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Permutation Complexity and Coupling Measures in
Hidden Markov Models

Taichi Haruna, Kohei Nakajima

Abstract—In [Haruna, T. and Nakajima, K., 2011. Physica D
240, 1370-1377], the authors introduced the duality between val-
ues (words) and orderings (permutations) as a basis to discuss the
relationship between information theoretic measures for finite-
alphabet stationary stochastic processes and their permutation
versions. It has been used to give a simple proof of the equality
between the entropy rate and the permutation entropy rate for
any finite-alphabet stationary stochastic process and showsome
results on the excess entropy and the transfer entropy for finite-
alphabet stationary ergodic Markov processes. In this paper,
we generalize our previous framework and show the equalities
between various information theoretic complexity and coupling
measures and their permutation versions. In particular, weprove
the following two results within the realm of hidden Markov
models with ergodic internal processes: the two permutation
versions of the transfer entropy, the symbolic transfer entropy
and the transfer entropy on rank vectors, are both equivalent to
the transfer entropy if they are considered as the rates, andthe
directed information theory can be captured by the permutation
entropy approach.

Index Terms—Duality, Permutation Entropy, Excess Entropy,
Transfer Entropy, Directed Information

I. I NTRODUCTION

RECENTLY, the permutation-information theoretic ap-
proach to time series analysis proposed by Bandt and

Pompe [1] has become popular in various fields [2]. It has been
proved that the method of permutation is easy to implement
relative to the other traditional methods, is computationally
fast and is robust under the existence of noise [3], [4], [5].
However, if we turn our eyes to its theoretical side, few
results are known for the permutation versions of information
theoretic measures except the entropy rate.

There are two approaches to introduce permutation into
dynamical systems theory. The first approach was introduced
by Bandt et al. [6]. Given a one-dimensional interval map,
they considered permutations induced by iterations of the
map. Each point in the interval is classified into one ofn!
permutations according to the permutation defined byn − 1
times iterations of the map starting from the point. Then, the
Shannon entropy of this partition (called standard partition)
of the interval is taken and normalized byn. The quantity
obtained in the limitn → ∞ is called permutation entropy if
it exists. It was proved that the permutation entropy is equal to
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the Kolmogorov-Sinai entropy for any piecewise monotone in-
terval map [6]. This approach based on the standard partitions
was extended by [7].

The second approach is taken by Amigó et al. [2], [8]. In
this approach, given a measure-preserving map on a proba-
bility space, first an arbitrary finite partition of the spaceis
taken. This gives rise to a finite-alphabet stationary stochastic
process. An arbitrary ordering is introduced on the alphabet
and the permutations of the words of finite lengths can be
naturally defined (see Section II below). It is proved that
the Shannon entropy of the occurrence of the permutations
of a fixed length normalized by the length converges in the
limit of the large length of the permutations. The quantity
obtained is called permutation entropy rate (also called metric
permutation entropy) and is shown to be equal to the entropy
rate of the process. By taking the limit of finer partitions ofthe
measurable space, the permutation entropy rate of the measure-
preserving map is defined if the limit exists. Amigó [9] proved
that it exists and is equal to the Kolmogorov-Sinai entropy.

In this paper, we restrict our attention to finite-alphabet
stationary stochastic processes. Thus, we follow the second
approach, namely, ordering on the alphabet is introduced
arbitrarily. For quantities other than the entropy rate, three
results for finite-alphabet stationary stochastic Markov pro-
cesses have been shown by our previous work: the equality
between the excess entropy and the permutation excess entropy
[10], the equality between the mutual information expression
of the excess entropy and its permutation version [11] and the
equality between the transfer entropy rate and the symbolic
transfer entropy rate [12].

The purpose of this paper is to set up a theoretical frame-
work to discuss permutation versions of many information
theoretic measures other than the entropy rate. In particular,
we generalize our previous results for finite-alphabet stationary
ergodic Markov processes to output processes of finite-state
finite-alphabet hidden Markov models with ergodic internal
processes. Upon this generalization, somewhatad hocproofs
in our previous work become systematic and greatly simpli-
fied. This makes us easily access quantities that have not been
considered in the permutation approach. In this paper, we shall
treat the following quantities: excess entropy [13], transfer
entropy [14], [15], momentary information transfer [16] and
directed information [17], [18].

This paper is organized as follows: In Section II, we briefly
review our previous result on the duality between words and
permutations which is the basis for the succeeding results.
In Section III, we prove a lemma about finite-state finite-
alphabet hidden Markov models. In Section IV, we show
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equalities between various information theoretic complexity
and coupling measures and their permutation versions that
hold for output processes of finite-state finite-alphabet hidden
Markov models with ergodic internal processes. In Section V,
we discuss how our results are related to the previous work in
the literature.

II. T HE DUALITY BETWEEN WORDS AND PERMUTATIONS

In this section, we summarize the results from our previous
work [10] which will be used in this paper.

Let An be a finite set consisting of natural numbers from1
to n called analphabet. In this paperAn is considered as a
totally ordered set ordered by the usual ‘less-than-or-equal-to’
relationship. When we emphasize the total order, we callAn

ordered alphabet.
The set of all permutations of lengthL ≥ 1 is denoted

by SL. Namely, SL is the set of all bijectionsπ on the
set {1, 2, · · · , L}. For convenience, we sometimes denote a
permutationπ of lengthL by a stringπ(1)π(2) · · ·π(L). The
number ofdescents, places withπ(i) > π(i + 1), of π ∈ SL

is denoted byDesc(π). For example, ifπ ∈ S5 is given by
π(1)π(2)π(3)π(4)π(5) = 35142, thenDesc(π) = 2.

Let AL
n = An × · · · ×An

︸ ︷︷ ︸

L

be theL-fold product ofAn.

