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Permutation Complexity and Coupling Measures in
Hidden Markov Models

Taichi Haruna, Kohei Nakajima

Abstract—In [Haruna, T. and Nakajima, K., 2011. Physica D
240, 1370-1377], the authors introduced the duality betweeval-
ues (words) and orderings (permutations) as a basis to disss the
relationship between information theoretic measures for faite-
alphabet stationary stochastic processes and their permation
versions. It has been used to give a simple proof of the equsli
between the entropy rate and the permutation entropy rate fo
any finite-alphabet stationary stochastic process and showome
results on the excess entropy and the transfer entropy for fiite-
alphabet stationary ergodic Markov processes. In this pape
we generalize our previous framework and show the equaliti®
between various information theoretic complexity and coufing
measures and their permutation versions. In particular, weprove
the following two results within the realm of hidden Markov
models with ergodic internal processes: the two permutatio
versions of the transfer entropy, the symbolic transfer entopy
and the transfer entropy on rank vectors, are both equivalen to
the transfer entropy if they are considered as the rates, andhe
directed information theory can be captured by the permutaion
entropy approach.

Index Terms—Duality, Permutation Entropy, Excess Entropy,
Transfer Entropy, Directed Information

I. INTRODUCTION

the Kolmogorov-Sinai entropy for any piecewise monotone in
terval map|[6]. This approach based on the standard pasitio
was extended by [7].

The second approach is taken by Amigo et (al. [2], [8]. In
this approach, given a measure-preserving map on a proba-
bility space, first an arbitrary finite partition of the spase
taken. This gives rise to a finite-alphabet stationary sietib
process. An arbitrary ordering is introduced on the alphabe
and the permutations of the words of finite lengths can be
naturally defined (see Sectidnl Il below). It is proved that
the Shannon entropy of the occurrence of the permutations
of a fixed length normalized by the length converges in the
limit of the large length of the permutations. The quantity
obtained is called permutation entropy rate (also callettime
permutation entropy) and is shown to be equal to the entropy
rate of the process. By taking the limit of finer partitiongiod
measurable space, the permutation entropy rate of the meeasu
preserving map is defined if the limit exists. Amigd [9] peaV
that it exists and is equal to the Kolmogorov-Sinai entropy.

In this paper, we restrict our attention to finite-alphabet
stationary stochastic processes. Thus, we follow the skcon
approach, namely, ordering on the alphabet is introduced

R ECENTLY, the permutation-information theoretic aparbitrarily. For quantities other than the entropy ratee¢h
proach to time series analysis proposed by Bandt apgkults for finite-alphabet stationary stochastic Markaw-p
Pompel([1] has become popular in various fields [2]. It has begBsses have been shown by our previous work: the equality
proved that the method of permutation is easy to implemegétween the excess entropy and the permutation excespgntro
relative to the other traditional methods, is computatigna [10], the equality between the mutual information expressi
fast and is robust under the existence of noise [3], [4], [5)f the excess entropy and its permutation version [11] aad th

However, if we turn our eyes to its theoretical side, fewquality between the transfer entropy rate and the symbolic
results are known for the permutation versions of inforovati transfer entropy raté [12].

theoretic measures except the entropy rate.

The purpose of this paper is to set up a theoretical frame-

There are two approaches to introduce permutation inf@rk to discuss permutation versions of many information
dynamical systems theory. The first approach was introdugg@oretic measures other than the entropy rate. In paaticul
by Bandt et al.[[6]. Given a one-dimensional interval magve generalize our previous results for finite-alphabeicstaty
they considered permutations induced by iterations of tRegodic Markov processes to output processes of finite-stat

map. Each point in the interval is classified into onendf
permutations according to the permutation definednby 1

finite-alphabet hidden Markov models with ergodic internal
processes. Upon this generalization, somevetthhocproofs

times iterations of the map Starting from the point. Them, thn our previous work become Systematic and great|y S|mp||_

Shannon entropy of this partition (called standard part)ti
of the interval is taken and normalized by The quantity

fied. This makes us easily access quantities that have not bee
considered in the permutation approach. In this paper, &k sh

obtained in the limitn — oo is called permutation entropy if treat the following quantities: excess entropy][13], tfans
it exists. It was proved that the permutation entropy is étua entropy [14], [15], momentary information transfér [16]dan
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directed information([17],.[18].

