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ON THE COMPLETE INTEGRABILITY OF A ONE GENERALIZED

RIEMANN TYPE HYDRODYNAMIC SYSTEM

DENIS BLACKMORE, YAREMA A. PRYKARPATSKY, OREST D. ARTEMOWYCH,
AND ANATOLIY K. PRYKARPATSKY

Abstract. The complete integrability of a generalized Riemann type hydrodynamic system is
studied by means of symplectic and differential-algebraic tools. A compatible pair of polynomial
Poissonian structures, Lax type representation and related infinite hierarchy of conservation laws
are constructed.

1. Introduction

We are interested in studying the complete integrability of the following dispersionless Riemann
type hydrodynamic flow

(1.1) DN−1
t u = z̄2x, Dtz̄ = 0

on a 2π-periodic functional manifold M̄N ⊂ C(∞)(R/2πZ;RN ), where N ∈ N is an arbitrary

natural number, a vector (u,Dtu,D
2
tu, ..., D

N−1
t u, z̄)⊺ ∈ M̄N , differentiations Dx := ∂/∂x, Dt :=

∂/∂t+ u∂/∂x satisfy the Lie-algebraic commutator relationship

(1.2) [Dx, Dt] = uxDx.

and t ∈ R is an evolution parameter. The system can be considered as a slight generalization of
the dispersionless Riemann type hydrodynamic system suggested recently by M. Pavlov and D.
Holm in the form

(1.3) DN−1
t u = z̄, Dtz̄ = 0

for N ∈ N and extensively studied in [1, 3, 4, 5, 2, 6], where it was stated that it is a Lax type
integrable bi-Hamiltonian flow on the manifold M̄N , possessing an infinite hierarchy of commuting
to each other already dispersive and also Lax type integrable Hamiltonian flows.

For the case N = 2 it is well known [8, 10] that the Riemann type hydrodynamic system (1.1)
is a smooth Lax type integrable bi-Hamiltonian flow on the 2π-periodic functional manifold M̄2,
whose Lax type representation is given by the following compatible linear system of equations:

(1.4) Dxf =

(

z̄x 0
−λ[u+ ux/(2z̄x)] −z̄xx/(2z̄x)

)

f, Dtf =

(

0 0
−λz̄x ux)

)

f,

where f ∈ C(∞)(R2;R2) and λ ∈ R is an arbitrary spectral parameter.
The present work is devoted to studying the Lax type integrability of the Riemann type hydro-

dynamic system (1.1) at N = 3 on a 2π-periodic functional manifold M̄3 ⊂ C(∞)(R/2πZ;R3) for
a vector (u, v, z̄)⊺ ∈ M̄3 in the following extended form:

(1.5) Dtu = v, Dtv = z̄2x, Dtz̄ = 0.

The flow (1.5) can be equivalently rewritten as a one on 2π-periodic functional manifold M3 ⊂
C(∞)(R/2πZ;R3) for a vector (u, v, z)⊺ ∈M3 as

(1.6) Dtu = v, Dtv = z, Dtz = −2zux,

Date: present.
1991 Mathematics Subject Classification. Primary 58A30, 56B05 Secondary 34B15 .
Key words and phrases. Lax type integrability, Riemann type hydrodynamic system, symplectic method,

differential-algebraic approach.

1

http://arxiv.org/abs/1204.0251v2


2DENIS BLACKMORE, YAREMAA. PRYKARPATSKY, OREST D. ARTEMOWYCH, AND ANATOLIY K. PRYKARPATSKY

where, for further convenience, we have done the following change of variables: z := z̄2x. We will
also use below the next form of the flow (1.6):

(1.7)
du/dt = v − uux
dv/dt = z − uvx

dz/dt = −2uxz − uzx







:= K[u, v, z],

defining a standard smooth dynamical system on the infinite-dimensional functional manifold M3,
where K : M3 → T (M3) is the corresponding smooth vector field on M3.

