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Traffic is essential for many dynamic processes on real networks, such as internet and urban traffic
systems. The transport efficiency of the traffic system can be improved by taking full advantage of
the resources in the system. In this paper, we propose a dual-strategy routing model for network
traffic system, to realize the plenary utility of the whole network. The packets are delivered according
to different “efficient routing strategies” [Yan, et al, Phys. Rev. E 73, 046108 (2006)]. We introduce
the accumulate rate of packets, η to measure the performance of traffic system in the congested phase,
and propose the so-called equivalent generation rate of packet to analyze the jamming processes.
From analytical and numerical results, we find that, for suitable selection of strategies, the dual-
strategy system performs better than the single-strategy system in a broad region of strategy mixing
ratio. The analytical solution to the jamming processes is verified by estimating the number of
jammed nodes, which coincides well with the result from simulation.

I. INTRODUCTION

Recently, the real transportation or communication
systems such as the computer networks [1, 2], power grid
[3, 4], airport line [5], and so on, have attracted a lot
of attention from scientists due to the discovery of the
topological features of their self-induced structures. The
complex network theory [6–8], as well as the tools inher-
ited from nonequilibrium statistical physics [9] have been
successfully applied to study the dynamical properties of
these real systems.

The common character for these transportation or
communication systems is to perform certain functions
by transferring objects among connected elements, which
often take the form of large sparse network. Free traffic
flow on these networks is key to their normal and efficient
functioning. However, they may actually suffer from the
overload or traffic jam, which always disable the system
partially for a period of time, or even be fatal to the whole
system due to the consequential onset of cascades of over-
load failures [10–15]. Therefore, many recent studies on
the traffic networks have analyzed the critical proper-
ties of the jamming and congestion transitions [16–26].
And, the schemes to promote the performance of traffic
systems are chiefly from two aspects, designing efficient
routing strategies [27–36] or, optimizing the topology of
the underlying network [19, 37–40]. The objectives of
these schemes are, on one hand, to avoid the onset of
congestion and, on the other hand, to have short deliv-
ery times.

The routing algorithm proposed in recent works are re-
lied on the structural properties, as well as the global or
local information about the dynamical state of the com-
munication networks [27–36]. For example, the works
of biased random walk scheme introduce the probabil-
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ity to visit node depending on its degree [28, 29], or the
queue length of packets [30]. The works of shortest-path
scheme consider the paths with minimized distance from
any pair of source and destination [31]. For this scheme,
the central nodes (with highest connectivity) are highly
overcongested, inducing the bottleneck of the communi-
cation capacity. The expended version of the shortest-
path scheme with “effective distance” involving the con-
gestion state (queue length of routers) may bypass the
congested nodes locally and thus improve the perfor-
mance [32]. While, the work of efficient-path schemes
[33] propose the routing table of paths with the mini-
mum summary of kβ , with a turnable β. For the value
of β = −1 this scheme can effectively redistribute the
heavy load on central nodes to some of the lower-degree
nodes, and the system can reach a more than ten times
high capacity of that with shortest-path scheme. We can
see that, for certain amount of traffic request, the way
to promote the performance of the system is to take full
advantage of all kinds of nodes.

These aforesaid researches, have discussed the system
with pure routing strategy. While, how the diversity of
routing strategy performs is really of curious, and the en-
hancement of transport capacity by better exertion of all
nodes in the system might be expected. In this paper,
we put forward a mechanism that the communication
system possesses of two different routing strategies. Here
we make use of the simple fixed routing scheme, i.e., the
efficient-path schemes proposed in Ref. [33], and consider
the routing strategies to be denoted by different β. Then,
the transport system with this multi-strategy protocol
will send packets according to different fixed routing ta-
bles of efficient-path schemes. Though the fixed routing
algorithm becomes impractical in huge communication
systems, it is still widely used in medium-sized or small
systems [41, 42], for its obvious advantages in economical
and technical costs, compared with the dynamical rout-
ing algorithm and information feedback mechanism. In
this case, the diversity of the fixed routing strategy is, of
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course, practical if it performs better than pure-strategy
system. Actually, through our study, we see that the
multi-strategy system may perform better than that of
the pure strategy system.