This paper is organized as follows: In Sectian I, we briefly
review our previous result on the duality between words and
permutations which is the basis for the succeeding results.
In Section[1ll, we prove a lemma about finite-state finite-
alphabet hidden Markov models. In Sectibn] IV, we show
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equalities between various information theoretic comipfex We obtain p, (1) = xi1zexzzars = 21122 by putting
and coupling measures and their permutation versions thatrszxsxs = 11222,
hold for output processes of finite-state finite-alphabdtén Theorem 1: (i) For anyw € Sy,
Markov models with ergodic internal processes. In Sedtibn V I
: : . 1 +n — Desc(m) — 1
we discuss how our results are related to the previous work in |, (M) = I ,

the literature.

where ($) =0 if a <b.
(i) Let us put B, := {1 € A7L1|¢>;_’1L(77)
{z1..} forsomer € Sy} and C, = {7 €
Stll¢, L (m)| = 1}. Then, ¢, 1, restricted onB,, 1 is
a map intoC, 1, pn,r restricted onC,, r, is a map into
B, 1, and they form a pair of mutually inverse maps.
Furthermore, we havé3, ; = {z1., € AL|1 < Vi <
n—11<3j<k<Lstzx; =i+1z, =i} and
Ch,r, = {m € Sy|Desc(n) = n — 1}.
Proof: The theorem is a recasting of statements in Lemma

II. THE DUALITY BETWEEN WORDS AND PERMUTATIONS

In this section, we summarize the results from our previous
work [10] which will be used in this paper.

Let A,, be a finite set consisting of natural numbers frbm
to n called analphabet In this paperA,, is considered as a
totally ordered set ordered by the usual ‘less-than-oaktpi
relationship. When we emphasize the total order, we 4all
ordered alphabet

The set of all permutations of length > 1 is denoted )
by Sr. Namely, Sy, is the set of all bijectionsr on the 5 and Theorem 9 in [10]. u

set{1,2,---,L}. For convenience, we sometimes denote a L€t X_ = {X1,X5,---} be a finite—alp_habet_ stationary
permutationr of length L by a stringr(1)x(2) - - - w(L). The stochastic process, where each stochastic variahldakes

number ofdescentsplaces withr (i) > (i + 1), of 7 € S, its value in A,,. By the assumed stationariiy,_the_ proba_bility
is denoted byDesc(w). For example, ifr € S5 is given by ,Of th_e qccurrence of any wordy, € Ay is time-shift
7_{_(1)7_{_(2)7_{_(3)7_{_(4)7{_(5) — 35142, thenDesc(w) -9 Invariant: PI’{Xl = Ty, - ,XL = (EL} = PI‘{X]H_1 =

Let AL = A, x--- x A, be the L-fold product of 4,,. *1>""" , Xt = x1} for any k, L > 1. Hence, it makes
—_— sense to define it without referring to the time to start.

We denote the probability of the occurrence of a word
1., € AL by p(z1.1) p(x1---2r). The probability
of the occurrence of a permutation € Sy is given by
p(m) = Zml:Leqs;’lL(ﬂ)p(xl:L)-

For a finite-alphabet stationary stochastic procKssver

L
A word of length L > 1 is an element ofAZ. It is denoted
by x1., = z1---xp = (v1,---,21) € AL We say that
the permutation typeof a word z1.1, is # € Sp if we have
ZTr() < Tr(it1) and (i) < w(i + 1) when Tr(i) = Tr(i+1)
fori=1,2,---, L — 1. Namely, the permutation type of;.;,

is the permutation of indices defined by re-ordering symbdid€ alphabet,,, we define

x1,- -,z in the increasing order. For example, the permuta- — _

tion type ofz1,5 = 31212 € A3 is (17 (2)(3)7(4)7(5) = XL W;SL p(m) WQ%:LW)
24351 becausersryrzrsr = 11223. 6L (m)|>1

Let ¢, 1, : A,LL — Sy, be a map sending each woid.;, to

its permutation typer = ¢, 1 (z1..). We define another map and

(i) If “7(1)--w(ir),

pin,L : O,z (AL) € S, — AL by the following procedure:
(i) Given a permutationr € ¢, 1, (AL

L) C Si, we decom-
pose the sequeneél) - - - (L) of length L into maximal
ascending subsequence& subsequence; ---i;.; Of
a sequence; ---iy, of length L is called amaximal
ascending subsequendeit is ascending, namelyj; <
ij+1 < -+ < ij4k, and neitheri;_ii;---i;44 nor
15841 Lj+k+1 1S @scending.
7T(i1 + 1)7T(22), ,W(ik_l +
1)---m(L) is a decomposition of (1) - - - 7(L) into max-
imal ascending subsequences, then a warg € AL is
defined byxﬂ(l) = = Tp(y) = 151777(1’1-5—1) = =
Tr(ia) = 25 s Tr(iy )41 = " = Toz) = k. We de-
fine ., (7) = x1.,. Note thatDesc(r) < n—1 because
7 is the permutation type of some woggl;, € AL. Thus,
we havek = Desc(m) + 1 < n. Hence,u,, 1 is well-
defined as a map from,, 1, (A%) to AL.