Below, based on the symplectic gradient-holonomic and differential algebraic tools, we will prove
the following main proposition.

Proposition 1.1. The Riemann type hydrodynamic flow (1.7) is a bi-Hamiltonian dynamical
system on the functional manifold M3 with respect to two compatible Poissonian structures ϑ, η :
T ∗(M3) → T (M3)

(1.8) ϑ :=





0 1 0
−1 0 0
0 0 2z1/2Dxz

1/2



 , η :=





∂−1 ux∂
−1 0

∂−1ux vx∂
−1 + ∂−1vx ∂−1zx − 2z

0 zx∂
−1 + 2z 0



 ,

possessing an infinite hierarchy of commuting to each other conservation laws and a non-
autonomous Lax type representation in the form

Dtf =





0 0 0
−λ 0 0
0 −λzx ux



 f,(1.9)

Dxf =









λ2u
√
z λv

√
z z

−λ3tu√z −λ2tv√z −λtz
λ4(tuv − u2)−
−λ2ux/

√
z

−λvx/
√
z+

+λ3(tv2 − uv)
λ2

√
z(u− tv)−
−zx/2z









f,

where λ ∈ R is an arbitrary spectral parameter and f ∈ C(∞)(R2;R3).

2. The symplectic gradient-holonomic integrability analysis

2.1. Poissonian structure analysis on the functional manifoldM3. Based on the symplectic
gradient-holonomic approach [8, 10, 11] to studying the integrability of smooth nonlinear dynamical
systems on functional manifolds, one can find a set of conservation laws for (1.7), if to construct
some solutions ϕ := ϕ[u, v, z] ∈ T ∗(M3) to the following functional Lax gradient equation:

(2.1) dϕ/dt+K ′,∗ϕ = gradL,
where ϕ′ = ϕ′,∗, L ∈ D(M3) is a suitable Lagrangian functional and a linear operator K ′,∗ :
T ∗(M3) → T ∗(M3) is, adjoint with respect to the standard convolution (·, ·) on T ∗(M3)×T (M3),
the Frechet-derivative of a nonlinear mapping K : M3 → T (M3) :

(2.2) K ′,∗ =





uDx −vx zx + 2zDx

1 ux + uDx 0
0 1 −ux + uDx



 .

The Lax gradient equation (2.1) can be, owing to (1.3), rewritten as

(2.3) Dtϕ+ k[u, v, z]ϕ = grad L,
where the matrix operator

(2.4) k[u, v, z] :=





0 −vx zx + 2zDx

1 ux 0
0 1 −ux



 .

The first vector elements

ϕϑ[u, v, z] = (z − uvx,−v + uux, u),Lϑ = 0(2.5)

ϕη[u, v, z] = (vx,−ux,−1)⊺,Lη = 0,

ϕ0[u, v, z] = (−(uxz
−1/2)x, (z

−1/2)x, (vx/2 − u2x/4)z−3/2)⊺,L0 = 0,
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as can be easily checked, exactly solve the functional equation (2.3). Having applied the standard
Volterra homotopy formula

(2.6) H :=

∫ 1

0

dµ(ϕ[µu, µv, µz], (u, v, z)⊺),

one finds the next conservation laws for (1.3):

Hη =
1

2

∫ 2π

0

dx(2uz − v2 − u2vx),(2.7)

Hϑ : =

∫ 2π

0

dx(uvx/2 − vux/2 − z), H0 :=
1

2

∫ 2π

0

dx(u2x − 2vx)z−1/2.

