Integrable equations and classical S-matrix

V.E Zakharov ${ }^{1,2,3}$, A.V Odesskii ${ }^{4}$, M. Onorato ${ }^{5}$, M. Cisternino ${ }^{5}$
${ }^{1}$ University Of Arizona, Tucson, USA
${ }^{2}$ Lebedev Physical Institute, Moscow, Russia
${ }^{3}$ Novosibirsk State University, Russia
${ }^{4}$ Brock University, St. Catharines, Canada
${ }^{5}$ University of Torino, Italy

Abstract

We study amplitudes of five-wave interactions for evolution Hamiltonian equations differ from the KdV equation by the form of dispersion law. We find that five-wave amplitude is canceled for all three known equations (KdV, Benjamin-Ono and equation of intermediate waves) and for two new equations which are natural generalizations of mentioned above.

E-mail: zakharov@math.arizona.edu, aodesski@brocku.ca

Contents

1 Introduction

2 Scattering matrix

3 Cancellation of five-wave amplitude for known integrable systems 6
4 Solving the functional equation 7

5 New equations 9

1 Introduction

At least three important Hamiltonian evolutionary equations appearing in the theory of ocean waves are completely integrable (see, for instance [1]). They are:

1. KdV equation

$$
\begin{equation*}
u_{t}=u_{x x x}+u u_{x} \tag{1.1}
\end{equation*}
$$

2. Benjamin-Ono equation

$$
\begin{equation*}
u_{t}=\hat{I}\left(u_{x x}\right)+u u_{x} \tag{1.2}
\end{equation*}
$$

Here \hat{I} is the Hilbert transform.
3. Intermediate wave equation

$$
\begin{equation*}
u_{t}=\hat{F}(u)+u u_{x} \tag{1.3}
\end{equation*}
$$

Here \hat{F} is a pseudo-differential operator with symbol

$$
\begin{equation*}
F(k)=a k^{2} \operatorname{coth} b k-c k . \tag{1.4}
\end{equation*}
$$

In the limit $b \rightarrow \infty, a=1, c=0$ equation (1.4) tends to the Benjamin-Ono equation. In the limit $b \rightarrow 0, a=\frac{3}{b}, c=\frac{3}{b^{2}}$ equation (1.4) goes to the KdV equation.

In this article we address the following question: could one find other integrable equations of the type (1.3)? We presume that the discussed equations are Hamiltonian and admit the Gardner Poisson structure

$$
u_{t}=\frac{\partial}{\partial x} \frac{\delta H}{\delta u}
$$

or, in terms of Fourier transforms

$$
u(k)_{t}=i k \frac{\delta H}{\delta u(k)}, \quad u(k)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} u(x, t) e^{-i k x} d x
$$

Here $H=H_{2}+H_{3}$ where
$H_{2}=\frac{1}{2} \int_{-\infty}^{\infty} \frac{F(k)}{k} u(k) u(-k) d k, \quad H_{3}=\frac{1}{6} u^{3}=\frac{1}{6} \int_{-\infty}^{\infty} u\left(k_{1}\right) u\left(k_{2}\right) u\left(k_{3}\right) \delta\left(k_{1}+k_{2}+k_{3}\right) d k_{1} d k_{2} d k_{3}$
Thus we assume that $F(k)$ is an odd function, $F(-k)=-F(k)$. For KdV we have $F(k)=$ $-k^{3}$ and for Benjamin-Ono equation $F(k)=-|k| k$.

In this article we classify all integrable equations of the form (1.3). The answer is the following: there is only one extra equation given by

$$
\begin{equation*}
F(k)=a k^{2} \cot b k-c k . \tag{1.5}
\end{equation*}
$$

In the limit $b \rightarrow 0, a=-\frac{3}{b}, c=\frac{3}{b^{2}}$ we get $F(k)=-k^{3}$. The dispersion relation (1.5) has singularities at $k_{n}=\frac{\pi n}{b}$.

We show also that the following $(1+2)$-dimensional equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\partial^{2}}{\partial x^{2}} \hat{L}\left(\frac{\partial}{\partial y}\right) u+u u_{x} \tag{1.6}
\end{equation*}
$$

where $u=u(x, y, t)$ and $\hat{L}(p)=\epsilon \frac{e^{\epsilon p}+1}{e^{\epsilon p}+1}$ is integrable. In the limit $\epsilon \rightarrow 0$ this equation is well-known Khokhlov-Zabolotskaya equation (see for instance [7]).