By construction, we havep, 1 o py, () « for all

Bex.r =Pr{ziy € AY|z; #x foranyl <j < N}

> plar-an),
T FT,
1<j<N
whereL > 1,z € A, andN = | L/2] and|a] is the largest
integer not greater tham.
Lemma 2:Let X be a finite-alphabet stationary stochastic
process and be a positive real number. i, x, . < € for any
x € A,, then we havexx ; < 2ne.
Proof: The claim follows from Theoreni]1 (ii). See
Lemma 12 in[[10] for the complete proof. ]

IIl. A RESULT ON FINITE-STATE FINITE-ALPHABET
HIDDEN MARKOV MODELS

A finite-state finite-alphabet hidden Markov mo@alshort,
HMM) [L9] is a quadrupleX, A, {T(¥},c 4, 1), whereX and
A are finite sets calledtate setand alphabet respectively,

T € ¢n,1 (AL). To illustrate the construction qf,, 1, let us {T@},c4 is a family of |S| x S| matrices indexed by
consider a wordy;.5 = 21123 € A}. The permutation type of elements ofA where|Y| is the size of state sét, andyu is a

y1:5 1S m(1)7(2)w(3)7w(4)w(5) = 23145. The decomposition probability distribution on the sef. The following conditions
of 23145 into maximal ascending subsequence23s145. must be satisfied:



i />0 foranys,s’ € ¥ anda € A, where1l = (1,1,---,1) and {---,---) is the usual inner

iy T >o0f ‘eYandac A h 1,---,1) and is th i

(i) S, T\ =1foranyse ¥, product of the|X|-dimensional Euclidean spade/™!, it is

(iii) and ﬁ(s’) =y, aM(S)TS(Z/) for any s’ € X sufficient to shqw that the largest eiger_walue of the matrix
: T(z) := T—T® is less than 1. To prove this we shall appeal to

the Perron-Frobenius theorem becalflg is a non-negative

matrix:

Any probability distribution satisfying the condition ifiiis
called astationary distribution The |X| x |X| matrix T :=
S aeaT@ is called state transition matrix The ternary

(X, T, ) defines theunderlying Markov chainNote that the 0 tgere el;qsgs a no_n—nega}tlve ﬁlgt:]:nt\/alue c;:led _the
condition (iii) is equivalent to the condition (iii)u(s') = erron-rrobenius eigenvajusuch that any other eigen-
S () Tes value ofT{,) has absolute value not greater than

Two finite-alphabet stationary processes are induced By A < maxe {3y (Tiw)so' } < 1,

a HMM (3, 4, {T(@)} 11). One is solely determined by if) and there exists a non-negative left eigenveatocorre-
9 L1y acA . H H

the underlying Markov chain. It is callethternal process sponding to the eigenvalue .

and is denoted byS = {S;,S,,---}. The alphabet for We can show that for any > 0 there existsC. > 0 such

S is X. The joint probability distributions which charac-that for anyk > 1

terize S is given by Pr{S; = 51,5 = s9,---,5L = i i

SL} = M(Sl)Tswz '.'TSL—LSL for any si,---,s;, € X ”MT(I)H < CE()\+6) ”M”’

and L > 1. The other procesX = {Xi,Xo,---} with

the alphabetA is defined by the joint probability distri-

butions Pr{X; = z1,Xo = x9,---,X; = x1} =

Yo i(s) (T .7y for any @y, - -+ ,z;, € A and

L > 1 and calledoutput processThe stationarity of the

probability distributiony ensures that of both the internal an

output processes. _ obtain 3, x.1 < C,vE by the Cauchy-Schwartz inequality as
Symbolsa € A such thatT®) = O occur in the output jegired.

process with probability). Hence, we obtain the same output Let us derive a contradiction from the assumption- 1.

process even if we remove these symbols. Thus, we ¢ — 1 then we haverT,.. — v. For anyk > 1, We have
assumel’(®) #£ O for any a € A without loss of generality. (@ =% -

The internal procesS of a HMM (2, A, {T@}aea, p) is (v, 1) = (VTE), 1) < (v, 1) = (v, T*1) = (v,1),
called ergodic if the state transition matri¥’ is irreducible
[20]: for any s,s’ € X there existsk > 0 such that becausel(,) < T andT is a stochastic matrix. Thus, we
(T*)ss > 0. If the internal process is ergodic, then the optain (v (T’c - T(’;)) ,1) = 0. Since1 is a positive vector
stationary distributiory is uniquely determined by the state
transition matrix’ via the condition (iii’). It is known that the @ndv (Tk -
ergodicity of the internal proces$ implies that of the output
processX, but not vice versd [21]. v (T’c — T(’;)) =0.

Note that there are two types of hidden Markov models
depending on whether outputs are emitted from edges osstate | ot ys considen, v’ € S such thatTii) > 0. For any

/

The HMM defined here is edge emitting type. However, itis o ¢ g there existk;, ks > 1 such that(7%) > 0 and
known that these two classes of HMM are equivalént [19]. | k2) > 0 becausel is irreducible. If we pfﬁk =k +

particular, any finite-alphabet finite-order stationary rktev ko + 1“then it holds that
process can be described as a HMM defined here.

Lemma 3:Let X be the output process of a HMM (Tk — T(’;)) - Z (T(zl) ) ..T(wk))
(2, Ap, {T W} uca,, 1), where 4, = {1,2,---,n} is an s o T, s’
ordered alphabet. If the internal proceSsof the HMM is dis tai=e
ergodic, then for any: € A,, there exist9) < v, < 1 and (Tkl)su Tﬁ? (T*2)
Cy > 0 such thatf, x , < Cpvy forany L > 1.