A word of lengthL ≥ 1 is an element ofAL
n . It is denoted

by x1:L := x1 · · ·xL := (x1, · · · , xL) ∈ AL
n . We say that

the permutation typeof a word x1:L is π ∈ SL if we have
xπ(i) ≤ xπ(i+1) andπ(i) < π(i + 1) whenxπ(i) = xπ(i+1)

for i = 1, 2, · · · , L− 1. Namely, the permutation type ofx1:L

is the permutation of indices defined by re-ordering symbols
x1, · · · , xL in the increasing order. For example, the permuta-
tion type ofx1:5 = 31212 ∈ A5

3 is π(1)π(2)π(3)π(4)π(5) =
24351 becausex2x4x3x5x1 = 11223.

Let φn,L : AL
n → SL be a map sending each wordx1:L to

its permutation typeπ = φn,L(x1:L). We define another map
µn,L : φn,L

(
AL

n

)
⊆ SL → AL

n by the following procedure:

(i) Given a permutationπ ∈ φn,L

(
AL

n

)
⊆ SL, we decom-

pose the sequenceπ(1) · · ·π(L) of lengthL into maximal
ascending subsequences. A subsequenceij · · · ij+k of
a sequencei1 · · · iL of length L is called a maximal
ascending subsequenceif it is ascending, namely,ij ≤
ij+1 ≤ · · · ≤ ij+k, and neitherij−1ij · · · ij+k nor
ijij+1 · · · ij+k+1 is ascending.

(ii) If π(1) · · ·π(i1), π(i1 + 1) · · ·π(i2), · · · , π(ik−1 +
1) · · ·π(L) is a decomposition ofπ(1) · · ·π(L) into max-
imal ascending subsequences, then a wordx1:L ∈ AL

n is
defined byxπ(1) = · · · = xπ(i1) = 1, xπ(i1+1) = · · · =
xπ(i2) = 2, · · · , xπ(ik−1)+1 = · · · = xπ(L) = k. We de-
fineµn,L(π) = x1:L. Note thatDesc(π) ≤ n−1 because
π is the permutation type of some wordy1:L ∈ AL

n . Thus,
we havek = Desc(π) + 1 ≤ n. Hence,µn,L is well-
defined as a map fromφn,L

(
AL

n

)
to AL

n .

By construction, we haveφn,L ◦ µn,L(π) = π for all
π ∈ φn,L

(
AL

n

)
. To illustrate the construction ofµn,L, let us

consider a wordy1:5 = 21123 ∈ A5
3. The permutation type of

y1:5 is π(1)π(2)π(3)π(4)π(5) = 23145. The decomposition
of 23145 into maximal ascending subsequences is23, 145.

We obtain µn,L(π) = x1x2x3x4x5 = 21122 by putting
x2x3x1x4x5 = 11222.

Theorem 1: (i) For anyπ ∈ SL,

|φ−1
n,L(π)| =

(
L+ n−Desc(π) − 1

L

)

,

where
(
a
b

)
= 0 if a < b.

(ii) Let us put Bn,L := {x1:L ∈ AL
n |φ

−1
n,L(π) =

{x1:L} for someπ ∈ SL} and Cn,L := {π ∈
SL||φ

−1
n,L(π)| = 1}. Then, φn,L restricted onBn,L is

a map intoCn,L, µn,L restricted onCn,L is a map into
Bn,L, and they form a pair of mutually inverse maps.
Furthermore, we haveBn,L = {x1:L ∈ AL

n |1 ≤ ∀i ≤
n − 1 1 ≤ ∃j < k ≤ L s. t. xj = i + 1, xk = i} and
Cn,L = {π ∈ SL|Desc(π) = n− 1}.
Proof: The theorem is a recasting of statements in Lemma

5 and Theorem 9 in [10].
Let X = {X1, X2, · · · } be a finite-alphabet stationary

stochastic process, where each stochastic variableXi takes
its value inAn. By the assumed stationarity, the probability
of the occurrence of any wordx1:L ∈ AL

n is time-shift
invariant: Pr{X1 = x1, · · · , XL = xL} = Pr{Xk+1 =
x1, · · · , Xk+L = xL} for any k, L ≥ 1. Hence, it makes
sense to define it without referring to the time to start.
We denote the probability of the occurrence of a word
x1:L ∈ AL

n by p(x1:L) = p(x1 · · ·xL). The probability
of the occurrence of a permutationπ ∈ SL is given by
p(π) =

∑

x1:L∈φ
−1

n,L
(π) p(x1:L).

For a finite-alphabet stationary stochastic processX over
the alphabetAn, we define

αX,L :=
∑

π∈SL,

|φ−1

n,L
(π)|>1

p(π) =
∑

π 6∈Cn,L

p(π)

and

βx,X,L = Pr{x1:N ∈ AN
n |xj 6= x for any 1 ≤ j ≤ N}

=
∑

xj 6=x,
1≤j≤N

p(x1 · · ·xN ),

whereL ≥ 1, x ∈ An andN = ⌊L/2⌋ and⌊a⌋ is the largest
integer not greater thana.

Lemma 2:Let X be a finite-alphabet stationary stochastic
process andǫ be a positive real number. Ifβx,X,L < ǫ for any
x ∈ An, then we haveαX,L < 2nǫ.

Proof: The claim follows from Theorem 1 (ii). See
Lemma 12 in [10] for the complete proof.

III. A RESULT ON FINITE-STATE FINITE-ALPHABET

HIDDEN MARKOV MODELS

A finite-state finite-alphabet hidden Markov model(in short,
HMM) [19] is a quadruple(Σ, A, {T (a)}a∈A, µ), whereΣ and
A are finite sets calledstate setand alphabet, respectively,
{T (a)}a∈A is a family of |Σ| × |Σ| matrices indexed by
elements ofA where|Σ| is the size of state setΣ, andµ is a
probability distribution on the setΣ. The following conditions
must be satisfied:
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(i) T
(a)
ss′ ≥ 0 for any s, s′ ∈ Σ anda ∈ A,

(ii)
∑

s′,a T
(a)
ss′ = 1 for any s ∈ Σ,

(iii) and µ(s′) =
∑

s,a µ(s)T
(a)
ss′ for any s′ ∈ Σ.