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2}}{\partial x^{2}}\left(\frac{\partial}{\partial y}\right)^{-1} u+u u_{x}
$$

This equation is the dispersionless limit of both KP1 and KP2 equations.
Note that equation 1.3 has the following universal conservation laws for arbitrary function $F(k)$:

$$
I_{0}=\int_{-\infty}^{\infty} u d x, I_{1}=\int_{-\infty}^{\infty} u^{2} d x, I_{3}=H
$$

The question is for which functions $F(k)$ there exists at least one additional conservation law given by a power series in u starting from the quadratic term

$$
I_{3}=I^{(2)}+I^{(3)}+\ldots
$$

where

$$
I^{(2)}=\int_{-\infty}^{\infty} g^{(2)}(k) u(k) u(-k) d k, \quad I^{(3)}=\int_{-\infty}^{\infty} g^{(3)}\left(k_{1}, k_{2}\right) u\left(k_{1}\right) u\left(k_{2}\right) u\left(-k_{1}-k_{2}\right) d k_{1} d k_{2}, \ldots
$$

and $g^{(2)}(k)=g^{(2)}(-k)$ is a real function different from a linear combination $c_{1} k+c_{2} F(k)$?
Existence of this conservation law is not a proof of integrability, while nonexistence is a clear manifestation of non-integrability. Thus to accomplish our task we must prove integrability of all new equations separately. This will be done in other publication.

2 Scattering matrix

Following Zakharov and Shulman [2]-6] one can introduce a so-called formal scattering matrix for the equation (1.3) with arbitrary $F(k)$. Let us write this equation in Fourier components

$$
\begin{equation*}
u(k)_{t}=i F(k) u(k)+i k \int_{-\infty}^{\infty} u\left(k_{1}\right) u\left(k_{2}\right) \delta\left(k-k_{1}-k_{2}\right) d k_{1} d k_{2} \tag{2.7}
\end{equation*}
$$

Than we introduce $c(k)$ by $u(k)=c(k) e^{i F(k) t}$, assume that $c(k) \rightarrow c^{-}(k)$ when $t \rightarrow-\infty$ and rewrite equation (2.7) in Picard form as follow

$$
\begin{equation*}
c(k)=c^{-}(k)+i k \lim _{\epsilon \rightarrow 0} \int_{-\infty}^{t} \int_{-\infty}^{\infty} c\left(k_{1}, \tau\right) c\left(k_{2}, \tau\right) e^{i\left(F\left(k_{1}\right)+F\left(k_{2}\right)-F(k)\right) \tau-\epsilon|\tau|} \delta\left(k-k_{1}-k_{2}\right) d k_{1} d k_{2} d \tau \tag{2.8}
\end{equation*}
$$

Than we solve equation (2.8) by iterations, send $t \rightarrow \infty$ and than $\epsilon \rightarrow 0$. Let $c(k, t) \rightarrow c^{+}(k)$ when $t \rightarrow \infty$. We end up with c^{+}expressed through $c-$ in terms of the so-called formal scattering matrix S :

$$
\begin{equation*}
c^{+}(k)=S c^{-}(k)=c^{-}(k)+ \tag{2.9}
\end{equation*}
$$

$\sum_{n=2}^{\infty} \int_{-\infty}^{\infty} S\left(k, k_{1}, \ldots, k_{n}\right) \delta\left(F(k)-F\left(k_{1}\right)-\ldots-F\left(k_{n}\right)\right) \delta\left(k-k_{1}-\ldots-k_{n}\right) c^{-}\left(k_{1}\right) \ldots c^{-}\left(k_{n}\right) d k_{1} \ldots d k_{n}$
Functions $S\left(k, k_{1}, \ldots, k_{n}\right)$ are called amplitudes of wave scattering of order $n+1$. Arguments of delta-functions in (2.9) are called resonance conditions and equation

$$
S\left(k, k_{1}, \ldots, k_{n}\right)=0
$$

where k, k_{1}, \ldots, k_{n} are subject to resonance conditions is called $n+1$-wave equation. The first resonance condition

$$
F(k)=F\left(k_{1}\right)+F\left(k_{2}\right), \quad k=k_{1}+k_{2}
$$

has only trivial solutions like $k=0, k_{2}=-k_{1}$ or $k_{2}=0, k=k_{1}$, thus three-wave equation is not significant. In the same way four-wave resonance conditions

$$
F(k)=F\left(k_{1}\right)+F\left(k_{2}\right)+F\left(k_{3}\right), \quad k=k_{1}+k_{2}+k_{3}
$$

have only trivial solutions like $k=k_{1}, k_{3}=-k_{2}$. Hence the first nonlinear resonance process is five-waves interaction governed by resonance conditions

$$
\begin{equation*}
k=k_{1}+k_{2}+k_{3}+k_{4}, \quad F(k)=F\left(k_{1}\right)+F\left(k_{2}\right)+F\left(k_{3}\right)+F\left(k_{4}\right) \tag{2.10}
\end{equation*}
$$