Proof: Given L > 1, let us putN := |L/2]. Fix any

where || ---|| is the Euclidean norm and we used the fact
that any non-negative matrix and its transpose have the same
Perron-Frobenius eigenvalue. For the proof of this indtyal
see the beginning of section 1.2 in [22], for example\ K 1

Oﬁhen we can (%hoose > 0 so thatA + ¢ < 1. If we put

Yo = A+ €)2 and C = Cc(A + )7 u||||1] then we

T(’;)) is a non-negative vector, it follows that

v

> 0.

u’s’

On the other hand, the’-th component of the vector

z € A,. Since we have v (Tk - T(]Z)) must be0:
Bexp= Y plar---an) > v (T’C - T(’;)) =0,

wj#e,
1<jEN

_ Z Z“(S) (T(wl) . .T(IN)) wherev, denotes the”-th component ofr. We obtainv, =
T s s/ 0 becausev is a non-negative vector andl’™* — T, ) is a
1<j<N non-negative matrix. Since € S is arbitrary, we conclude

= (u (T _ T(w))N 1) that v = 0. However, this contradicts the fact thatis an

e eigenvector. [ ]



V. PERMUTATION COMPLEXITY AND COUPLING By Theorenf1 (i), it holds that
MEASURES p(z! )
. . . .. . b mbm
In this section, we discuss the equalities between comglexi 0 < — Z ;1(7;1 — 7: )
and coupling measures and their permutation versions for Ta by, €y by —ap 11 (TH)> .
the output processes of HMMs whose internal processes are 1sks<m
H 1
ergodic. « log (T 200 )
p(ﬂ-lv e 77T’m)
A. Fundamental lemma | " (br — ay, + ny — Desc(my,)
Let (X!,--.,X™) be a multivariate finite-alphabet station- i) H b, —ar +1
ary stochastic process, where each univariate proKgss-
{XFk X%,---}, k=1,2,--- ,m is defined over an ordered < logH by — ag + 1+ ny)™
alphabetA,,, . For simplicity, we use the notations =1
m
1
p('ral by T aI:znm:bm) :anlog bk_ak+1+nk)
- Pr{Xal by T Itlzl:bl [ 7ngn:bm = 'rlrlnm:bm}7 k=1
for (m, - ,mm) € Sby—ar4+1 X =+ X Sb,, —a,,+1 SUCh that
p(ﬂ'lv"'aﬂ-m) p(ﬂ'l,"',ﬂ'm)>0.
= Pr{¢nk,bk—ak+l O*lezgk:b;C =T, k=1,-- 7m} If |(¢n1-,b17a1+1 X "'¢nm=bm*am+1)7l(ﬂ-la"' aﬂ-m)| =1
q then
an
X o Z p(Itlzl:bl"" 7xglm2bm)
p(ﬂ-k) = Pr{¢nk,bk7ak+1 o Xllkibk - ﬂ-k}v p(ﬂ—la “ o 77Tm)
@l b € b oy 11 (TR,
wherel < a; < bk, ak € Aot andm, € Sy, g4t it T
fork=1,-- x! ce g™
Lemma 4: x log Parinr " T bn) _ 0.
p(ﬂ-la o 77T’m)
0< H(Xgy s Xav ) = H (Xayys - Xal ) On the other hand, we have
(Zaxk br— ak+1> <anlog b —ak—l—l—i—nk)) Z p(Te, - Tm)
7T17 s TTmy
Ik sit. |¢nk b —ap 41 (TR >1
where
<
H(Xal IR aX:zyjn:bm) Z Z p(ﬂ-k)
= - Z p(‘rlllltln’... 7x7anmibm) ‘(i) kbl — ak+](wk)‘>l
1311:171 T b "
= Axk _ .
Xlogp( ll] b17... "T;’lr:n:byn) ]; X ;bk ak+l
and This completes the proof of the inequality. ]
H* (Xal bla"'ngZn:bm) B E Ent
. Excess Entro
= Z p(ﬂ'lv"' 77Tm)10gp(7T17"' 77T’m) . py . .
e Let X be a finite-alphabet stationary stochastic process. Its

are the Shannon entropy of the joint occurrence of Worg%(cess entropis defined by [113]

xy g0 ,xlt , and permutationst,-- -, Ty, respec- E(X) = lim [H(X;.) — h(X)L]
tively, and the base of the logarithm is taken2as L; >
Proof: We have — Z [H(Xp|X10-1) — h(X)],
H(Xa1 by T aX:zyjn:bm) H* (Xal IR 7X¢11T,Ln:bm) . o L:_l . .
- Z (1, 7o) if the limit on the right-hand side exists, whergX) =
o i P, e o limy, o H(X1.1)/L is the entropy rateof X which exists
Pl ) >0 for any finite-alphabet stationary stochastic process.[23]
plad o am ) The excess entropy has been used as a measure of com-
x| — Z ‘“('Wl 7:"1)' ’" plexity [24], [25], [2€], [27], [28], [29]. Actually, it quatifies
T8, b € oy —a 41 (TH); P, e im global correlations present in a given stationary proceske
1<k<m following sense: ifE(X) exists then it can be written as the
plal o a ) mutual information between the past and future
X log ay:01 Am
p(7T1,"' aﬂ-m) E(X) =L11rn I(XI:LQXL-i—l:QL)-
—00