Any probability distribution satisfying the condition (iii) is
called astationary distribution. The |Σ| × |Σ| matrix T :=
∑

a∈A T (a) is called state transition matrix. The ternary
(Σ, T, µ) defines theunderlying Markov chain. Note that the
condition (iii) is equivalent to the condition (iii’)µ(s′) =
∑

s µ(s)Tss′ .
Two finite-alphabet stationary processes are induced by

a HMM (Σ, A, {T (a)}a∈A, µ). One is solely determined by
the underlying Markov chain. It is calledinternal process
and is denoted byS = {S1, S2, · · · }. The alphabet for
S is Σ. The joint probability distributions which charac-
terize S is given by Pr{S1 = s1, S2 = s2, · · · , SL =
sL} := µ(s1)Ts1s2 · · ·TsL−1sL for any s1, · · · , sL ∈ Σ
and L ≥ 1. The other processX = {X1, X2, · · · } with
the alphabetA is defined by the joint probability distri-
butions Pr{X1 = x1, X2 = x2, · · · , XL = xL} :=
∑

s,s′ µ(s)
(
T (x1) · · ·T (xL)

)

ss′
for any x1, · · · , xL ∈ A and

L ≥ 1 and calledoutput process. The stationarity of the
probability distributionµ ensures that of both the internal and
output processes.

Symbolsa ∈ A such thatT (a) = O occur in the output
process with probability0. Hence, we obtain the same output
process even if we remove these symbols. Thus, we can
assumeT (a) 6= O for any a ∈ A without loss of generality.

The internal processS of a HMM (Σ, A, {T (a)}a∈A, µ) is
called ergodic if the state transition matrixT is irreducible
[20]: for any s, s′ ∈ Σ there existsk > 0 such that
(T k)ss′ > 0. If the internal processS is ergodic, then the
stationary distributionµ is uniquely determined by the state
transition matrixT via the condition (iii’). It is known that the
ergodicity of the internal processS implies that of the output
processX, but not vice versa [21].

Note that there are two types of hidden Markov models
depending on whether outputs are emitted from edges or states.
The HMM defined here is edge emitting type. However, it is
known that these two classes of HMM are equivalent [19]. In
particular, any finite-alphabet finite-order stationary Markov
process can be described as a HMM defined here.

Lemma 3:Let X be the output process of a HMM
(Σ, An, {T

(a)}a∈An
, µ), where An = {1, 2, · · · , n} is an

ordered alphabet. If the internal processS of the HMM is
ergodic, then for anyx ∈ An there exists0 < γx < 1 and
Cx > 0 such thatβx,X,L < Cxγ

L
x for anyL ≥ 1.

Proof: Given L ≥ 1, let us putN := ⌊L/2⌋. Fix any
x ∈ An. Since we have

βx,X,L =
∑

xj 6=x,
1≤j≤N

p(x1 · · ·xN )

=
∑

xj 6=x,
1≤j≤N

∑

s,s′

µ(s)
(

T (x1) · · ·T (xN)
)

ss′

= 〈µ
(

T − T (x)
)N

,1〉,

where 1 = (1, 1, · · · , 1) and 〈· · · , · · · 〉 is the usual inner
product of the|Σ|-dimensional Euclidean spaceR|Σ|, it is
sufficient to show that the largest eigenvalue of the matrix
T(x) := T−T (x) is less than 1. To prove this we shall appeal to
the Perron-Frobenius theorem becauseT(x) is a non-negative
matrix:

(i) there exists a non-negative eigenvalueλ called the
Perron-Frobenius eigenvaluesuch that any other eigen-
value ofT(x) has absolute value not greater thanλ,

(ii) λ ≤ maxs{
∑

s′(T(x))ss′} ≤ 1,
(iii) and there exists a non-negative left eigenvectorv corre-

sponding to the eigenvalueλ.

We can show that for anyǫ > 0 there existsCǫ > 0 such
that for anyk ≥ 1

‖µT k
(x)‖ ≤ Cǫ(λ+ ǫ)k‖µ‖,

where ‖ · · · ‖ is the Euclidean norm and we used the fact
that any non-negative matrix and its transpose have the same
Perron-Frobenius eigenvalue. For the proof of this inequality,
see the beginning of section 1.2 in [22], for example. Ifλ < 1
then we can chooseǫ > 0 so thatλ + ǫ < 1. If we put
γx := (λ + ǫ)

1
2 and Cx := Cǫ(λ + ǫ)−1‖µ‖‖1‖ then we

obtainβx,X,L < Cxγ
L
x by the Cauchy-Schwartz inequality as

desired.
Let us derive a contradiction from the assumptionλ = 1.

If λ = 1 then we havevT(x) = v. For anyk ≥ 1, We have

〈v,1〉 = 〈vT k
(x),1〉 ≤ 〈vT k,1〉 = 〈v, T k

1〉 = 〈v,1〉,

becauseT(x) ≤ T and T is a stochastic matrix. Thus, we

obtain 〈v
(

T k − T k
(x)

)

,1〉 = 0. Since1 is a positive vector

andv
(

T k − T k
(x)

)

is a non-negative vector, it follows that

v

(

T k − T k
(x)

)

= 0.

Let us consideru, u′ ∈ S such thatT (x)
uu′ > 0. For any

s, s′ ∈ S, there existk1, k2 ≥ 1 such that
(
T k1

)

su
> 0 and

(
T k2

)

u′s′
> 0 becauseT is irreducible. If we putk = k1 +

k2 + 1 then it holds that
(

T k − T k
(x)

)

ss′
=

∑

x1,··· ,xk,
∃i s. t.xi=x

(

T (x1) · · ·T (xk)
)

ss′

≥
(
T k1

)

su
T

(x)
uu′

(
T k2

)

u′s′
> 0.