Suppose that $k>0$. At least one wave vector in the right hand side of (2.10) must be negative. Let $k_{4}<0$. We replace $k_{4} \rightarrow-k_{4}$ and $k \rightarrow k_{5}$ and rewrite equations (2.10) as follow

$$
\begin{equation*}
k_{4}+k_{5}=k_{1}+k_{2}+k_{3}, \quad F\left(k_{4}\right)+F\left(k_{5}\right)=F\left(k_{1}\right)+F\left(k_{2}\right)+F\left(k_{3}\right) \tag{2.11}
\end{equation*}
$$

All wave vectors in (2.11) are positive. Moreover, we assume them ordered as follow

$$
k_{2}>k_{4}>k_{5}>k_{3}>k_{1}
$$

Under this assumption the five-wave amplitude is

$$
\begin{gathered}
S\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{5}\right)=F_{12}\left(F_{45}+G_{53}+G_{43}\right)+F_{13}\left(F_{45}+G_{23}+G_{24}\right)+ \\
G_{51}\left(F_{23}+G_{43}+G_{24}\right)+G_{41}\left(F_{23}+G_{53}+G_{25}\right)+F_{45} F_{23}+G_{24} G_{53}+G_{25} G_{43}
\end{gathered}
$$

Here

$$
F_{i j}=\frac{k_{i}+k_{j}}{F\left(k_{i}+k_{j}\right)-F\left(k_{i}\right)-F\left(k_{j}\right)}, \quad G_{i j}=\frac{k_{i}-k_{j}}{F\left(k_{i}-k_{j}\right)-F\left(k_{i}\right)+F\left(k_{j}\right)}
$$

for $i \neq j=1, \ldots, 5$.
The necessary condition for integrability is cancellation of five-wave amplitude on the resonance manifold (2.11).

3 Cancellation of five-wave amplitude for known integrable systems

Let $F(k)=k^{3}$ (this is KdV case). Then

$$
F_{i j}=\frac{1}{3 k_{i} k_{j}}, \quad G_{i j}=-\frac{1}{3 k_{i} k_{j}} .
$$

After simple calculation we obtain

$$
\begin{equation*}
S_{12345}=\frac{1}{9 k_{1} k_{2} k_{3} k_{4} k_{5}}\left(k_{4}+k_{5}-k_{1}-k_{2}-k_{3}\right)=0 . \tag{3.12}
\end{equation*}
$$

Notice that for cancellation of five-waves amplitude in this case we do not use the frequency resonance condition in (2.11).

As far as all $k_{i}>0$ one can set $F(k)=k^{2}$ for the Benjamin-Ono case. Then

$$
F_{i j}=\frac{k_{i}+k_{j}}{2 k_{i} k_{j}}, \quad G_{i j}=-\frac{1}{2 k_{j}},
$$

Now

$$
S_{12345}=\frac{k_{1} k_{4} k_{3}+k_{1} k_{5} k_{3}-k_{1} k_{4} k_{5}+k_{2} k_{4} k_{3}+k_{2} k_{5} k_{3}-k_{2} k_{4} k_{5}-k_{5} k_{3} k_{4}+k_{2} k_{1} k_{4}+k_{2} k_{1} k_{5}}{2 k_{1} k_{2} k_{3} k_{4} k_{5}}
$$

One can check that it can be written in the form

$$
\begin{equation*}
\frac{k_{4}+k_{5}}{4 k_{1} k_{2} k_{3} k_{4} k_{5}}\left(k_{4}^{2}+k_{5}^{2}-k_{1}^{2}-k_{2}^{2}-k_{3}^{2}\right)+\frac{\left(k_{1}+k_{2}+k_{3}\right)\left(k_{4}+k_{5}\right)+k_{4}^{2}+k_{5}^{2}}{4 k_{1} k_{2} k_{3} k_{4} k_{5}}\left(k_{1}+k_{2}+k_{3}-k_{4}-k_{5}\right) \tag{3.13}
\end{equation*}
$$