It is known that if X is the output process of a HMM thenof the transfer entropy [14] and the other is the rate versfon

E(X) exists [21].
When the alphabet oX is an ordered alphabet,,, we
define thepermutation excess entropy X [10] by

E*(X) = lim [H*(X1:) — h*(X)L]
= > [H (Xp|X1.1) = h*(X)],
=1

if the limit on the right-hand side exists, whefe'(X) =
limy, 0o H*(X1.1)/L is the permutation entropy ratef X
which exists for any finite-alphabet stationary stochagtia-
cess and is equal to the entropy r&teX) [2], [8], [0] and
H*(XL|X1;L_1) = H*(Xl;L) — H*(XI:L—I)-

The following proposition is a generalization of our prayso
results in [10], [11].

the momentary information transfer [16]. Both are partcul
instances of conditional mutual informatidn [30].

Let (X,Y) be a bivariate finite-alphabet stationary stochas-
tic process. We assume that the alphabetXoéndY are
ordered alphabetd,, and 4,,, respectively. For =1,2,-- -,
we define ther-step transfer entropy ratbom Y to X by

t-(Y = X) = Jim. [H(X1.04+) — H(X1:1)
— H(X1:47,Y1:L) + H(X1:0, Y1)

Whent =1, t;(Y — X) is called justtransfer entropy rate
[31] from Y to X and simply denoted by(Y — X).
If we introduce ther-step entropy ratef X by

he(X) = Jim H(Xp 110471 X1:1)

Proposition 5: Let X be the output process of a HMMand ther-step conditional entropy ratef X givenY by

(8, A, {T@}aca,, ) with an ergodic internal process.

Then, we have

E(X) = E*(X)

lim I"(X1.0; X1041:21)s

L—o0
where I*(X1.1; Xr41:21) = H*(X1.2) + H (Xr41:21) —
H*(X1.0, Xrq1:00) = 2H*(X1.1) — H*(X1:1, X141:21)-
Proof: Let L > 1. We have
|[H(X1:) — h(X)L] = [H*(X1.1) — R*(X)L]|
= |H(X1.) — H*(X1.1)|
< ax rnlog(L +n)
< 20n%log(L + n)y*,

where C' := max,ca,{Cz}, v := max,ca,{7=} < 1 and

we have usedi(X) = h*(X) for the first equality, Lemma

h(X[Y) = LILH;O H(Xp+1:04+1X1:0,Y1:1)
then we can write
t- (Y = X) = h(X) — b (X[Y)

because both., (X) and h,(X]Y) exist. We callh(X]|Y)
conditional entropy rateand denote it by, (X|Y ).
h.-(X) is additive namely, we always have
h(X) = 7h1(X) = 7h(X).

However, for ther-step conditional entropy rate, the additivity
cannot hold in general. It is at mostiper-additive we only
have the inequality

he(X[Y) = Th(X[Y)

[ for the second inequality and Lemrh 2 and Lenima 3 fgy general. Indeed, we have

the last inequality. By taking the limif. — oo we obtain

E(X) = E*(X).
To prove
lim [(X1.r; Xr41:20) = lim I*(X1.0; Xr41:20)s
L—oo L—o0

it is sufficient to show that
|H(X1.0, Xr41:20) — H (X1:0, Xp4+1:21)] = 0
as L — oo. This is because we have
[I(X1.0; Xp+1on) — I (X105 Xp+1:21)]
<2|H(X1.1) — H(X1.1)]|
+ |H(X1.1, Xp41:2r) — H* (X1.2, Xp41:21)|-

he (X[Y)

lim H(Xr41:04-|X1:0, Y1)
L—oo

= ;H(XL+T'|X1:L+T'—1a Yi.L)

T

> lim H(XL+T/|X1:L+T/717Yl:LJrT/fl)
L—o0 1
/=

= Th(X]Y).

This leads to thesub-additivityof the 7-step transfer entropy
rate:
t-(Y = X) < 7t(Y — X).

An example with the strict inequality can be easily given.

However, this can be shown similarly with the above did-et Y be an i.i.d. process anX be defined byX;, = Y;

cussion by applying Lemmé&l 4 to the bivariate procesd X;;; = Y;. We haveh(X)
(X!,X?) := (X,X) and then using Lemmi 2 and Lemmé:-(X[Y)

3. []

C. Transfer Entropy and Momentary Information Transfer

h(Y) = H(Y;) and
(tr — 1)H(Y7). Hence,t.(Y — X) = H(Y1)
foranyr =1,2,---.