II. TRAFFIC MODEL

In our traffic model of dual-strategy routing protocol,
the packets with given sources and destinations will be
sent according to two different fixed routing tables of
efficient-path schemes (EPS). For the EPS proposed in

Ref.[33], node i in the graph are weighted by wi = k
β
i .

ki is the degree of node i, and β can be considered as
the label of “routing strategy”. A packet with source j1
and destination j2 will choose a minimum sum of weight,∑

i∈σj1j2
k
β
i , route in the graph. σj1j2 is the path from j1

to j2. Adjusted by the parameter β, the single-strategy
system will partial to certain kind of nodes in routing,
and may also leave some space to improve the perfor-
mance further. In our dual-strategy model with two
strategies β1, and β2, packets are assigned to the two
corresponding routing tables, with probability 1− p and
p, respectively. Here we name p as the mixing rate. Here,
for p = 0 (or 1), the system returns to the single-strategy
system with β = β1 (or β2).
Similar to the former work, at each time step, R pack-

ets enter the system with randomly chosen sources and
destinations. The delivery capacity of each node is C,
and we set C = 1.0 for simplicity. The maximal queue
length of each node is assumed to be unlimited, and the
first-in-fist-out discipline is applied at each queue. Once
a packet come to its destination, it is removed from the
system.
In the previous study, the phase transition of traffic

flow is described by the the order parameter [16],

H(R) = lim
t→∞

C

R

〈∆W 〉

∆t
(1)

where ∆W = W (t+∆t)−W (t), with 〈·〉 indicating aver-
age over time windows of width ∆t, and W (t) is the total
number of packets in the network at time t. The criti-
cal value Rc (the packet generation rate) where a phase
transition takes place from free flow to congested traffic,
can reflect the maximum capability of a system.
The behavior of the critical point Rc on different net-

works can be simply explained by their different between-
ness centralities (BC) distributions [31, 43, 44]. The BC
of a node i for the single-strategy EPS system [33] is
defined as,

gi(β) =
∑

j1 6=j2

σj1j2(β, i)

σj1j2(β)
, (2)

where σj1j2(β) is the number of routes going from j1 to
j2, according to the EPS routing table with β; While,
σj1j2(β, i) is the number of those also passing through i.
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FIG. 1: The accumulate rate η as a function of β in the
single-strategy system, for the systems of R = 50 and 60.
The results are averaged over 10 realizations for 20 networks,
with size N = 1225.

The critical value Rc can be estimated by the maximal
BC as,

Rc =
C ·N · (N − 1)

Max[gi(β)]
. (3)

where Max[gi(β)] is the maximal BC of the system with
strategy β.
For the dual-strategy system with strategies β1, β2,

and probability p, the efficient BC of one given node i is,

Gi(β1, β2, p) = (1− p) · gi(β1) + p · gi(β2) (4)

Then, we have the load of node i, assigned from the whole
transport requirement of the system as,

Li =
Gi(β1, β2, p) ·R

N · (N − 1)
(5)

The load of node increases as the R is increased. There-
fore, the critical value Rc can be estimated as,

Rc =
C ·N · (N − 1)

Max[Gi(β1, β2, p)]
, (6)

here, Max[Gi(β1, β2, p)] is the maximal efficient BC of
the dual-strategy system.

III. SIMULATION RESULT AND ANALYSIS

The communication networks typically show a scale-
free (SF) distribution for the number of links departing
from and arriving to a system element. In this paper,
we choose Barabási-Albert (BA) network as the commu-
nicating network [45]. For this network model, starting
fromm0 = 3 fully connected nodes, new node withm = 2
is added in the existing network in turn, until the network
size N = 1225. The network average degree 〈k〉 = 4.
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For the single-strategy system, the phase transition
from free flow to congested traffic has been discussed [33].
When the value of R increases over Rc, the number of ac-
cumulated packets get to increase with time (i.e., a phase
transition takes place from free flow to congested traffic).
Similarly, for the multi-strategy system, the phase tran-
sition also takes place. The effect of different strategies,
in free flow phase, is merely inducing the difference of
packet deliver time. While in the congested phase, much
more diversified phenomenon appears. We mainly focus
on the congested phase as follows.
Firstly, let us revisit the behavior of the single-strategy