Thus the cancellation by virtue of (2.11) is obvious.
To check cancellation for the generic dispersion relation (1.4) one notice first that S_{12345} is invariant with respect to transformation $F(k) \rightarrow F(\alpha k)+\beta k$ where $\alpha \neq 0, \beta$ are arbitrary constants. Moreover, one can replace $F(k)$ by $F(k, p)=k^{2} \frac{1+e^{p}}{1-e^{p}}$ because exponent is not an algebraic function. Resonance conditions now read:

$$
p_{4}+p_{5}=p_{1}+p_{2}+p_{3}, \quad k_{4}+k_{5}=k_{1}+k_{2}+k_{3}
$$

and

$$
F\left(k_{4}, p_{4}\right)+F\left(k_{5}, p_{5}\right)=F\left(k_{1}, p_{1}\right)+F\left(k_{2}, p_{2}\right)+F\left(k_{3}, p_{3}\right) .
$$

Now five-waves amplitude depends on ten variables

$$
S_{12345}=S\left(k_{1}, \ldots, k_{5}, p_{1}, \ldots, p_{5}\right)
$$

Checking cancellation of this amplitude by virtue of resonance conditions took approximately ten minutes for computer algebra system Maple. Explicit representation of S_{12345} in the form similar to (3.12) and (3.13) is so cumbercome that we do not present it here.

4 Solving the functional equation

Consider the five-waves equation $S\left(k_{1}, \ldots, k_{5}\right)=0$ as a functional equation for function $f(k)=$ $F(k)$. This functional equation reads:

$$
\begin{gather*}
F\left(k_{1}, k_{2}\right)\left(F\left(k_{4}, k_{5}\right)+G\left(k_{5}, k_{3}\right)+G\left(k_{4}, k_{3}\right)\right)+F\left(k_{1}, k_{3}\right)\left(F\left(k_{4}, k_{5}\right)+G\left(k_{2}, k_{5}\right)+G\left(k_{2}, k_{4}\right)\right)+ \\
G\left(k_{5}, k_{1}\right)\left(F\left(k_{2}, k_{3}\right)+G\left(k_{4}, k_{3}\right)+G\left(k_{2}, k_{4}\right)\right)+G\left(k_{4}, k_{1}\right)\left(F\left(k_{2}, k_{3}\right)+G\left(k_{5}, k_{3}\right)+G\left(k_{2}, k_{5}\right)\right)+ \tag{4.14}\\
F\left(k_{4}, k_{5}\right) F\left(k_{2}, k_{3}\right)+G\left(k_{2}, k_{4}\right) G\left(k_{5}, k_{3}\right)+G\left(k_{2}, k_{5}\right) G\left(k_{4}, k_{3}\right)=0
\end{gather*}
$$

where $F(x, y)=\frac{x+y}{f(x+y)-f(x)-f(y)}, G(x, y)=\frac{x-y}{f(x-y)-f(x)+f(y)}$ and k_{1}, \ldots, k_{5} satisfy the following constrains:

$$
\begin{gather*}
k_{1}+k_{2}+k_{3}=k_{4}+k_{5} \tag{4.15}\\
f\left(k_{1}\right)+f\left(k_{2}\right)+f\left(k_{3}\right)=f\left(k_{4}\right)+f\left(k_{5}\right) . \tag{4.16}
\end{gather*}
$$

Note that if $f(k)$ is a solution of this functional equation, then $f_{1}(k)=a f(b k)+c k$ is also a solution for arbitrary constants $a, b \neq 0, c$. We say that such solutions are equivalent.

Proposition. Any solution of the functional equation (4.14) analytic near zero and such that $f(0)=0$ is equivalent to one of the following: $f_{1}(k)=k^{2}, f_{2}(k)=k^{3}, f_{3}(k)=k^{2} \frac{e^{k}+1}{e^{k}-1}$.

Remark. Here we suppose that $a, b \neq 0$ in our equivalence relation are complex numbers. If we restrict ourself to real numbers, then there exist one more non-equivalent solution $f_{4}(k)=$ $k^{2} \cot (k)$.