It is now easy enough, making use of the conservation laws (2.7), to construct a Poissonian
structure ϑ : T ∗(M3) → T (M3) for dynamical system (1.7). If to represent

Hϑ =

∫ 2π

0

dx(uvx/2 − vux/2 − z) := (ψϑ, (ux, vx, zx)⊺),(2.8)

ψϑ : = (−v/2, u/2, z−1/2D−1
x z1/2/2)⊺,

then one obtains that the vector ψϑ ∈ T ∗(M3) satisfies the Lax gradient equation (2.3):

(2.9) Dtψϑ + k[u, v, z]ψϑ = grad Lϑ,

where the Lagrangian function Lϑ = (ψϑ,K) − Hϑ. Thus, based on the inverse co-symplectic
functional expression

(2.10) ϑ−1 := ψ′

ϑ − ψ′,∗
ϑ =





0 −1 0
1 0 0
0 0 z−1/2D−1

x z−1/2/2





one easily obtains the linear co-symplectic operator on the manifold M3 :

(2.11) ϑ :=





0 1 0
−1 0 0

0 0 2z1/2Dxz
1/2





being the corresponding Poissonian operator for the Riemann type dynamical system (1.2). It is
also important to observe that the dynamical system (1.2) is a Hamiltonian flow on the functional
manifold M3 with respect to the Poissonian structure (2.11):

(2.12) K[u, v, z] = −ϑ grad Hη.

2.2. Poissonian structure analysis on the functional manifold M̄3. Below we will construct,
for convenience, other Poissonian structures for dynamical system (1.5) on the manifold M̄3,
rewritten in the following equivalent form:

(2.13)
du/dt = v − uux
dv/dt = z̄2x − uvx

dz̄/dt = 0.







:= K̄[u, v, z̄],

where K̄ : M̄3 → T (M̄3) is the corresponding vector field on M̄3. To proceed with, we need to
obtain additional solutions to the related Lax gradient equation (2.3) on the functional manifold
M̄3

(2.14) Dtψ̄ + k̄[u, v, z]ψ̄ = grad L̄,

where the matrix operator

(2.15) k̄[u, v, z̄] :=





0 −vx −z̄x
1 ux 0
0 −2∂ z̄x ux



 ,
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and which we rewrite in the following componentwise form:

Dtψ̄
(1) = vxψ̄

(2) + z̄xψ̄
(3) + δL̄/δu,(2.16)

Dtψ̄
(2) = −ψ̄(1) − uxψ̄

(2) + δL̄/δv,
Dtψ̄

(3) = 2(z̄xψ̄
(2))x − uxψ̄

(3) + δL̄/δz̄,

where a vector ψ̄ := (ψ̄(1), ψ̄(2), ψ̄(3))⊺ ∈ T ∗(M̄3). As a simple consequence of (2.16) one obtains
the following system of differential relationships:

(2.17)

D3
t ψ̃

(2) = −2z̄2xψ̃
(2)
x +D2

t ∂
−1(δL̄/δv)−

−∂−1 < grad L̄, (ux, vx, z̄x)⊺ >,

Dtψ̃
(2) = −ψ̃(1) + ∂−1(δL̄/δv),

Dtψ̃
(3) = 2z̄xψ̃

(2)
x + ∂−1(δL̄/δz̄),

where we have put, by definition, (ψ̄(1), ψ̄(2), ψ̄(3))⊺ := (ψ̃
(1)
x , ψ̃

(2)
x , ψ̃

(3)
x )⊺. The latter make it possi-

ble, having solved the first equation of system (2.17), to solve recurrently its next two equations.
Namely, it is easy to observe that the following three vector elements

(2.18)

ψ̃0 = (−v, u,−2z̄x)⊺, L̄0 = 0;

ψ̃θ = (−ux/z̄x, 1/z̄x, (u2x − 2vx)/(2z̄2x))⊺, L̄θ = 0;

ψ̃η = (u/2, 0, ∂−1[(2vx − u2x)/(2z̄x)], L̄η = (Dxψ̃η, K̄) −Hϑ,

solve the system (2.17). The first two elements of (2.18) give rise to the Volterra symmetric vectors

