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Abstract

We study amplitudes of five-wave interactions for evolution Hamiltonian
equations differ from the KdV equation by the form of dispersion law.

We find that five-wave amplitude is canceled for all three known equations
(KdV, Benjamin-Ono and equation of intermediate waves) and for two new

equations which are natural generalizations of mentioned above.
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1 Introduction

At least three important Hamiltonian evolutionary equations appearing in the theory of ocean
waves are completely integrable (see, for instance [1]). They are:

1. KdV equation
ut = uxxx + uux (1.1)

2. Benjamin-Ono equation

ut = Î(uxx) + uux (1.2)

Here Î is the Hilbert transform.

3. Intermediate wave equation
ut = F̂ (u) + uux (1.3)

Here F̂ is a pseudo-differential operator with symbol

F (k) = ak2 coth bk − ck. (1.4)

In the limit b → ∞, a = 1, c = 0 equation (1.4) tends to the Benjamin-Ono equation. In the

limit b → 0, a = 3
b
, c = 3

b2
equation (1.4) goes to the KdV equation.

In this article we address the following question: could one find other integrable equations

of the type (1.3)? We presume that the discussed equations are Hamiltonian and admit the
Gardner Poisson structure

ut =
∂

∂x

δH

δu

or, in terms of Fourier transforms

u(k)t = ik
δH

δu(k)
, u(k) =

1

2π

∫ ∞

−∞

u(x, t)e−ikxdx

Here H = H2 +H3 where

H2 =
1

2

∫ ∞

−∞

F (k)

k
u(k)u(−k)dk, H3 =

1

6
u3 =

1

6

∫ ∞

−∞

u(k1)u(k2)u(k3)δ(k1 + k2 + k3)dk1dk2dk3

Thus we assume that F (k) is an odd function, F (−k) = −F (k). For KdV we have F (k) =

−k3 and for Benjamin-Ono equation F (k) = −|k|k.

In this article we classify all integrable equations of the form (1.3). The answer is the

following: there is only one extra equation given by

F (k) = ak2 cot bk − ck. (1.5)

In the limit b → 0, a = −3
b
, c = 3

b2
we get F (k) = −k3. The dispersion relation (1.5) has

singularities at kn = πn
b
.
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We show also that the following (1 + 2)-dimensional equation

∂u

∂t
=

∂2

∂x2
L̂
( ∂

∂y

)

u+ uux (1.6)

where u = u(x, y, t) and L̂(p) = ǫe
ǫp+1
eǫp+1

is integrable. In the limit ǫ → 0 this equation is
well-known Khokhlov-Zabolotskaya equation (see for instance [7]).

∂u

∂t
=

∂2

∂x2

( ∂

∂y

)−1

u+ uux.

This equation is the dispersionless limit of both KP1 and KP2 equations.

Note that equation 1.3 has the following universal conservation laws for arbitrary function

F (k):

I0 =

∫ ∞

−∞

udx, I1 =

∫ ∞

−∞

u2dx, I3 = H.

The question is for which functions F (k) there exists at least one additional conservation law

given by a power series in u starting from the quadratic term

I3 = I(2) + I(3) + ...

where

I(2) =

∫ ∞

−∞

g(2)(k)u(k)u(−k)dk, I(3) =

∫ ∞

−∞

g(3)(k1, k2)u(k1)u(k2)u(−k1 − k2)dk1dk2, ...

and g(2)(k) = g(2)(−k) is a real function different from a linear combination c1k + c2F (k)?

Existence of this conservation law is not a proof of integrability, while nonexistence is a clear
manifestation of non-integrability. Thus to accomplish our task we must prove integrability of

all new equations separately. This will be done in other publication.

2 Scattering matrix

Following Zakharov and Shulman [2]-[6] one can introduce a so-called formal scattering matrix
for the equation (1.3) with arbitrary F (k). Let us write this equation in Fourier components

u(k)t = iF (k)u(k) + ik

∫ ∞

−∞

u(k1)u(k2)δ(k − k1 − k2)dk1dk2 (2.7)

Than we introduce c(k) by u(k) = c(k)eiF (k)t, assume that c(k) → c−(k) when t → −∞ and
rewrite equation (2.7) in Picard form as follow

c(k) = c−(k) + ik lim
ǫ→0

∫ t

−∞

∫ ∞

−∞

c(k1, τ)c(k2, τ)e
i(F (k1)+F (k2)−F (k))τ−ǫ|τ |δ(k − k1 − k2)dk1dk2dτ

(2.8)
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Than we solve equation (2.8) by iterations, send t → ∞ and than ǫ → 0. Let c(k, t) → c+(k)
when t → ∞. We end up with c+ expressed through c− in terms of the so-called formal

scattering matrix S:
c+(k) = Sc−(k) = c−(k) + (2.9)