Proof. Set $k_{2}=k_{4}+u, k_{5}=k_{3}+v$, then the constrain (4.15) is equivalent to $k_{1}=v-u$. Expanding the constrain (4.16) near $u=v=0$ we obtain

$$
\begin{equation*}
v=\frac{f^{\prime}\left(k_{4}\right)}{f^{\prime}\left(k_{3}\right)} u+o(u) . \tag{4.17}
\end{equation*}
$$

Expanding (4.14) near $u=v=0$ and substituting (4.17) we obtain in the first non-trivial term:

$$
\begin{gathered}
-\left(-f\left(k_{4}\right)+f\left(k_{4}-k_{3}\right)+f\left(k_{3}\right)\right)\left(f\left(k_{4}\right)-f\left(k_{4}+k_{3}\right)+f\left(k_{3}\right)\right)\left(-4 k_{3} f\left(k_{3}\right)+2 k_{3} f\left(k_{4}+k_{3}\right)-k_{4} f\left(k_{4}-k_{3}\right)-\right. \\
\left.k_{4} f\left(k_{4}+k_{3}\right)-2 k_{3} f\left(k_{4}-k_{3}\right)+2 k_{4} f\left(k_{4}\right)\right) f^{\prime}\left(k_{4}\right)^{2}+ \\
\left(-f\left(k_{4}\right)+f\left(k_{4}-k_{3}\right)+f\left(k_{3}\right)\right)\left(f\left(k_{4}\right)-f\left(k_{4}+k_{3}\right)+f\left(k_{3}\right)\right) \\
\left(-2 k_{3} f\left(k_{3}\right)+k_{3} f\left(k_{4}+k_{3}\right)-2 k_{4} f\left(k_{4}-k_{3}\right)-2 k_{4} f\left(k_{4}+k_{3}\right)-k_{3} f\left(k_{4}-k_{3}\right)+4 k_{4} f\left(k_{4}\right)\right) f^{\prime}\left(k_{3}\right)^{2}+ \\
k_{4}\left(-f\left(k_{4}\right)+f\left(k_{4}-k_{3}\right)+f\left(k_{3}\right)\right)\left(f\left(k_{4}\right)-f\left(k_{4}+k_{3}\right)+f\left(k_{3}\right)\right)\left(2 k_{4} f\left(k_{4}\right)+k_{3} f\left(k_{4}+k_{3}\right)-k_{3} f\left(k_{4}-k_{3}\right)-\right. \\
\left.2 k_{3} f\left(k_{3}\right)-k_{4} f\left(k_{4}-k_{3}\right)-k_{4} f\left(k_{4}+k_{3}\right)\right) f^{\prime}\left(k_{3}\right) f^{\prime \prime}\left(k_{4}\right)- \\
k_{3}\left(-f\left(k_{4}\right)+f\left(k_{4}-k_{3}\right)+f\left(k_{3}\right)\right)\left(f\left(k_{4}\right)-f\left(k_{4}+k_{3}\right)+f\left(k_{3}\right)\right)
\end{gathered}
$$