system in the congested phase. According to the work of
Yan [33], the largest Rc (around 43), i.e. the best perfor-
mance of the system, is achieved with strategy β = 1.0 on
BA network of N = 1225 and 〈k〉 = 4. From systematic
simulation of various β systems in congested phase, we
notice that the number of accumulated packets increases
linearly with t. Namely, the accumulate rate η is a con-
stant (with small fluctuation). In Fig. 1, we shows η as a
function of strategy β, with R in the region of congested
phase (R = 50 and 60, larger than Rc). It is necessary to
emphasis that, although the so-called congestion occurs,
there still are, on average, R− η packets successfully de-
livered to their destinations per unit time. This number
is actually much larger than R−Rc. That is to say, while
some nodes are jammed as R > Rc, a noticeable part of
transport function still holds in the system. This actu-
ally is realized from two aspects, (1) the “free flow” still
takes place on the paths which are not entangled with the
jammed nodes, and, (2) the packets through the jammed
nodes are not stopped but just delayed.
We may say that, the parameter Rc merely distin-

guishes the so-called free and congested phases, which
actually indicates the free or jammed state of the most
“fragile” node [see Eq. (3)]. Rc can not reflect the ex-
tent of congestion, and the impact of the jammed nodes
to the performance of the system. However, the accumu-
late rate, defined as,

η = lim
t→∞

∆W

∆t
, (7)

is a good parameter to measure the performance of the
system in the congested phase. The smaller η denotes
better performance of the system. η is the sum of in-
dividuals’ η′i over the whole system as, η =

∑
i η

′
iH(η′i).

Here, H(·) is the Heaviside function, and η′i is the indi-
vidual accumulate rate of node i, namely, the increase
rate of the queue length of packets at node i per time
step.
From Eq. (5), we can get the analytically expression

of η′i as,

η′i ≡ Li − C =
Gi(β1β2, p) ·R

N · (N − 1)
− C (8)

with Li the load of node i assigned from the whole trans-
port requirement. We may notice that as R is increased,
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FIG. 2: (Color online.) The accumulate rate η for the dual-
strategy system as a function of mixing ratio p of the two
strategies β1 and β2. Here, in (a), β2 is fixed to be 1.5, and in
(b), β1 is fixed to be 0.5. The η of the single-strategy system
with optimal β = 0.9 (the red dot line) is also plotted for com-
parison. The results shown are averaged over 10 realizations
for 20 networks, with size N = 1225, and R = 60.

Li may increases over the capability C and thus η′i in-
creases from negative to positive.

In Fig. 1, the non-monotonic behavior of η implies
that the medium β system performs better, similar to
the results in Ref. [33] from the relationship between Rc

and β.