∞
∑

n=2

∫ ∞

−∞

S(k, k1, ..., kn)δ(F (k)− F (k1)− ...− F (kn))δ(k − k1 − ...− kn)c
−(k1)...c

−(kn)dk1...dkn

Functions S(k, k1, ..., kn) are called amplitudes of wave scattering of order n+1. Arguments of

delta-functions in (2.9) are called resonance conditions and equation

S(k, k1, ..., kn) = 0

where k, k1, ..., kn are subject to resonance conditions is called n + 1-wave equation. The first

resonance condition
F (k) = F (k1) + F (k2), k = k1 + k2

has only trivial solutions like k = 0, k2 = −k1 or k2 = 0, k = k1, thus three-wave equation is

not significant. In the same way four-wave resonance conditions

F (k) = F (k1) + F (k2) + F (k3), k = k1 + k2 + k3

have only trivial solutions like k = k1, k3 = −k2. Hence the first nonlinear resonance process

is five-waves interaction governed by resonance conditions

k = k1 + k2 + k3 + k4, F (k) = F (k1) + F (k2) + F (k3) + F (k4) (2.10)

Suppose that k > 0. At least one wave vector in the right hand side of (2.10) must be negative.

Let k4 < 0. We replace k4 → −k4 and k → k5 and rewrite equations (2.10) as follow

k4 + k5 = k1 + k2 + k3, F (k4) + F (k5) = F (k1) + F (k2) + F (k3) (2.11)

All wave vectors in (2.11) are positive. Moreover, we assume them ordered as follow

k2 > k4 > k5 > k3 > k1

Under this assumption the five-wave amplitude is

S(k1, k2, k3, k4, k5) = F12(F45 +G53 +G43) + F13(F45 +G23 +G24)+

G51(F23 +G43 +G24) +G41(F23 +G53 +G25) + F45F23 +G24G53 +G25G43

Here

Fij =
ki + kj

F (ki + kj)− F (ki)− F (kj)
, Gij =

ki − kj

F (ki − kj)− F (ki) + F (kj)

for i 6= j = 1, ..., 5.

The necessary condition for integrability is cancellation of five-wave amplitude on the reso-

nance manifold (2.11).
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3 Cancellation of five-wave amplitude for known inte-

grable systems

Let F (k) = k3 (this is KdV case). Then

Fij =
1

3kikj
, Gij = −

1

3kikj
.

After simple calculation we obtain

S12345 =
1

9k1k2k3k4k5
(k4 + k5 − k1 − k2 − k3) = 0. (3.12)

Notice that for cancellation of five-waves amplitude in this case we do not use the frequency

resonance condition in (2.11).

As far as all ki > 0 one can set F (k) = k2 for the Benjamin-Ono case. Then

Fij =
ki + kj

2kikj
, Gij = −

1

2kj
,

Now

S12345 =
k1k4k3 + k1k5k3 − k1k4k5 + k2k4k3 + k2k5k3 − k2k4k5 − k5k3k4 + k2k1k4 + k2k1k5

2k1k2k3k4k5
.

One can check that it can be written in the form

k4 + k5

4k1k2k3k4k5
(k2

4 + k2
5 − k2

1 − k2
2 − k2

3) +
(k1 + k2 + k3)(k4 + k5) + k2

4 + k2
5

4k1k2k3k4k5
(k1+ k2+ k3− k4− k5).

(3.13)
Thus the cancellation by virtue of (2.11) is obvious.

To check cancellation for the generic dispersion relation (1.4) one notice first that S12345 is
invariant with respect to transformation F (k) → F (αk) + βk where α 6= 0, β are arbitrary

constants. Moreover, one can replace F (k) by F (k, p) = k2 1+ep

1−ep
because exponent is not an

algebraic function. Resonance conditions now read:

p4 + p5 = p1 + p2 + p3, k4 + k5 = k1 + k2 + k3

and

F (k4, p4) + F (k5, p5) = F (k1, p1) + F (k2, p2) + F (k3, p3).

Now five-waves amplitude depends on ten variables

S12345 = S(k1, ..., k5, p1, ..., p5).

Checking cancellation of this amplitude by virtue of resonance conditions took approximately
ten minutes for computer algebra system Maple. Explicit representation of S12345 in the form

similar to (3.12) and (3.13) is so cumbercome that we do not present it here.
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4 Solving the functional equation

Consider the five-waves equation S(k1, ..., k5) = 0 as a functional equation for function f(k) =
F (k). This functional equation reads:

F (k1, k2)(F (k4, k5) +G(k5, k3) +G(k4, k3)) + F (k1, k3)(F (k4, k5) +G(k2, k5) +G(k2, k4))+

G(k5, k1)(F (k2, k3)+G(k4, k3)+G(k2, k4))+G(k4, k1)(F (k2, k3)+G(k5, k3)+G(k2, k5))+ (4.14)

F (k4, k5)F (k2, k3) +G(k2, k4)G(k5, k3) +G(k2, k5)G(k4, k3) = 0

where F (x, y) = x+y

f(x+y)−f(x)−f(y)
, G(x, y) = x−y

f(x−y)−f(x)+f(y)
and k1, ..., k5 satisfy the following

constrains:

k1 + k2 + k3 = k4 + k5, (4.15)

f(k1) + f(k2) + f(k3) = f(k4) + f(k5). (4.16)

Note that if f(k) is a solution of this functional equation, then f1(k) = af(bk) + ck is also
a solution for arbitrary constants a, b 6= 0, c. We say that such solutions are equivalent.