There are two permutation versions of the transfer entropy.
One is calledsymbolic transfer entropy (STH33] and the

In this subsection we consider two information rates that! Note that the conditional entropy rate here is slightly efifint from that
are measures of coupling direction and strength between tiggnd in the literature. For example, in_[32], conditionatrepy rate (called

jointly distributed processes and discuss the equalitdwden

conditional uncertainty is defined bylimy,_, oo H(Xr+1|X1.2, Y1:041)-
The difference from the conditional entropy rate definedehierin whether

them and their permutation versions. One is the rate versiba conditioning o7 ; is involved or not.



other is calledtransfer entropy on rank vector (TERY34].
Here, we introduce their rate versions as follows: thte of
STEfrom Y to X is defined by

(Y — X)
= lim [H*(X1.0,X14r:04r) — H (X1:1)
- H*(X1.0, X14ri4 Yi2) + H (X1:0, Y1.1)|

if the limit on the right-hand side exists. Thate of TERV
fromY to X is defined by

(Y = X) = Jim [H*(X1.47) — H*(X1:1)
— H*(X1.p47,Y1:L) + H*(X1.0, Y1)
if the limit on the right-hand side exists. E*(X) exists then,

by the definition of the permutation excess entropy, we have

h*(X) = nggo [H*(X1.p41) — H*(X1.0)] -

In this case,t;(Y — X) coincides with a quantity called

symbolic transfer entropy ratetroduced in[[12].

Proposition 6: Let (X,Y) be the output process of a HMM
(2, Ay X Ay, {T @D}, e a, xa,,» 1) With an ergodic inter-

nal process. Then, we have

(Y = X) = t5(Y — X) = (Y — X).

Proof: Since bothX andY are the output processes o ,
of appropriate HMMs with ergodic internal processes, thEhus, conditioning onyy,; for i =

D. Directed Information

Directed informationis a measure of coupling direction
and strength based on the idea of tbeusal conditioning
[18], [35]. Since it is not a particular instance of conditi
mutual information, here we treat it separately. In thediwihg
presentation, we make use of terminologies fronm [31]] [36].

Let (X,Y) be a bivariate finite-alphabet stationary stochas-
tic process. The alphabets &f andY are ordered alphabets
A, and A,,, respectively. Thalirected information ratdrom
Y to X is defined by

1
Io(Y - X) = lim ZI(YM — X1.1)

L—oo

where
L

I(Yir = Xun) = Y T(Xi; Vil X1 1)
=1
L

= H(X1.L) = Y H(Xi| X1 1,Y14).
=1
Note that if Y7.; in the above expression on the right-hand

side is replaced b¥;.;, then we obtain the mutual information
betweenX;.;, andYi.r:

L
I(X1:p;Yin) = H(X12) = > H(Xi| X1, Yaer)-

i=1

1,---,L, not onYy.p,

equalities follow from the similar discussion with that irdistinguishes the directed information from the mutuabinf

the proof of Propositioi]5. Indeed, for exampl¥, is the
output process of the HMMX, A,,, {T},¢c, , 1) Where
T@ =3y, T(@b), |

A different”instance of conditional mutual information
calledmomentary information transfés considered in [16]. It

mation. Following [35], we write

L

H(Xy.p|[Yiz) ==Y H(Xi| X1 1, Y1)
i=1

and call the quantitgausal conditional entropyBy using this

was proposed to improve the ability to detect coupling dglay, iation. we have
which is lacked in the transfer entropy. Here, we consider ’

its rate version: thenomentary information transfer ratis
defined by

m (Y = X)
= lim [H(X1.04s,Yi:0—1) — H(X1:047-1, Y1:0-1)

L—oo
- H(X12L+T7 YVI:L) + H(XI:L+T—17 YVI:L)] .

Its permutation version calleshomentary sorting information

transfer rateis defined by
mi(Y — X)

= nglgo [H*(X1.047, Y1:-1) — H*(X1:047—1, Y1i:0-1)
— H*(X1.147,Y1:L) + H*(X1.047-1, Y1.1) ]

IYi.p = X)) = H(X1.1) — H(X1..||Y1:1)-

The permutation version of the directed information rate

which we callsymbolic directed information rates defined

by
1
I;O(Y — X) = lim —I*(Yl;L — Xl:L)
L—oo L
if the limit on the right-hand side exists, where

I"(Yi.p — X1.1)

L
= H*(X1.1) - Z [H*(X1:4, Y1) — H* (X1:-1, Y1)
i=1

. If we write

By the similar discussion with that in the proof of Propasiti
[6, we obtain the following equality:

Proposition 7: Let (X, Y) be the output process of a HMM
(2, A X Ay, {T @D} (e a, xa,,» 1) With an ergodic inter-

nal process. Then, we have

m (Y = X) =mi(Y = X).

I (X3 Y14 Xm1) :=H"(X1.4) — H* (X1:421)
— H*(X1:4, Y1) + H (X121, Y14)

and
L

H*(Xy.p|[Yiz) =Y [H* (X1, Y1a) — H* (X121, Y1)
i=1



then we have the expressions
L
I"(Yip — X10) = ZI*(Xi;Y1:i|X1:z‘—1)
i=1
= H"(Xy.1) — H*(X1..|[Y1.).