ψ̄0 = Dxψ̃0, ψ̄θ = Dxψ̃θ ∈ T ∗(M̄3) : ψ̄′
0 = ψ̄′,∗

0 , ψ̄′

θ = ψ̄′,∗
θ entailing the trivial conservation laws

(ψ̄0, K̄) = 0 = (ψ̄θ, K̄). The third element of (2.18) gives rise to the Volterra not symmetric vector

ψ̄η := Dxψ̃η : ψ̄′
η 6= ψ̄′,∗

η , entailing the next inverse co-symplectic functional expression:

(2.19) η̄−1 := ψ̄′

η − ψ̄′,∗
η =









∂ 0 −∂ ux

z̄x
0 0 ∂ 1

z̄x

−ux

z̄x
∂ 1

z̄x
∂

ux

2z̄x
∂ ux

z̄x
−

− vx
z̄x
∂ 1
z̄x

− 1
z̄x
∂ vx

z̄x









.

Respectively, the Poissonian operator η̄ : T ∗(M̄3) → T (M̄3) equals

(2.20) η̄ =





∂−1 ux∂
−1 0

∂−1ux vx∂
−1 + ∂−1vx ∂−1z̄x

0 z̄x∂
−1 0



 ,

subject to which the following Hamiltonian representation

(2.21) K̄[u, v, z̄] = −η̄ grad Hη|z=z2
x

on the manifold M̄3 holds.

2.3. Hamiltonian integrability analysis. Turn now back to the integrability analysis of dynam-
ical system (1.7) on the functional manifold M3. It is easy to recalculate the form of Poissonian
operator (2.20) on the manifold M̄3 to that acting on the manifold M3 :

(2.22) η :=





∂−1 ux∂
−1 0

∂−1ux vx∂
−1 + ∂−1vx ∂−1z̄x

0 z̄x∂
−1 0



 ,

subject to which the Hamiltonian representation (2.21) becomes, respectively,

(2.23) K[u, v, z] = −η grad Hϑ .

As next important point we have checked that the Poissonian operators (2.11) and (2.22) are
compatible [9, 8, 10, 7] on the manifold M̄3, that is the operator pencil (ϑ + λη) : T ∗(M3) →
T (M3) is also Poissonian for arbitrary λ ∈ R. As a consequence, any operator of the form

(2.24) ϑn := ϑ(ϑ−1η)n
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for all n ∈ Z is Poissonian on the manifold M3. Based now on the homotopy formula (2.6) and
recursion property of the Poissonian pair (2.12) and (2.22), it is easy to construct a related infinite
hierarchy of commuting to each other conservation laws

(2.25)
γj =

∫ 1

0
dµ(grad γj [µu, µv, µz], (u, v, z)⊺),

grad γj [u, v, z] := Λjgrad Hη,

for the dynamical system (1.7), where j ∈ Z+ and Λ := ϑ−1η : T ∗(M3) → T ∗(M3) is the corre-
sponding recursion operator, satisfying the so called associated Lax type commutator relationship

(2.26) dΛ/dt = [Λ,K ′,∗].

Thus, one can formulate the following proposition.

Proposition 2.1. The Riemann type hydrodynamic system (1.7) is a bi-Hamiltonian dynamical
system on the functional manifold M3 with respect to two compatible Poissonian structures ϑ, η :
T ∗(M3) → T (M3)

(2.27) ϑ :=





0 1 0
−1 0 0
0 0 2z1/2Dxz

1/2



 , η :=





∂−1 ux∂
−1 0

∂−1ux vx∂
−1 + ∂−1vx ∂−1zx − 2z

0 zx∂
−1 + 2z 0





and possessing an infinite hierarchy of commuting to each other conservation laws (2.25).