Proposition. Any solution of the functional equation (4.14) analytic near zero and such
that f(0) = 0 is equivalent to one of the following: f1(k) = k2, f2(k) = k3, f3(k) = k2 ek+1

ek−1
.

Remark. Here we suppose that a, b 6= 0 in our equivalence relation are complex numbers.
If we restrict ourself to real numbers, then there exist one more non-equivalent solution f4(k) =

k2 cot(k).

Proof. Set k2 = k4 + u, k5 = k3 + v, then the constrain (4.15) is equivalent to k1 = v − u.

Expanding the constrain (4.16) near u = v = 0 we obtain

v =
f ′(k4)

f ′(k3)
u+ o(u). (4.17)

Expanding (4.14) near u = v = 0 and substituting (4.17) we obtain in the first non-trivial term:

−(−f(k4)+f(k4−k3)+f(k3))(f(k4)−f(k4+k3)+f(k3))(−4k3f(k3)+2k3f(k4+k3)−k4f(k4−k3)−

k4f(k4 + k3)− 2k3f(k4 − k3) + 2k4f(k4))f
′(k4)

2+

(−f(k4) + f(k4 − k3) + f(k3))(f(k4)− f(k4 + k3) + f(k3))

(−2k3f(k3) + k3f(k4 + k3)− 2k4f(k4 − k3)− 2k4f(k4 + k3)− k3f(k4 − k3) + 4k4f(k4))f
′(k3)

2+

k4(−f(k4)+f(k4−k3)+f(k3))(f(k4)−f(k4+k3)+f(k3))(2k4f(k4)+k3f(k4+k3)−k3f(k4−k3)−

2k3f(k3)− k4f(k4 − k3)− k4f(k4 + k3))f
′(k3)f

′′(k4)−

k3(−f(k4) + f(k4 − k3) + f(k3))(f(k4)− f(k4 + k3) + f(k3))
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(2k4f(k4) + k3f(k4 + k3)− k3f(k4 − k3)− 2k3f(k3)− k4f(k4 − k3)− k4f(k4 + k3))f
′′(k3)f

′(k4)

+(−2k2
3f(k4)

2 − k2
3f(k4 − k3)

2 − k2
3f(k4 + k3)

2 + 2k2
4f(k4)f(k4 + k3)−

4k3k4f(k4 − k3)f(k3) + 4k3k4f(k4)f(k4 − k3)− 2k4k3f(k4 − k3)
2 − k2

4f(k4 + k3)
2−

4k3k4f(k4)f(k4 + k3) + 2k2
4f(k3)f(k4 + k3) + 2k2

3f(k4 + k3)f(k3) + 8k4k3f(k4)f(k3)+

2k2
3f(k4)f(k4+k3)+2k3k4f(k4+k3)

2+2k2
3f(k4−k3)f(k4)−4k3k4f(k4+k3)f(k3)−k2

4f(k4−k3)
2−

2k2
4f(k4)

2 − 2k2
3f(k4 − k3)f(k3)− 2k2

4f(k3)f(k4 − k3)−

2k2
3f(k3)

2 − 2k2
4f(k3)

2 + 2k2
4f(k4)f(k4 − k3))f

′(k4)
2f ′(k3)−

(−f(k4) + f(k4 − k3) + f(k3))(f(k4)− f(k4 + k3) + f(k3)) (4.18)

(2k3f(k3)− k3f(k4 + k3)− k4f(k4 − k3)− k4f(k4 + k3) + k3f(k4 − k3) + 2k4f(k4))f
′(k3)f

′(k4)+

(k2
4f(k4 + k3)

2 + 2k4k3f(k4 − k3)
2 + 4k3k4f(k4 − k3)f(k3)− 2k2

4f(k4)f(k4 − k3)+

k2
4f(k4 − k3)

2 + k2
3f(k4 + k3)

2 + 2k2
3f(k4)

2 + 2k2
4f(k3)f(k4 − k3) + 2k2

4f(k4)
2 + k2

3f(k4 − k3)
2+

4k3k4f(k4+k3)f(k3)−2k3k4f(k4+k3)
2−2k2

3f(k4−k3)f(k4)+2k2
4f(k3)