On the other hand, thes′-th component of the vector
v

(

T k − T k
(x)

)

must be0:

∑

s′′

vs′′
(

T k − T k
(x)

)

s′′s′
= 0,

wherevs′′ denotes thes′′-th component ofv. We obtainvs =
0 becausev is a non-negative vector and

(

T k − T k
(x)

)

is a
non-negative matrix. Sinces ∈ S is arbitrary, we conclude
that v = 0. However, this contradicts the fact thatv is an
eigenvector.
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IV. PERMUTATION COMPLEXITY AND COUPLING

MEASURES

In this section, we discuss the equalities between complexity
and coupling measures and their permutation versions for
the output processes of HMMs whose internal processes are
ergodic.

A. Fundamental lemma

Let (X1, · · · ,Xm) be a multivariate finite-alphabet station-
ary stochastic process, where each univariate processX

k =
{Xk

1 , X
k
2 , · · · }, k = 1, 2, · · · ,m is defined over an ordered

alphabetAnk
. For simplicity, we use the notations

p(x1
a1:b1 , · · · , x

m
am:bm)

:= Pr{X1
a1:b1 = x1

a1:b1 , · · · , X
m
am:bm = xm

am:bm},

p(π1, · · · , πm)

:= Pr{φnk,bk−ak+1 ◦X
k
ak:bk

= πk, k = 1, · · · ,m}

and

p(πk) := Pr{φnk,bk−ak+1 ◦X
k
ak:bk

= πk},

where1 ≤ ak ≤ bk, xk
ak:bk

∈ Abk−ak+1
nk

andπk ∈ Sbk−ak+1

for k = 1, · · · ,m.
Lemma 4:

0 ≤ H(X1
a1:b1 , · · · , X

m
am:bm)−H∗(X1

a1:b1 , · · · , X
m
am:bm)

≤

(
m∑

k=1

αXk,bk−ak+1

)(
m∑

k=1

nk log(bk − ak + 1 + nk)

)

,

where

H(X1
a1:b1 , · · · , X

m
am:bm)

= −
∑

x1
a1:b1

,··· ,xm
am:bm

p(x1
a1:b1 , · · · , x

m
am:bm)

× log p(x1
a1:b1 , · · · , x

m
am:bm)

and

H∗(X1
a1:b1 , · · · , X

m
am:bm)

= −
∑

π1,··· ,πm

p(π1, · · · , πm) log p(π1, · · · , πm)

are the Shannon entropy of the joint occurrence of words
x1
a1:b1

, · · · , xm
am:bm

and permutationsπ1, · · · , πm, respec-
tively, and the base of the logarithm is taken as2.

Proof: We have

H(X1
a1:b1 , · · · , X

m
am:bm)−H∗(X1

a1:b1 , · · · , X
m
am:bm)

=
∑

π1,··· ,πm,
p(π1,··· ,πm)>0

p(π1, · · · , πm)

×

(

−
∑

xk
ak:bk

∈φ
−1

nk,bk−ak+1
(πk),

1≤k≤m

p(x1
a1:b1

, · · · , xm
am:bm

)

p(π1, · · · , πm)

× log
p(x1

a1:b1
, · · · , xm

am:bm
)

p(π1, · · · , πm)

)

.

By Theorem 1 (i), it holds that

0 ≤ −
∑

xk
ak:bk

∈φ
−1

nk,bk−ak+1
(πk),

1≤k≤m

p(x1
a1:b1

, · · · , xm
am:bm

)

p(π1, · · · , πm)

× log
p(x1

a1:b1
, · · · , xm

am:bm
)

p(π1, · · · , πm)

≤ log

m∏

k=1

(
bk − ak + nk −Desc(πk)

bk − ak + 1

)

≤ log

m∏

k=1

(bk − ak + 1 + nk)
nk

=

m∑

k=1

nk log(bk − ak + 1 + nk)

for (π1, · · · , πm) ∈ Sb1−a1+1 × · · · × Sbm−am+1 such that
p(π1, · · · , πm) > 0.

If |(φn1,b1−a1+1 × · · ·φnm,bm−am+1)
−1(π1, · · · , πm)| = 1

then

−
∑

xk
ak:bk

∈φ
−1

nk,bk−ak+1
(πk),

1≤k≤m

p(x1
a1:b1

, · · · , xm
am:bm

)

p(π1, · · · , πm)

× log
p(x1

a1:b1
, · · · , xm

am:bm
)

p(π1, · · · , πm)
= 0.

On the other hand, we have
∑

π1,··· ,πm,

∃k s.t. |φ−1

nk,bk−ak+1
(πk)|>1

p(π1, · · · , πm)

≤

m∑

k=1

∑

πk,

|φ−1

nk,bk−ak+1
(πk)|>1

p(πk)

=

m∑

k=1

αXk,bk−ak+1.

This completes the proof of the inequality.

B. Excess Entropy

Let X be a finite-alphabet stationary stochastic process. Its
excess entropyis defined by [13]

E(X) = lim
L→∞

[H(X1:L)− h(X)L]

=

∞∑

L=1

[H(XL|X1:L−1)− h(X)] ,

if the limit on the right-hand side exists, whereh(X) =
limL→∞ H(X1:L)/L is the entropy rateof X which exists
for any finite-alphabet stationary stochastic process [23].

The excess entropy has been used as a measure of com-
plexity [24], [25], [26], [27], [28], [29]. Actually, it quantifies
global correlations present in a given stationary process in the
following sense: ifE(X) exists then it can be written as the
mutual information between the past and future

E(X) = lim
L→∞

I(X1:L;XL+1:2L).
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It is known that ifX is the output process of a HMM then
E(X) exists [21].