(ii)

Proposition 8: Let (X, Y) be the output process of a HMM
(3, Ay X A, {T @D}, pyea, xa,,, 1) With an ergodic inter-
nal process. Then, we have

Io(Y = X) = I (Y — X).

Proof: We have

|I(}/1:L — Xl:L) - I*(leL — Xl:L)|
< [H(X1.p) — H (X))

L
+ ) H (X, Vi) — H* (X, Vi)
i=1

L
+ Z |H (X151, Y1) = H* (X121, Y1) -
=1
We know that the first term on the right-hand side in the above
inequality goes td) as L — oo. Let us evaluate the second

sum. By LemmaH, it holds that (iii)
L
Z |H (X1, Y1) — H (X1, Y14)]
=1

L
< Z (ax,i + ay ;) [nlog(i +n) + mlog(i + m)]
i=1

By Lemmal2 and Lemm@ 3, we have

L L
Z ax inlog(i +n) < 2Cn? Z 7 log(i +n),
=1 =1
where C' := maxgeca, {Cs} andy := maxzea, {1} < 1.
It is elementary to show thdtmy ... Zle yilog(i 4+ n) is
finite. The limits of the other terms are also shown to be finite
similarly. Thus, we can conclude that the limit of the second
sum is bounded. Similarly, the limit of the third sum is also
bounded. The equality in the claim follows immediatelym
For output processes of HMMs with ergodic internal pro-
cesses, properties on the directed information rate can be
transferred to those on the symbolic directed informataie.r
Since proofs of them can be given by the same manner as
those of the above propositions, here we list some of them
without proofs. For the proofs of the properties on the dédc
information rate, we refer ta_[35]._[36].
Let (X,Y) be the output process of a HMNE, A, x
A, AT @Y} (4 pyea, x 4, » 1) With an ergodic internal process.
Then, we have

0

(iv)

LY = X) = lim I*(Xp;Yip|Xi:p-1).
—00
This is the permutation version of the equality

Io(Y = X) = Lli_{I;OI(XL;Yl:L|X1:L—1)-

I (DY —» X) =11 (DY — X)
= lim I"(Xp;Yi.p-1]X1.0-1).
L—oo
Here,
1
I(DY — X) := lim —I(DY1., — X1.1.)
L—oco L
and

L
I(DYy1.p, = X1.1) == ZI(Xi§Y1:i71|X1:i71)-
=1
The symbolD denotes the one-step delal, (DY —

X) is the corresponding permutation version. The second
equality is the permutation version of the equality

IOO(DY — X) = LlEI;OI(XL;leL,1|X1;L,1).

Sincel (DY — X) coincides with the transfer entropy
rate, the first equality is just the equality between the
transfer entropy rate and the symbolic transfer entropy
rate (or the rate of 1-step TERV) proved in Proposition
given the second equality.

Lo(Y = X||DY) = I*.(Y — X||DY)
= lim I"(Xp;Ye|X1.0-1,Y1.0-1),
L—oo

where I.(Y — X]|DY) is calledinstantaneous infor-
mation exchange ratand is defined by

1
Io(Y = X||DY) := lim —I(Y1., = X1..||DY1.1)
L—oco L
and

I(leL — Xl:LHD}/l:L)

= H(X1.1||DY1.r) — H(X1.||Y1., DY1.1)
L
Z I(X; Y14l X -1, Yiio1)

%

I
s

I(X:; Y| X1, Y1),

I
'M“

Il
-

(2

From the last expression &{Y7.;, — X1.1.||DY1.1.), we
can obtain

Io(Y = X||DY) = Jim I(Xp: Y| X1, Yi:p—-1)-

I* (Y — X||DY) is the corresponding permutation
version and calledsymbolic instantaneous information
exchange rate

I (Y- X)=I,(DY = X) + I:_(Y — X]||DY).

Namely, the symbolic directed information rate decom-
poses into the sum of the symbolic transfer entropy rate
and the symbolic instantaneous information exchange
rate. This follows immediately from (ii), (iii) and the



equality saying that the directed information rate decom-  This is the permutation version of the equality
poses into the sum of the transfer entropy rate and the
instantaneous information exchange rate: Io(Y = X|2) ) i
= lim I(Xp:Yi.0|X1.p-1, Zip, -+, ZF ).
Io(Y = X) = Io (DY — X) + I(Y — X||DY). A T X s Vil X, Zi 2
W) (i)
IL(Y = X) + I (DX = Y) = I, (X Y). In(DY = X||2) = I, (DY — X[|2)
= lim I*(Xp;Yir-1|Xuo-1, 2, -5 Z1p)-

This is the permutation version of the equality saying L—oo
that the mutual information rate betwe&nandY is the The second equality is the permutation version of the
sum of the directed information rate fro to X and equality

the transfer entropy rate frolX to Y:

Io(Y 5 X) 4+ (DX = Y) = I.(X;Y),

I.(DY — X||2)
= lim I(Xp;Yip | Xipo1, 2. Ziy).

where
1 The quantitied . (DY — X||Z) andI (DY — X||Z)
Io(X5Y) = Jim EI(XLL;YLL) are calledcausal conditional transfer entropy ratand
) ) ] o symbolic causal conditional transfer entropy ratespec-
is the mutual information rateand [* (X;Y) is its tively.

permutation version calledymbolic mutual information(i“.)
rate. It is known that they are equal for any bivariate
finite-alphabet stationary stochastic procéss [12]. Thus, I(Y — X|[DY,2) =13 (Y — X||DY, Z)

f[he symbolic mutual info_rma}tion rate betwe;nandY = lim I"(X5; Y| X1p-1,Yip 1, Zip, -, Z8,),
is the sum of the symbolic directed information rate from L—o0
Y to X and the symbolic transfer entropy rate fra¥n wherel. (Y — X||DY, 2) is calledcausal conditional
toY. instantaneous information exchange rafEhe second
We can also introduce the permutation version of the equality is the permutation version of the equality
causal conqmonal d|re_cted information _ratend prove the_ Io(Y = X||DY, 2)
corresponding properties. To be precise, let us consider ] . .
a multivariate finite-alphabet stationary stochastic pssc = M (X5 Ve[ Xupo1, Yieo1, Zips o5 Z00p)-

(X,Y,Z',---  Z*) with the alphabet,, x A,,, x Aj, x ---x
A, . Thecausal conditional directed information rateom Y
to X given Z := (Z',--- ,Z¥) is defined by

I* (Y — X||DY, 2) is the permutation version and is
called symbolic causal conditional instantaneous infor-
mation exchange rate

. 1 .
Ino(Y = X[ 2) := lim_ T1(Yur = Xipl|Zhy, oo, 28 V)
I;O(Y — X||Z)
= I,(DY — X||Z) + I (Y — X||DY, Z).

where
I(YliL _>X12L||le:L7"' aZf:L) This is th tati . f th lit
IS IS e permutation version o e equall
= H(XvLl|Zhyo - 280) — H(X0L|[Yir, Zhye -, 200) P quaty
Io(Y = X||2)

L
k
= ZI(Xz‘; Vil Xvio1, Zips 5 1) =I.(DY = X||2) + I.(Y — X||DY, 2).
=1
Corresponding to Propositionl 8, we have the followingj”)
equality if (X,Y, Z) is the output process of a HMM with I (Y = X[|2) + I (DX — Y||2) = I (X; Y| 2).
an ergodic internal process: >~ > >

This is the permutation version of the equality
I.(Y = X]||2) =I,(Y = X||2),

. . » Io(Y = X[[2) 4+ [o(DX = Y[|Z) = Io(X; Y[ 2),
where I (Y — X]|Z) is the symbolic causal conditional
directed information ratevhich is defined by the same manner ~ where
as the symbolic directed information rate. The following

properties also hold: assume thg,Y, Z) is the output IOO(X;Y'LZ)
process of a HMM with an ergodic internal process. Then, = Llim Z[H(Xl:LHle;La“' L ZE L)
we have o0 . .
(Ia) +H(Y13L||Z1:L7”. ’ZI:L)
— H( X1, Yool 2y, -, 28
I' (Y — X||2) (X1, Yol 21 1.L)}

— N I (Xp:Yan| Xpp 1, 22, 28 ), is the causal conditional mutual information ratend
dm X Yl Xar-1, 2 L) I* (X;Y||2) is its permutation version callesymbolic



causal conditional mutual information ratdt can be (ii') for any i,j € V, (i,j) ¢ E, if and only if I* (X’ —
shown that XI|| DX, X\ {X?,X7}) = 0.
* Thus, the Granger causality graphs in the sensel of [31],
I.(X;Y||12)=1_(X;Y||Z LS )
( 12) S 12) [36] for multivariate processes generated by HMMs with
if (X,Y,Z2) is the output process of a HMM with anergodic internal processes can be captured by the language

ergodic internal process. of the permutation entropy: the symbolic causal conditiona
transfer entropy rate and the symbolic instantaneous -infor
V. DISCUSSION mation exchange rate. This statement opens up a possibility

In this section, we discuss how our theoretical resultsis ¢Pf the permutation approach to the prob!em_ of assessing
paper are related to the previous work in the literature. 1€ causal dependence structure of multivariate stayonar

Being confronted with real time series data, we cannstochastic processes. However, of course, the detailseof th
take the limit of large length of words. Hence, we have tgractical implementation should be an issue of furtherystud

estimate information rates with finite length of words. Irtisu
situation, one permutation method could have some advastag
to the other permutation methods. As a matter of fact, TERV The authors would like to thank D. Kugiumtzis for his useful
was originally proposed as an improved version of STE [344omments and discussion on the relationship between STE and
However, it has been unclear whether they coincide in thi linf ERV. TH was supported by the JST PRESTO program.

of large length of permutations. In this paper, we provide a
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