2−2k2
4f(k3)f(k4+k3)+

4k3k4f(k4)f(k4 + k3)− 8k4k3f(k4)f(k3) + 2k2
3f(k3)

2 + 2k2
3f(k4 − k3)f(k3)−

2k2
4f(k4)f(k4+k3)−4k3k4f(k4)f(k4−k3)−2k2

3f(k4)f(k4+k3)−2k2
3f(k4+k3)f(k3))f

′(k3)
2f ′(k4)−

k4(−f(k4) + f(k4 − k3) + f(k3))
2(f(k4)− f(k4 + k3) + f(k3))

2f ′′(k4)+

k3(−f(k4) + f(k4 − k3) + f(k3))
2(k4 + k3)f

′(k4 + k3)f
′(k4)

2−

k4(−f(k4) + f(k4 − k3) + f(k3))
2(k4 + k3)f

′(k4 + k3)f
′(k3)

2+

(−f(k4) + f(k4 − k3) + f(k3))
2(k4 − k3)(k4 + k3)f

′(k4 + k3)f
′(k3)f

′(k4)−

k3(f(k4)− f(k4 + k3) + f(k3))
2(k4 − k3)f

′(k4 − k3)f
′(k4)

2−

k4(f(k4)− f(k4 + k3) + f(k3))
2(k4 − k3)f

′(k4 − k3)f
′(k3)

2+

k3(−f(k4) + f(k4 − k3) + f(k3))
2(f(k4)− f(k4 + k3) + f(k3))

2f ′′(k3)+

2(−f(k4) + f(k4 − k3) + f(k3))
2(f(k4)− f(k4 + k3) + f(k3))

2f ′(k4)−

2(−f(k4) + f(k4 − k3) + f(k3))
2(f(k4)− f(k4 + k3) + f(k3))

2f ′(k3)+

(f(k4)− f(k4 + k3) + f(k3))
2(k4 − k3)(k4 + k3)f

′(k4 − k3)f
′(k3)f

′(k4) = 0

Assume without loss of generality f(k) = a2k
2+a3k

3+... Expanding (4.18) near k3 = k4 = 0
we get a2a3 = 0. We have different cases:

Case 1. Let a2 6= 0, then a3 = 0. Without loss of generality we assume f(k) = k2 + a4k
4 +

a5k
5... Expanding (4.18) near k3 = 0 we obtain under this assumption in the first non-trivial

term:
−5f ′(k4)

2 + 8k4f
′′(k4)f

′(k4) + f ′(k4)k
2
4f

′′′(k4)− 3k2
4f

′′(k4)
2 = 0.

The only solution of this 3rd-order ODE of the form f(k) = k2 + a4k
4 + a5k

5... is f(k) = k2.
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Case 2. Let a3 6= 0, then a2 = 0. Without loss of generality we assume f(k) = k3 + a4k
4 +

a5k
5... Expanding (4.18) near k3 = 0 we obtain under this assumption in the first non-trivial

term:
−4f ′(k4)

2f ′′′(k4) + 12f ′(k4)
2 − k4f

′(k4)
2f ′′′′(k4)− 2f ′(k4)k

2
4f

′′′(k4)+

4f ′(k4)k4f
′′(k4)f

′′′(k4)− 18k4f
′′(k4)f

′(k4) + 6f ′(k4)f
′′(k4)

2 − 3f ′′(k4)
3k4 + 6k2

4f
′′(k4)

2 = 0.

Any solution of this 4th-order ODE of the form f(k) = k3+a4k
4+a5k

5... is equivalent to either

f(k) = k3 or f(k) = k2 ek+1
ek−1

(or f(k) = k2 cot(k) if our group of equivalence is real rather then
complex).

Note that in the case a2 = a3 = 0 there are not non-trivial solutions.

5 New equations

Our results show that if we set

F (k) = ak3 cot bk − ck

where a, b, c are constants, the five-wave amplitude is also zero. The corresponding equation

hardly has any physical importance because F (k) = ∞ at bk = πn. Anyway, in the limit
b → 0, a = 3

b
, c = 3

b2
we get F ∗ k) = k3 and the equations goes to the KdV. Another equation

is more interesting. Let u = u(x, y, t) be a function in two spacial coordinated x, y variables
and F is given by

F (
∂

∂x
,
∂

∂y
) = a

∂2

∂x2
coth a

∂

∂y
.

The five-wave amplitude is zero in this case. This equation might be useful in applications. In

the limit a → 0 we have F → ∂2

∂x2

(

∂
∂x

)−1

and our equation degenerates to the following form

ut = ∂2
x∂

−1
y u+ uux.

This equation can be compared with Khokhov-Zabolotskaya equation (see, for instance, [7])

ut = ∂2
y∂

−1
x u+ uux.

But these equations are not equivalent.
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