$$
\begin{align*}
& \left(2 k_{4} f\left(k_{4}\right)+k_{3} f\left(k_{4}+k_{3}\right)-k_{3} f\left(k_{4}-k_{3}\right)-2 k_{3} f\left(k_{3}\right)-k_{4} f\left(k_{4}-k_{3}\right)-k_{4} f\left(k_{4}+k_{3}\right)\right) f^{\prime \prime}\left(k_{3}\right) f^{\prime}\left(k_{4}\right) \\
& +\left(-2 k_{3}^{2} f\left(k_{4}\right)^{2}-k_{3}^{2} f\left(k_{4}-k_{3}\right)^{2}-k_{3}^{2} f\left(k_{4}+k_{3}\right)^{2}+2 k_{4}^{2} f\left(k_{4}\right) f\left(k_{4}+k_{3}\right)-\right. \\
& 4 k_{3} k_{4} f\left(k_{4}-k_{3}\right) f\left(k_{3}\right)+4 k_{3} k_{4} f\left(k_{4}\right) f\left(k_{4}-k_{3}\right)-2 k_{4} k_{3} f\left(k_{4}-k_{3}\right)^{2}-k_{4}^{2} f\left(k_{4}+k_{3}\right)^{2}- \\
& 4 k_{3} k_{4} f\left(k_{4}\right) f\left(k_{4}+k_{3}\right)+2 k_{4}^{2} f\left(k_{3}\right) f\left(k_{4}+k_{3}\right)+2 k_{3}^{2} f\left(k_{4}+k_{3}\right) f\left(k_{3}\right)+8 k_{4} k_{3} f\left(k_{4}\right) f\left(k_{3}\right)+ \\
& 2 k_{3}^{2} f\left(k_{4}\right) f\left(k_{4}+k_{3}\right)+2 k_{3} k_{4} f\left(k_{4}+k_{3}\right)^{2}+2 k_{3}^{2} f\left(k_{4}-k_{3}\right) f\left(k_{4}\right)-4 k_{3} k_{4} f\left(k_{4}+k_{3}\right) f\left(k_{3}\right)-k_{4}^{2} f\left(k_{4}-k_{3}\right)^{2}- \\
& 2 k_{4}^{2} f\left(k_{4}\right)^{2}-2 k_{3}^{2} f\left(k_{4}-k_{3}\right) f\left(k_{3}\right)-2 k_{4}^{2} f\left(k_{3}\right) f\left(k_{4}-k_{3}\right)- \\
& \left.2 k_{3}^{2} f\left(k_{3}\right)^{2}-2 k_{4}^{2} f\left(k_{3}\right)^{2}+2 k_{4}^{2} f\left(k_{4}\right) f\left(k_{4}-k_{3}\right)\right) f^{\prime}\left(k_{4}\right)^{2} f^{\prime}\left(k_{3}\right)- \\
& \left(-f\left(k_{4}\right)+f\left(k_{4}-k_{3}\right)+f\left(k_{3}\right)\right)\left(f\left(k_{4}\right)-f\left(k_{4}+k_{3}\right)+f\left(k_{3}\right)\right) \tag{4.18}\\
& \left(2 k_{3} f\left(k_{3}\right)-k_{3} f\left(k_{4}+k_{3}\right)-k_{4} f\left(k_{4}-k_{3}\right)-k_{4} f\left(k_{4}+k_{3}\right)+k_{3} f\left(k_{4}-k_{3}\right)+2 k_{4} f\left(k_{4}\right)\right) f^{\prime}\left(k_{3}\right) f^{\prime}\left(k_{4}\right)+ \\
& \left(k_{4}^{2} f\left(k_{4}+k_{3}\right)^{2}+2 k_{4} k_{3} f\left(k_{4}-k_{3}\right)^{2}+4 k_{3} k_{4} f\left(k_{4}-k_{3}\right) f\left(k_{3}\right)-2 k_{4}^{2} f\left(k_{4}\right) f\left(k_{4}-k_{3}\right)+\right. \\
& k_{4}^{2} f\left(k_{4}-k_{3}\right)^{2}+k_{3}^{2} f\left(k_{4}+k_{3}\right)^{2}+2 k_{3}^{2} f\left(k_{4}\right)^{2}+2 k_{4}^{2} f\left(k_{3}\right) f\left(k_{4}-k_{3}\right)+2 k_{4}^{2} f\left(k_{4}\right)^{2}+k_{3}^{2} f\left(k_{4}-k_{3}\right)^{2}+ \\
& 4 k_{3} k_{4} f\left(k_{4}+k_{3}\right) f\left(k_{3}\right)-2 k_{3} k_{4} f\left(k_{4}+k_{3}\right)^{2}-2 k_{3}^{2} f\left(k_{4}-k_{3}\right) f\left(k_{4}\right)+2 k_{4}^{2} f\left(k_{3}\right)^{2}-2 k_{4}^{2} f\left(k_{3}\right) f\left(k_{4}+k_{3}\right)+ \\