Concerning the existence of an additional infinite and parametrically R ∋ λ-ordered hierarchy
of conservation laws for dynamical system (1.2) we note also that the following already dispersive
nonlinear dynamical system

(2.28)

du/dτ = −(z−1/2)x
dv/dτ = −(uxz

−1/2)x

dz/dτ = z1/2(
u2

x
−2vx
2z )x







= −ϑ grad H0[u, v, z] := K̃[u, v, z]

allows by means of solving the corresponding Lax equation

(2.29) dϕ̃/dt+ K̃ ′,∗ϕ̃ = 0

for an element ϕ̃ ∈ T ∗(M3) in a suitably chosen asymptotic form to construct an infinite ordered
hierarchy of conservation laws for (1.2), on which we will not stop here. The latter and the existence
of an infinite and parametrically R ∋ λ-ordered hierarchy of conservation laws for the Riemann type
dynamical system (1.2) strongly motivates us that it is a completely integrable by Lax nonlinear
dynamical system on the functional manifold M3. It will be stated in the next Section by means
of new differential-algebraic tools, devised recently in [6, 1, 2].

3. Differential-algebraic integrability analysis: the case N = 3

Consider a polynomial differential ring K{u} ⊂ K := R{{x, t}} generated by a fixed functional
variable u ∈ R{{x, t}} and invariant with respect to two differentiations Dx := ∂/∂x and Dt :=
∂/∂t+ u∂/∂x, satisfying the Lie-algebraic commutator relationship (1.2)

(3.1) [Dx, Dt] = uxDx

jointly with constraint (1.6) in the differential-algebraic functional form

D3
tu = −2D2

tuDxu.

Since the Lax type representation for the dynamical system (1.7) can be interpreted [1, 10] as the
existence of a finite-dimensional invariant ideal I{u} ⊂ K{u}, realizing the corresponding finite-
dimensional representation of the the Lie-algebraic commutator relationship (3.1), this ideal can
be constructed as

(3.2) I{u} := {λ2uf1 + λvf2 + z1/2f3 ∈ K{u} : fj ∈ K, j ∈ 1, 3, λ ∈ R},
where v = Dtu, z = D2

tu and λ ∈ R is an arbitrary real parameter. To find finite-dimensional
representations of the Dx- and Dt-differentiations, it is necessary [1] first to find the Dt-invariant
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kernel kerDt ⊂ I{u} and next to check its invariance with respect to the Dx-differentiation. One
can obtain easily that the

(3.3) kerDt = {f ∈ K3 : Dtf = q(λ)f, λ ∈ R},
where the matrix q(λ) := q[u, v, z;λ] ∈ End K{u}3 is given as

(3.4) q(λ) =





0 0 0
−λ 0 0
0 −λzx ux



 .

Now to find the corresponding representation of the Dx-differentiation in the space K3, it is enough
to find such a matrix l(λ) := l[u, v, z;λ] ∈ End K{u}3 that

(3.5) Dxf = l(λ)f

for f ∈ K{u}3 and the related ideal

(3.6) R{u} := {< g, f >K3 : f ∈ kerDt ⊂ K3{u}, g ∈ K{u}3}
is Dx-invariant with respect to the differentiation (3.5). This invariance condition allows to con-
struct by means of simple enough calculations the following matrix

(3.7) l(λ) =









λ2u
√
z λv

√
z z

−λ3tu√z −λ2tv√z −λtz
λ4(tuv − u2)−
−λ2ux/

√
z

−λvx/
√
z+

+λ3(tv2 − uv)
λ2

√
z(u− tv)−
−zx/2z









.

Remark 3.1. It is easy enough to make similar to above differential-algebraic calculations for the
case N = 2 and obtain that the corresponding Riemann type hydrodynamic system

(3.8) Dtu = z̄2x, Dtz̄ = 0

on the functional manifold M̄2 possesses the following matrix Lax type representation:

(3.9) Dtf =

(

0 0
−λz̄x ux

)

, Dxf =

(

z̄x 0
−λ(u+ ux/(2z̄x) −z̄xx/(2z̄x)

)

f,

where λ ∈ R is an arbitrary spectral parameter and f ∈ C(∞)(R2;R2).