When the alphabet ofX is an ordered alphabetAn, we
define thepermutation excess entropyof X [10] by

E
∗(X) = lim

L→∞
[H∗(X1:L)− h∗(X)L]

=

∞∑

L=1

[H∗(XL|X1:L−1)− h∗(X)] ,

if the limit on the right-hand side exists, whereh∗(X) =
limL→∞ H∗(X1:L)/L is the permutation entropy rateof X

which exists for any finite-alphabet stationary stochasticpro-
cess and is equal to the entropy rateh(X) [2], [8], [9] and
H∗(XL|X1:L−1) := H∗(X1:L)−H∗(X1:L−1).

The following proposition is a generalization of our previous
results in [10], [11].

Proposition 5: Let X be the output process of a HMM
(Σ, An, {T

(a)}a∈An
, µ) with an ergodic internal process.

Then, we have

E(X) = E
∗(X) = lim

L→∞
I∗(X1:L;XL+1:2L),

where I∗(X1:L;XL+1:2L) := H∗(X1:L) + H∗(XL+1:2L) −
H∗(X1:L, XL+1:2L) = 2H∗(X1:L)−H∗(X1:L, XL+1:2L).

Proof: Let L ≥ 1. We have

| [H(X1:L)− h(X)L]− [H∗(X1:L)− h∗(X)L] |

= |H(X1:L)−H∗(X1:L)|

≤ αX,Ln log(L+ n)

≤ 2Cn2 log(L+ n)γL,

whereC := maxx∈An
{Cx}, γ := maxx∈An

{γx} < 1 and
we have usedh(X) = h∗(X) for the first equality, Lemma
4 for the second inequality and Lemma 2 and Lemma 3 for
the last inequality. By taking the limitL → ∞ we obtain
E(X) = E

∗(X).
To prove

lim
L→∞

I(X1:L;XL+1:2L) = lim
L→∞

I∗(X1:L;XL+1:2L),

it is sufficient to show that

|H(X1:L, XL+1:2L)−H∗(X1:L, XL+1:2L)| → 0

asL → ∞. This is because we have

|I(X1:L;XL+1:2L)− I∗(X1:L;XL+1:2L)|

≤ 2|H(X1:L)−H(X1:L)|

+ |H(X1:L, XL+1:2L)−H∗(X1:L, XL+1:2L)|.

However, this can be shown similarly with the above dis-
cussion by applying Lemma 4 to the bivariate process
(X1,X2) := (X,X) and then using Lemma 2 and Lemma
3.

C. Transfer Entropy and Momentary Information Transfer

In this subsection we consider two information rates that
are measures of coupling direction and strength between two
jointly distributed processes and discuss the equalities between
them and their permutation versions. One is the rate version

of the transfer entropy [14] and the other is the rate versionof
the momentary information transfer [16]. Both are particular
instances of conditional mutual information [30].

Let (X,Y) be a bivariate finite-alphabet stationary stochas-
tic process. We assume that the alphabets ofX and Y are
ordered alphabetsAn andAm, respectively. Forτ = 1, 2, · · · ,
we define theτ -step transfer entropy ratefrom Y to X by

tτ (Y → X) = lim
L→∞

[
H(X1:L+τ )−H(X1:L)

−H(X1:L+τ , Y1:L) +H(X1:L, Y1:L)
]
.

Whenτ = 1, t1(Y → X) is called justtransfer entropy rate
[31] from Y to X and simply denoted byt(Y → X).

If we introduce theτ -step entropy rateof X by

hτ (X) = lim
L→∞

H(XL+1:L+τ |X1:L)

and theτ -step conditional entropy rateof X givenY by

hτ (X|Y) = lim
L→∞

H(XL+1:L+τ |X1:L, Y1:L)

then we can write

tτ (Y → X) = hτ (X)− hτ (X|Y)

because bothhτ (X) and hτ (X|Y) exist. We callh1(X|Y)
conditional entropy rateand denote it byh(X|Y)1.
hτ (X) is additive, namely, we always have

hτ (X) = τh1(X) = τh(X).

However, for theτ -step conditional entropy rate, the additivity
cannot hold in general. It is at mostsuper-additive: we only
have the inequality

hτ (X|Y) ≥ τh(X|Y)

in general. Indeed, we have

hτ (X|Y) = lim
L→∞

H(XL+1:L+τ |X1:L, Y1:L)

= lim
L→∞

τ∑

τ ′=1

H(XL+τ ′|X1:L+τ ′−1, Y1:L)

≥ lim
L→∞

τ∑

τ ′=1

H(XL+τ ′|X1:L+τ ′−1, Y1:L+τ ′−1)

= τh(X|Y).

This leads to thesub-additivityof the τ -step transfer entropy
rate:

tτ (Y → X) ≤ τt(Y → X).

An example with the strict inequality can be easily given.
Let Y be an i.i.d. process andX be defined byX1 = Y1

and Xi+1 = Yi. We haveh(X) = h(Y) = H(Y1) and
hτ (X|Y) = (τ − 1)H(Y1). Hence,tτ (Y → X) = H(Y1)
for any τ = 1, 2, · · · .

There are two permutation versions of the transfer entropy.
One is calledsymbolic transfer entropy (STE)[33] and the

1 Note that the conditional entropy rate here is slightly different from that
found in the literature. For example, in [32], conditional entropy rate (called
conditional uncertainty) is defined bylimL→∞ H(XL+1|X1:L, Y1:L+1).
The difference from the conditional entropy rate defined here is in whether
the conditioning onYL+1 is involved or not.
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other is calledtransfer entropy on rank vector (TERV)[34].
Here, we introduce their rate versions as follows: therate of
STE from Y to X is defined by

t∗∗τ (Y → X)

= lim
L→∞

[
H∗(X1:L, X1+τ :L+τ)−H∗(X1:L)

−H∗(X1:L, X1+τ :L+τ , Y1:L) +H∗(X1:L, Y1:L)
]

if the limit on the right-hand side exists. Therate of TERV
from Y to X is defined by

t∗τ (Y → X) = lim
L→∞

[
H∗(X1:L+τ )−H∗(X1:L)

−H∗(X1:L+τ , Y1:L) +H∗(X1:L, Y1:L)
]
.

if the limit on the right-hand side exists. IfE∗(X) exists then,
by the definition of the permutation excess entropy, we have

h∗(X) = lim
L→∞

[H∗(X1:L+1)−H∗(X1:L)] .