& 4 k_{3} k_{4} f\left(k_{4}\right) f\left(k_{4}+k_{3}\right)-8 k_{4} k_{3} f\left(k_{4}\right) f\left(k_{3}\right)+2 k_{3}^{2} f\left(k_{3}\right)^{2}+2 k_{3}^{2} f\left(k_{4}-k_{3}\right) f\left(k_{3}\right)- \\
& \left.2 k_{4}^{2} f\left(k_{4}\right) f\left(k_{4}+k_{3}\right)-4 k_{3} k_{4} f\left(k_{4}\right) f\left(k_{4}-k_{3}\right)-2 k_{3}^{2} f\left(k_{4}\right) f\left(k_{4}+k_{3}\right)-2 k_{3}^{2} f\left(k_{4}+k_{3}\right) f\left(k_{3}\right)\right) f^{\prime}\left(k_{3}\right)^{2} f^{\prime}\left(k_{4}\right)- \\
& k_{4}\left(-f\left(k_{4}\right)+f\left(k_{4}-k_{3}\right)+f\left(k_{3}\right)\right)^{2}\left(f\left(k_{4}\right)-f\left(k_{4}+k_{3}\right)+f\left(k_{3}\right)\right)^{2} f^{\prime \prime}\left(k_{4}\right)+ \\
& k_{3}\left(-f\left(k_{4}\right)+f\left(k_{4}-k_{3}\right)+f\left(k_{3}\right)\right)^{2}\left(k_{4}+k_{3}\right) f^{\prime}\left(k_{4}+k_{3}\right) f^{\prime}\left(k_{4}\right)^{2}- \\
& k_{4}\left(-f\left(k_{4}\right)+f\left(k_{4}-k_{3}\right)+f\left(k_{3}\right)\right)^{2}\left(k_{4}+k_{3}\right) f^{\prime}\left(k_{4}+k_{3}\right) f^{\prime}\left(k_{3}\right)^{2}+ \\
& \left(-f\left(k_{4}\right)+f\left(k_{4}-k_{3}\right)+f\left(k_{3}\right)\right)^{2}\left(k_{4}-k_{3}\right)\left(k_{4}+k_{3}\right) f^{\prime}\left(k_{4}+k_{3}\right) f^{\prime}\left(k_{3}\right) f^{\prime}\left(k_{4}\right)- \\
& k_{3}\left(f\left(k_{4}\right)-f\left(k_{4}+k_{3}\right)+f\left(k_{3}\right)\right)^{2}\left(k_{4}-k_{3}\right) f^{\prime}\left(k_{4}-k_{3}\right) f^{\prime}\left(k_{4}\right)^{2}- \\
& k_{4}\left(f\left(k_{4}\right)-f\left(k_{4}+k_{3}\right)+f\left(k_{3}\right)\right)^{2}\left(k_{4}-k_{3}\right) f^{\prime}\left(k_{4}-k_{3}\right) f^{\prime}\left(k_{3}\right)^{2}+ \\
& k_{3}\left(-f\left(k_{4}\right)+f\left(k_{4}-k_{3}\right)+f\left(k_{3}\right)\right)^{2}\left(f\left(k_{4}\right)-f\left(k_{4}+k_{3}\right)+f\left(k_{3}\right)\right)^{2} f^{\prime \prime}\left(k_{3}\right)+ \\
& 2\left(-f\left(k_{4}\right)+f\left(k_{4}-k_{3}\right)+f\left(k_{3}\right)\right)^{2}\left(f\left(k_{4}\right)-f\left(k_{4}+k_{3}\right)+f\left(k_{3}\right)\right)^{2} f^{\prime}\left(k_{4}\right)- \\
& 2\left(-f\left(k_{4}\right)+f\left(k_{4}-k_{3}\right)+f\left(k_{3}\right)\right)^{2}\left(f\left(k_{4}\right)-f\left(k_{4}+k_{3}\right)+f\left(k_{3}\right)\right)^{2} f^{\prime}\left(k_{3}\right)+ \\
& \left(f\left(k_{4}\right)-f\left(k_{4}+k_{3}\right)+f\left(k_{3}\right)\right)^{2}\left(k_{4}-k_{3}\right)\left(k_{4}+k_{3}\right) f^{\prime}\left(k_{4}-k_{3}\right) f^{\prime}\left(k_{3}\right) f^{\prime}\left(k_{4}\right)=0
\end{align*}
$$