Then, we will analysis the behavior of the dual-strategy
system with β1 and β2 in the congested phase. The pack-
ets are assigned to the two strategies with probability
1− p and p, respectively. Figure 2 plots η of the system
as a function of p. Here, for p = 0 (or 1), η returns to that
of the single-strategy system with β = β1 (or β2). We can
see that, the mix of different strategies is nontrivial and
of interest. Take the system with β1 = 0.5 and β2 = 1.5
in Fig. 2(a) as an example, for certain medium value
of p, it performs even better than the optimal state the
single-strategy system achieves with β = 0.9 (which is
also plotted by the red dot line in Fig. 2). Furthermore,
as has been shown in Fig. 2, it is also noteworthy that,
when β1 and β2 are chosen from each side of 0.9, there
always exists an optimal configuration p, which performs
better both than the single-strategy systems of β1 and
β2.
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This can be understand as follows. To design routing
strategy for the network transportation, there are two
factors that should be considered. (1) To bypass the hub
nodes which are obviously of heavy burden and prone to
jamming. (2) To choose shorter path to reducing deliver
time, which is conducive to reduce the occupation (life
time) of packets to the resources and thus avoid jam. The
system deliver efficiency can be improved from the trade-
off of these two factors. However, they are inconsistent
in the communicating network with heterogeneous topol-
ogy. Take the single-strategy system in congested phase
as an example (see Fig. 1 the curve with R = 60), as
β is increased from 0, the traffic through the hub nodes
are bypassed to the other smaller degree nodes, while the
lengthes of the pathes adopted are prolonged, which in-
creases the probability of jamming for the other nodes.
The system with β0 around 0.9, to certain extent, is com-
patible of these two factors, and thus achieves the optimal
performance. As β is increased further, the utility of the
hubs is not sufficient, while the left parts of the system
are overworked. Actually, To take a full advantage of
each node in the system will return better performance.
Therefore, for the dual-strategy system, the strategy in-
clined to the hubs (β < β0) and that inclined to the
small nodes (β > β0) may complement each other and
perform better than the single strategy one. Thus non-
monotonous η can be observed when the β from both
side of β0 are mixed.
The effect of multiple strategies in the congested phase

can also be understand analytically from the so-called
equivalent generation rate. In this routing strategy, pack-
ets at the head of the queue on node i will be delivered to
the next node j according to the routing table, no mat-
ter node j is idle or jammed. Current server also has this
properties. In this case, congestion in the system will
not spread out. Furthermore, counterintuitive, conges-
tion will make the system more “empty”. In each time
step, η more packets will queue at the jammed nodes,
and as a consequence, the load of the other nodes will
be lighten, as if the generation rate for the subsystem of
these nodes is reduced to a smaller one R∗, which we
name as the equivalent generation rate. Here, we have

R∗ = R− η. (9)

Different from the case that the servers abandon packets
when the queue length is over a threshold, in our model,
the queuing packets are not abandoned, and will finally
be send to their destination.
We sort nodes by the values of their individual accu-

mulate rates in descending order, as η′1 > η′2 > ... > η′N .
From Eq. (8), we know that, when R is increased from 0,
all these η′i increases from −C. As soon as the maximum
one, η′1, increases from negative to positive, the system
transform from free phase to congested phase. Suppose
that η′2 < 0, there are η′1 packets detained at the 1st node
per time step. Then, the equivalent generation rate for
the subsystem (exclude the 1st node) is R∗ = R − η′1.
As R is increased further, the left nodes will be jammed
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FIG. 3: The number of jammed nodes from analytical and
simulation results, for the dual-strategy system with β1 =
1.5, β2 = 0.5. The sample data of analytical results (red open
circle) are from 10 different networks, and that of simulation
results (black open square) are from 50 realizations of traffic
on these 10 networks. The average number of analytical and
simulation results (red solid circle and black solid square) are
averaged over the corresponding sample data. The system is
of size N = 1225, and R = 60. The analytical and simula-
tion results (the red and black dot lines) from single-strategy
system with β = 0.9 are also plotted for comparison.

one after another (i.e., have positive η′i). Accordingly, we
may propose the theory to predict the number of jammed
nodes, and the accumulate rate of the system η from two
perspective.

On one hand, from Eqs. (8) and (9), we get,

R∗ = R−

I∑

i=1

[
Gi(β1, β2, p) ·R

∗

N · (N − 1)
− C] (10)

with the following constraint applies:

LI =
GI(β1, β2, p) ·R

∗

N · (N − 1)
> C, (11)

LI+1 =
GI+1(β1, β2, p) ·R

∗

N · (N − 1)
< C. (12)

By solving this problem, we can get the number of
jammed nodes I, and η, for given values of R, β1, β2

and p.

On the other hand, we focus on the detailed process of
successional jamming which gradually modifies the equiv-
alent generation rate R∗, as well as the load Li of the left
nodes. The iterative procedure of R∗ can be written as,

R∗
1 = R−

G1(β1, β2, p) · R

N · (N − 1)
+ C (13)

R∗
2 = R∗

1 −
G2(β1, β2, p) · R

∗
1

N · (N − 1)
+ C

.........
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The iterative formula is,

R∗
i = R∗

i−1 −
Gi(β1, β2, p) ·R

∗
i−1

N · (N − 1)
+ C, (i = 1, 2, 3, ...)