In this case,t∗1(Y → X) coincides with a quantity called
symbolic transfer entropy rateintroduced in [12].

Proposition 6: Let (X,Y) be the output process of a HMM
(Σ, An ×Am, {T (a,b)}(a,b)∈An×Am

, µ) with an ergodic inter-
nal process. Then, we have

tτ (Y → X) = t∗τ (Y → X) = t∗∗τ (Y → X).

Proof: Since bothX and Y are the output processes
of appropriate HMMs with ergodic internal processes, the
equalities follow from the similar discussion with that in
the proof of Proposition 5. Indeed, for example,X is the
output process of the HMM(Σ, An, {T

(a)}a∈An
, µ) where

T (a) :=
∑

b∈Am
T (a,b).

A different instance of conditional mutual information
calledmomentary information transferis considered in [16]. It
was proposed to improve the ability to detect coupling delays
which is lacked in the transfer entropy. Here, we consider
its rate version: themomentary information transfer rateis
defined by

mτ (Y → X)

= lim
L→∞

[
H(X1:L+τ , Y1:L−1)−H(X1:L+τ−1, Y1:L−1)

−H(X1:L+τ , Y1:L) +H(X1:L+τ−1, Y1:L)
]
.

Its permutation version calledmomentary sorting information
transfer rateis defined by

m∗
τ (Y → X)

= lim
L→∞

[
H∗(X1:L+τ , Y1:L−1)−H∗(X1:L+τ−1, Y1:L−1)

−H∗(X1:L+τ , Y1:L) +H∗(X1:L+τ−1, Y1:L)
]
.

By the similar discussion with that in the proof of Proposition
6, we obtain the following equality:

Proposition 7: Let (X,Y) be the output process of a HMM
(Σ, An ×Am, {T (a,b)}(a,b)∈An×Am

, µ) with an ergodic inter-
nal process. Then, we have

mτ (Y → X) = m∗
τ (Y → X).

D. Directed Information

Directed informationis a measure of coupling direction
and strength based on the idea of thecausal conditioning
[18], [35]. Since it is not a particular instance of conditional
mutual information, here we treat it separately. In the following
presentation, we make use of terminologies from [31], [36].

Let (X,Y) be a bivariate finite-alphabet stationary stochas-
tic process. The alphabets ofX andY are ordered alphabets
An andAm, respectively. Thedirected information ratefrom
Y to X is defined by

I∞(Y → X) = lim
L→∞

1

L
I(Y1:L → X1:L)

where

I(Y1:L → X1:L) =

L∑

i=1

I(Xi;Y1:i|X1:i−1)

= H(X1:L)−

L∑

i=1

H(Xi|X1:i−1, Y1:i).

Note that if Y1:i in the above expression on the right-hand
side is replaced byY1:L then we obtain the mutual information
betweenX1:L andY1:L:

I(X1:L;Y1:L) = H(X1:L)−

L∑

i=1

H(Xi|X1:i−1, Y1:L).

Thus, conditioning onY1:i for i = 1, · · · , L, not on Y1:L,
distinguishes the directed information from the mutual infor-
mation. Following [35], we write

H(X1:L||Y1:L) :=

L∑

i=1

H(Xi|X1:i−1, Y1:i)

and call the quantitycausal conditional entropy. By using this
notation, we have

I(Y1:L → X1:L) = H(X1:L)−H(X1:L||Y1:L).

The permutation version of the directed information rate
which we call symbolic directed information rateis defined
by

I∗∞(Y → X) = lim
L→∞

1

L
I∗(Y1:L → X1:L)

if the limit on the right-hand side exists, where

I∗(Y1:L → X1:L)

:= H∗(X1:L)−

L∑

i=1

[
H∗(X1:i, Y1:i)−H∗(X1:i−1, Y1:i)

]
.

If we write

I∗(Xi;Y1:i|X1:i−1) :=H∗(X1:i)−H∗(X1:i−1)

−H∗(X1:i, Y1:i) +H∗(X1:i−1, Y1:i)

and

H∗(X1:L||Y1:L) :=

L∑

i=1

[H∗(X1:i, Y1:i)−H∗(X1:i−1, Y1:i)]
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then we have the expressions

I∗(Y1:L → X1:L) =
L∑

i=1

I∗(Xi;Y1:i|X1:i−1)

= H∗(X1:L)−H∗(X1:L||Y1:L).

Proposition 8: Let (X,Y) be the output process of a HMM
(Σ, An ×Am, {T (a,b)}(a,b)∈An×Am

, µ) with an ergodic inter-
nal process. Then, we have

I∞(Y → X) = I∗∞(Y → X).

Proof: We have

|I(Y1:L → X1:L)− I∗(Y1:L → X1:L)|

≤ |H(X1:L)−H∗(X1:L)|

+

L∑

i=1

|H(X1:i, Y1:i)−H∗(X1:i, Y1:i)|

+

L∑

i=1

|H(X1:i−1, Y1:i)−H∗(X1:i−1, Y1:i)|.

We know that the first term on the right-hand side in the above
inequality goes to0 asL → ∞. Let us evaluate the second
sum. By Lemma 4, it holds that

L∑

i=1

|H(X1:i, Y1:i)−H∗(X1:i, Y1:i)|

≤

L∑

i=1

(αX,i + αY,i) [n log(i+ n) +m log(i+m)]

By Lemma 2 and Lemma 3, we have

L∑

i=1

αX,in log(i+ n) ≤ 2Cn2
L∑

i=1

γi log(i + n),

whereC := maxx∈An
{Cx} and γ := maxx∈An

{γx} < 1.
It is elementary to show thatlimL→∞

∑L

i=1 γ
i log(i + n) is

finite. The limits of the other terms are also shown to be finite
similarly. Thus, we can conclude that the limit of the second
sum is bounded. Similarly, the limit of the third sum is also
bounded. The equality in the claim follows immediately.