Assume without loss of generality $f(k)=a_{2} k^{2}+a_{3} k^{3}+\ldots$ Expanding (4.18) near $k_{3}=k_{4}=0$ we get $a_{2} a_{3}=0$. We have different cases:

Case 1. Let $a_{2} \neq 0$, then $a_{3}=0$. Without loss of generality we assume $f(k)=k^{2}+a_{4} k^{4}+$ $a_{5} k^{5} \ldots$ Expanding (4.18) near $k_{3}=0$ we obtain under this assumption in the first non-trivial term:

$$
-5 f^{\prime}\left(k_{4}\right)^{2}+8 k_{4} f^{\prime \prime}\left(k_{4}\right) f^{\prime}\left(k_{4}\right)+f^{\prime}\left(k_{4}\right) k_{4}^{2} f^{\prime \prime \prime}\left(k_{4}\right)-3 k_{4}^{2} f^{\prime \prime}\left(k_{4}\right)^{2}=0
$$

The only solution of this 3rd-order ODE of the form $f(k)=k^{2}+a_{4} k^{4}+a_{5} k^{5}$... is $f(k)=k^{2}$.

Case 2. Let $a_{3} \neq 0$, then $a_{2}=0$. Without loss of generality we assume $f(k)=k^{3}+a_{4} k^{4}+$ $a_{5} k^{5} \ldots$ Expanding (4.18) near $k_{3}=0$ we obtain under this assumption in the first non-trivial term:

$$
\begin{gathered}
-4 f^{\prime}\left(k_{4}\right)^{2} f^{\prime \prime \prime}\left(k_{4}\right)+12 f^{\prime}\left(k_{4}\right)^{2}-k_{4} f^{\prime}\left(k_{4}\right)^{2} f^{\prime \prime \prime \prime}\left(k_{4}\right)-2 f^{\prime}\left(k_{4}\right) k_{4}^{2} f^{\prime \prime \prime}\left(k_{4}\right)+ \\
4 f^{\prime}\left(k_{4}\right) k_{4} f^{\prime \prime}\left(k_{4}\right) f^{\prime \prime \prime}\left(k_{4}\right)-18 k_{4} f^{\prime \prime}\left(k_{4}\right) f^{\prime}\left(k_{4}\right)+6 f^{\prime}\left(k_{4}\right) f^{\prime \prime}\left(k_{4}\right)^{2}-3 f^{\prime \prime}\left(k_{4}\right)^{3} k_{4}+6 k_{4}^{2} f^{\prime \prime}\left(k_{4}\right)^{2}=0 .
\end{gathered}
$$

Any solution of this 4th-order ODE of the form $f(k)=k^{3}+a_{4} k^{4}+a_{5} k^{5} \ldots$ is equivalent to either $f(k)=k^{3}$ or $f(k)=k^{2} \frac{e^{k}+1}{e^{k}-1}\left(\right.$ or $f(k)=k^{2} \cot (k)$ if our group of equivalence is real rather then complex).

Note that in the case $a_{2}=a_{3}=0$ there are not non-trivial solutions.

5 New equations

Our results show that if we set

$$
F(k)=a k^{3} \cot b k-c k
$$

where a, b, c are constants, the five-wave amplitude is also zero. The corresponding equation hardly has any physical importance because $F(k)=\infty$ at $b k=\pi n$. Anyway, in the limit $b \rightarrow 0, a=\frac{3}{b}, c=\frac{3}{b^{2}}$ we get $\left.F * k\right)=k^{3}$ and the equations goes to the KdV. Another equation is more interesting. Let $u=u(x, y, t)$ be a function in two spacial coordinated x, y variables and F is given by

$$
F\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)=a \frac{\partial^{2}}{\partial x^{2}} \operatorname{coth} a \frac{\partial}{\partial y} .
$$

The five-wave amplitude is zero in this case. This equation might be useful in applications. In the limit $a \rightarrow 0$ we have $F \rightarrow \frac{\partial^{2}}{\partial x^{2}}\left(\frac{\partial}{\partial x}\right)^{-1}$ and our equation degenerates to the following form

$$
u_{t}=\partial_{x}^{2} \partial_{y}^{-1} u+u u_{x}
$$

This equation can be compared with Khokhov-Zabolotskaya equation (see, for instance, [7])

$$
u_{t}=\partial_{y}^{2} \partial_{x}^{-1} u+u u_{x} .
$$

But these equations are not equivalent.
Aknowledgements This work was supported by the NSF grant NSF40CE-1130450 and the Russian Government contract 11.934.31.0035 (signed November 25, 2010).

References

[1] M.A. Ablowitz and P.A.Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series No. 149 (Cambridge University Press, Cambridge, England, 1991)
[2] V.E. Zakharov, E.I. Shulman, The scattering matrix and integrability of classical wave systems with an additional integral of motion, Dokl. Acad. Nauk SSSR 283 (6) 1325-1328 (1985) (Sov. Phys. Docl. 30, 671-672 (1985)).
[3] V.E. Zakharov, E.I. Shulman, Degenerative dispersion laws, motion invariants and kinetic equations, Physica D 1 (1980), no.2, pp. 192-202.
[4] V.E. Zakharov, E.I. Shulman, On additional motion invariants of classical Hamiltonian wave systems, Physica D 29 (1988), no.3, pp. 283-320.
[5] V.E. Zakharov, E.I. Shulman, Integrability of nonlinear systems and perturbation theory, in What is integrability, ed. by V.E. Zakharov, Springer-Verlag 1991, pp. 185-250.
[6] V.E. Zakharov, A.M. Balk and E.I. Shulman, Concervation and scattering in nonlinear wave systems, in Important developments in soliton theory, Ed. by A.S. Fokas and V.E. Zakharov, Springer-Verlag 1993, pp. 375-404.
[7] V.E. Zakharov, Integrable systems in multidimensional spaces, Lecture notes in physics 153, Springer-Verlag 1981, pp. 190-216.

