64)

where µ and η are polynomials in v, and h, h∗ are the edge biquadratics associated

with the two equations connected by the Bäcklund transformation. Specifically h

coincides with H1 associated with the multi-affine equation in v through the generalised

discriminant (45), while h∗ coincides with H1 associated with the multi-quadratic

equation in u through the discriminant formula (16). This discriminant property is an

important feature of the transformations that combines asymmetrically the underlying

discriminant characterisations of the multi-quadratic models (18)–(24) and the multi-

affine ABS equations (37)–(44). In particular it may be used as a basis for their

construction.

One approach to such construction is offered by recognising the biquadratics

themselves (6)–(13) can take natural discriminant forms, as the primary example we

recognise that (7) is proportional to

(ũ+ u+ 2δα2)2 − 4[α(ũ+ δ)][α(u+ δ)], 2α2 = p+ 1.

It is easily seen that this expression emerges as the discriminant, with respect to ṽ or

v, of the expression

[α(ũ+ δ)]ṽ2 − [ũ+ u+ 2δα2]ṽv + [α(u+ δ)]v2,

which itself coincides with the polynomial defining the first transformation in Table 2.

The precise choice of this expression is not unique, and in particular the generalised

discriminant in u and ũ emerges a posteriori after choosing the expression so that the

required discriminant property in v and ṽ is obtained.

We remark that the classification of polynomials B with the discriminant properties

(64) is interesting from the point of view of exhausting transformations in the same class

as those listed in Table 2 (such task is similar to the one solved for multi-affine quad

equations in [26]).

8. Discussion

The discriminant factorisation property, as laid out in Section 2, allows reformulation

of the multi-quadratic quad equation as a system that defines single-valued evolution

from initial data. Our main result is the list of models constructed on the basis

of this hypothesis in Section 4, it contains all previously known integrable multi-

quadratic quad equations as well as a substantial number of new models that exhibit

the same integrability features. The nature of the relationship between the discriminant

factorisation property and the integrability is therefore an important question. Here

we have made additional assumptions beyond the discriminant factorisation hypothesis,

therefore although our investigations are suggestive, they leave open the problem of

determining whether this property is sufficient for integrability in this class of models.
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Beyond elliptic (and hyperelliptic) functions, degree-two equations studied

systematically from the point of view of integrability seem to be relatively rare.

An isolated precedent exists within the framework of Painlevé analysis for ordinary

differential equations. A list of degree-two counterparts of the Painlevé equations was

obtained by Chazy [27], loosely speaking these are second-order ordinary differential

equations with the Painlevé property that are quadratic in the second derivative term.

The difficult step of rigorously classifying this class of equations was made by Cosgrove

and Scoufis [28]. In that setting one of the principal features is that the higher degree

models do not define new transcendents (see [29]), in particular they are solvable in terms

of the degree-one Painlevé equations. Here the primary model, namely the equation that

we identify as a multi-quadratic counterpart of Q4, is the only new model we have not

yet connected back to an equation from the multi-affine class. The parallels between

integrable quad-equations and the Painlevé-type equations suggest that a Bäcklund-

type transformation establishing such connection should exist. Verifying or falsifying

this is therefore an important open problem.
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