For output processes of HMMs with ergodic internal pro-
cesses, properties on the directed information rate can be
transferred to those on the symbolic directed information rate.
Since proofs of them can be given by the same manner as
those of the above propositions, here we list some of them
without proofs. For the proofs of the properties on the directed
information rate, we refer to [35], [36].

Let (X,Y) be the output process of a HMM(Σ, An ×
Am, {T (a,b)}(a,b)∈An×Am

, µ) with an ergodic internal process.
Then, we have
(i)

I∗∞(Y → X) = lim
L→∞

I∗(XL;Y1:L|X1:L−1).

This is the permutation version of the equality

I∞(Y → X) = lim
L→∞

I(XL;Y1:L|X1:L−1).

(ii)

I∞(DY → X) = I∗∞(DY → X)

= lim
L→∞

I∗(XL;Y1:L−1|X1:L−1).

Here,

I∞(DY → X) := lim
L→∞

1

L
I(DY1:L → X1:L)

and

I(DY1:L → X1:L) :=

L∑

i=1

I(Xi;Y1:i−1|X1:i−1).

The symbolD denotes the one-step delay.I∗∞(DY →
X) is the corresponding permutation version. The second
equality is the permutation version of the equality

I∞(DY → X) = lim
L→∞

I(XL;Y1:L−1|X1:L−1).

SinceI∞(DY → X) coincides with the transfer entropy
rate, the first equality is just the equality between the
transfer entropy rate and the symbolic transfer entropy
rate (or the rate of 1-step TERV) proved in Proposition
6 given the second equality.

(iii)

I∞(Y → X||DY) = I∗∞(Y → X||DY)

= lim
L→∞

I∗(XL;YL|X1:L−1, Y1:L−1),

whereI∞(Y → X||DY) is called instantaneous infor-
mation exchange rateand is defined by

I∞(Y → X||DY) := lim
L→∞

1

L
I(Y1:L → X1:L||DY1:L)

and

I(Y1:L → X1:L||DY1:L)

= H(X1:L||DY1:L)−H(X1:L||Y1:L, DY1:L)

=

L∑

i=1

I(Xi;Y1:i|X1:i−1, Y1:i−1)

=
L∑

i=1

I(Xi;Yi|X1:i−1, Y1:i−1).

From the last expression ofI(Y1:L → X1:L||DY1:L), we
can obtain

I∞(Y → X||DY) = lim
L→∞

I(XL;YL|X1:L−1, Y1:L−1).

I∗∞(Y → X||DY) is the corresponding permutation
version and calledsymbolic instantaneous information
exchange rate.

(iv)

I∗∞(Y → X) = I∗∞(DY → X) + I∗∞(Y → X||DY).

Namely, the symbolic directed information rate decom-
poses into the sum of the symbolic transfer entropy rate
and the symbolic instantaneous information exchange
rate. This follows immediately from (ii), (iii) and the
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equality saying that the directed information rate decom-
poses into the sum of the transfer entropy rate and the
instantaneous information exchange rate:

I∞(Y → X) = I∞(DY → X) + I∞(Y → X||DY).

(v)

I∗∞(Y → X) + I∗∞(DX → Y) = I∗∞(X;Y).

This is the permutation version of the equality saying
that the mutual information rate betweenX andY is the
sum of the directed information rate fromY to X and
the transfer entropy rate fromX to Y:

I∞(Y → X) + I∞(DX → Y) = I∞(X;Y),

where

I∞(X;Y) := lim
L→∞

1

L
I(X1:L;Y1:L)

is the mutual information rateand I∗∞(X;Y) is its
permutation version calledsymbolic mutual information
rate. It is known that they are equal for any bivariate
finite-alphabet stationary stochastic process [12]. Thus,
the symbolic mutual information rate betweenX andY
is the sum of the symbolic directed information rate from
Y to X and the symbolic transfer entropy rate fromX
to Y.

We can also introduce the permutation version of the
causal conditional directed information rateand prove the
corresponding properties. To be precise, let us consider
a multivariate finite-alphabet stationary stochastic process
(X,Y,Z1, · · · ,Zk) with the alphabetAn×Am×Al1 ×· · ·×
Alk . Thecausal conditional directed information ratefrom Y

to X givenZ := (Z1, · · · ,Zk) is defined by

I∞(Y → X||Z) := lim
L→∞

1

L
I(Y1:L → X1:L||Z

1
1:L, · · · , Z

k
1:L)

where

I(Y1:L → X1:L||Z
1
1:L, · · · , Z

k
1:L)

= H(X1:L||Z
1
1:L, · · · , Z

k
1:L)−H(X1:L||Y1:L, Z

1
1:L, · · · , Z

k
1:L)

=

L∑

i=1

I(Xi;Y1:i|X1:i−1, Z
1
1:L, · · · , Z

k
1:L).

Corresponding to Proposition 8, we have the following
equality if (X,Y,Z) is the output process of a HMM with
an ergodic internal process:

I∞(Y → X||Z) = I∗∞(Y → X||Z),

where I∗∞(Y → X||Z) is the symbolic causal conditional
directed information ratewhich is defined by the same manner
as the symbolic directed information rate. The following
properties also hold: assume that(X,Y,Z) is the output
process of a HMM with an ergodic internal process. Then,
we have
(i’)

I∗∞(Y → X||Z)

= lim
L→∞

I∗(XL;Y1:L|X1:L−1, Z
1
1:L, · · · , Z

k
1:L).