(14)
R∗

i and L′
i decrease as the nodes of large load is jammed

one after another, until

L′
I =

GI(β1, β2, p) ·R
∗
I−1

N · (N − 1)
> C, (15)

L′
I+1 =

GI+1(β1, β2, p) ·R
∗
I

N · (N − 1)
< C, (16)

Different from Eqs. (10) to (12), Eqs. (14) to (16) depicts
that the jamming of the first I nodes steps down R∗

gradually until the value R∗
I , where the (I + 1)th node,

as well as all its following nodes, is capable of treating
with its load. Here, from the perspective of successional
jamming process described by Eq. (14), one can also get
the number of jammed nodes I, and η, analytically.
In Fig. 3, we plot the analytical and simulation results

of the number of jammed nodes I in the dual-strategy
system with β1 = 1.5 and β2 = 0.5. It can be seen
that, the average number of jammed nodes from analy-
sis (red solid circle) coincides well with that from sim-
ulation (black solid square). Interestingly, the value of
I also behaves non-monotonically and achieve the mini-
mum around p = 0.5, which is similar to the accumulate
rate η of the same system shown in Fig. 2. Additionally,
the analytical results from Eq. (10) and Eq. (14) are
very close to each other, thus in Fig. 3 we merely plot
the results from Eq. (14).
Here, we can also understand the non-monotonic be-

havior of I from the following perspective. The packet
generation rateR can be divided into two parts, the pack-
ets using routing table of β1 is Rβ1 = (1− p)R, and that
of β2 is Rβ2 = pR. From Eq. (5), we can get the corre-
sponding loads of node i from these two parts of packets,

denoted by L
β1

i and L
β2

i (with Li = L
β1

i + L
β2

i ). For the
case that the mixing rate p = 0, we have Rβ1 = R, and
the jamming of nodes are all ascribed to the queue of β1

packets. As p is increased from 0, the Rβ1 , as well as

the L
β1

i decreases, while that of β2 increases. If the β2

packets prefer to use those complementary nodes instead

of the nodes already jammed by β2 packets, the number
of jammed nodes I will decreases with p. However, as p

is large enough, the increase of load L
β2

i from β2 packets
induces new jamming of nodes. Therefore, we can see the
non-monotonic behavior of the number of jammed node,
when the dual-strategy system is composed of the two
strategies from either side of β0.

IV. CONCLUSION

In summary, we propose a hybrid routing strategy for
the networked traffic system, which is proved to be a
doable and effective way to enhance transport efficiency.
Compared with the efficient routing strategy [33], the
hybrid routing strategy can make better use of the re-
sources in the traffic system, while there appears no in-
crease in its algorithmic complexity. The performance
of the dual-strategy system can be optimized by mod-
ulating the mixing rate of the packets, in case that the
two strategies share fewer key nodes. Here, we introduce
the accumulate rate η to denote the performance of the
communication system in congestion phase, which shows
richer phenomena than the critical generation rate Rc.
Furthermore, we get analytical descriptions to the jam-
ming processes by the accumulate rate η and the equiva-
lent generation rateR∗. The number of jammed nodes es-
timated from analytical formula coincides well with that
from simulation.

While our model is based on computer networks, we
expect it to be relevant to other practical transport
processes in general. Actually, in real system, the hybrid
routing is worthy of considering, for the reason that
the sources and characters of massages delivering or
spreading in complex systems are diversified, which
induces the hybrid of various transportation modes. In
view of the common features for the networked traffic
and spreading, our work may shed some light on the
research of packet delivery in technical networks, as well
as the rumor and opinion dynamics in social networks.

We gratefully acknowledge T. Zhou and X. Li for help-
ful discussions.
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Comput. Sci. 3993, 1024 (2006).
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