The obtained above results we will formulate as our main proposition subject to the Lax type
integrability of the Riemann type hydrodynamic system (1.7) at N = 3.

Proposition 3.2. The Riemann type hydrodynamic flow (1.7) is a Lax type integrable bi-
Hamiltonian dynamical system on the functional manifold M3 with respect to two compatible Pois-
sonian structures

(3.10) ϑ :=





0 1 0
−1 0 0

0 0 2z1/2Dxz
1/2



 , η :=





∂−1 ux∂
−1 0

∂−1ux vx∂
−1 + ∂−1vx ∂−1zx − 2z

0 zx∂
−1 + 2z 0



 ,

possessing an infinite hierarchy commuting to each other conservation laws and a non-autonomous
Lax type representation in the following matrix form:

Dtf =





0 0 0
−λ 0 0
0 −λzx ux



 f,(3.11)

Dxf =









λ2u
√
z λv

√
z z

−λ3tu√z −λ2tv√z −λtz
λ4(tuv − u2)−
−λ2ux/

√
z

−λvx/
√
z+

+λ3(tv2 − uv)
λ2

√
z(u− tv)−
−zx/2z









f,

where λ ∈ R is an arbitrary spectral parameter and f ∈ C(∞)(R2;R3).

The matrices (3.7) are, as seen, of nonstandard form depending explicitly on the temporal
evolution parameter t ∈ R. Nonetheless, the matrices (3.4) and (3.7) satisfy for all λ ∈ R the well
known Zakharov-Shabat compatibility condition

(3.12) Dtl(λ) = [q(λ), l(λ)] +Dxl(λ) − uxl(λ),
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following from the Lax type relationships (3.3) and (3.5)

(3.13) Dtf = q(λ)f, Dxf = l(λ)f

and the commutator condition (3.1). Moreover, taking into account that the dynamical system
(1.7) possesses a compatible Poissonian pair (2.11) and (2.22) depending only on the variables
(u, v, z)⊺ ∈ M3 and not depending on the temporal variable t ∈ R, one can certainly assume
that it also possesses a standard autonomous Lax type representation which one can to search by
means of a suitable gauge type transformation of (3.13), what we plan to do in a separate work.

4. Conclusion

A new nonlinear Riemann type hydrodynamic equation (1.1) at N = 2 and 3 proves to be a very
interesting example of a Lax type integrable dynamical system, whose integrability prerequisites,
such as compatible Poissonian structures, infinite hierarchy of conservation laws and related Lax
type representation were constructed by means of both the symplectic gradient-holonomic approach
[8, 10, 11] and new differential-algebraic tools devised recently [1, 4] for studying integrability of
a special infinite hierarchy of Riemann type hydrodynamic systems. It is also evident that the
dynamical system (1.1) is a Lax type integrable bi-Hamiltonian flow for arbitrary integers N ∈ N,
that can be easily stated by means of the differential-algebraic approach, devised and successfully
applied in this work for the case N = 2 and 3.

As a most learnable lesson from the present work one can infer the following statement: if a pri-
ori given nonlinear dynamical system is within the symplectic gradient-holonomic tools suspected
to be Lax type integrable, then its Lax type representation, if it exists, can be successfully found
by means of a suitably constructed invariant differential ideal I{u} of the ring K{u} within the
differential-algebraic approach, mentioned above and applied in this work. Thereby, it would be
important to test these differential-algebraic tools applying them to other Lax type integrable non-
linear dynamical systems and to single out those algebraic structures responsible for the existence
of a related finite-dimensional matrix representation for the basic Dx- and Dt-differentiations in a
vector space Kp for some finite p ∈ Z+. As a particular differential-algebraic problem of interest,
concerning these matrix representations, one can conceive the one consisting in effective construc-
tion of functional generators of the corresponding invariant finite-dimensional ideals I{u} ⊂ K{u}
under given differential-algebraic constraints imposed on the Dx- and Dt-differentiations.
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