This is the permutation version of the equality

I∞(Y → X||Z)

= lim
L→∞

I(XL;Y1:L|X1:L−1, Z
1
1:L, · · · , Z

k
1:L).

(ii’)

I∞(DY → X||Z) = I∗∞(DY → X||Z)

= lim
L→∞

I∗(XL;Y1:L−1|X1:L−1, Z
1
1:L, · · · , Z

k
1:L).

The second equality is the permutation version of the
equality

I∞(DY → X||Z)

= lim
L→∞

I(XL;Y1:L−1|X1:L−1, Z
1
1:L, · · · , Z

k
1:L).

The quantitiesI∞(DY → X||Z) andI∗∞(DY → X||Z)
are calledcausal conditional transfer entropy rateand
symbolic causal conditional transfer entropy rate, respec-
tively.

(iii’)

I∞(Y → X||DY,Z) = I∗∞(Y → X||DY,Z)

= lim
L→∞

I∗(XL;YL|X1:L−1, Y1:L−1, Z
1
1:L, · · · , Z

k
1:L),

whereI∞(Y → X||DY,Z) is calledcausal conditional
instantaneous information exchange rate. The second
equality is the permutation version of the equality

I∞(Y → X||DY,Z)

= lim
L→∞

I(XL;YL|X1:L−1, Y1:L−1, Z
1
1:L, · · · , Z

k
1:L).

I∗∞(Y → X||DY,Z) is the permutation version and is
called symbolic causal conditional instantaneous infor-
mation exchange rate.

(iv’)

I∗∞(Y → X||Z)

= I∗∞(DY → X||Z) + I∗∞(Y → X||DY,Z).

This is the permutation version of the equality

I∞(Y → X||Z)

= I∞(DY → X||Z) + I∞(Y → X||DY,Z).

(v’)

I∗∞(Y → X||Z) + I∗∞(DX → Y||Z) = I∗∞(X;Y||Z).

This is the permutation version of the equality

I∞(Y → X||Z) + I∞(DX → Y||Z) = I∞(X;Y||Z),

where

I∞(X;Y||Z)

:= lim
L→∞

1

L

[
H(X1:L||Z

1
1:L, · · · , Z

k
1:L)

+H(Y1:L||Z
1
1:L, · · · , Z

k
1:L)

−H(X1:L, Y1:L||Z
1
1:L, · · · , Z

k
1:L)

]

is the causal conditional mutual information rateand
I∗∞(X;Y||Z) is its permutation version calledsymbolic
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causal conditional mutual information rate. It can be
shown that

I∞(X;Y||Z) = I∗∞(X;Y||Z)

if (X,Y,Z) is the output process of a HMM with an
ergodic internal process.

V. D ISCUSSION

In this section, we discuss how our theoretical results in this
paper are related to the previous work in the literature.

Being confronted with real time series data, we cannot
take the limit of large length of words. Hence, we have to
estimate information rates with finite length of words. In such
situation, one permutation method could have some advantages
to the other permutation methods. As a matter of fact, TERV
was originally proposed as an improved version of STE [34].
However, it has been unclear whether they coincide in the limit
of large length of permutations. In this paper, we provide a
partial answer to this question: the two permutation versions
of the transfer entropy rate, the rate of STE and the rate of
TERV, are equivalent to the transfer entropy rate for bivariate
processes generated by HMMs with ergodic internal processes.

Granger causality graph [37] is a model of causal depen-
dence structure in multivariate stationary stochastic processes.
Given a multivariate stationary stochastic process, nodesin
a Granger causality graph are components of the process.
There are two types of edges: one is directed and the other is
undirected. The absence of a directed edge from one node to
another node indicates the lack of the Granger cause from the
former to the latter relative to the other remaining processes.
Similarly, the absence of a undirected edge between two nodes
indicates the lack of the instantaneous cause between them
relative to the other remaining processes. Amblard and Michel
[31], [36] proposed that the Granger causality graph can be
constructed based on the directed information theory: letX =
(X1,X2, · · · ,Xm) be a multivariate finite-alphabet stationary
stochastic process with the alphabetAn1

×An2
× · · · ×Anm

and(V,Ed, Eu) be the Granger causality graph of the process
X whereV = {1, 2, · · · ,m} is the set of nodes,Ed is the set
of directed edges andEu is the set of undirected edges. Their
proposal is that

(i) for any i, j ∈ V , (i, j) 6∈ Ed if and only if I∞(DX
i →

X
j ||X \ {Xi,Xj}) = 0,

(ii) for any i, j ∈ V , (i, j) 6∈ Eu if and only if I∞(Xi →
X

j ||DX
i,X \ {Xi,Xj}) = 0.

Thus, in the Granger causality graph construction proposedin
[31], [36], the causal conditional transfer entropy rate captures
the Granger cause from one process to another process relative
to the other remaining processes. On the other hand, the causal
conditional instantaneous information exchange rate captures
the instantaneous cause between two processes relative to the
other remaining processes.

Now, let us consider the case whenX is the output process
of a HMM with an ergodic internal process. Then, from the
results of Section IV-D, we have

(i’) for any i, j ∈ V , (i, j) 6∈ Ed if and only if I∗∞(DX
i →

X
j ||X \ {Xi,Xj}) = 0,

(ii’) for any i, j ∈ V , (i, j) 6∈ Eu if and only if I∗∞(Xi →
X

j ||DX
i,X \ {Xi,Xj}) = 0.

Thus, the Granger causality graphs in the sense of [31],
[36] for multivariate processes generated by HMMs with
ergodic internal processes can be captured by the language
of the permutation entropy: the symbolic causal conditional
transfer entropy rate and the symbolic instantaneous infor-
mation exchange rate. This statement opens up a possibility
of the permutation approach to the problem of assessing
the causal dependence structure of multivariate stationary
stochastic processes. However, of course, the details of the
practical implementation should be an issue of further study.
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