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Abstract.

We consider the optimal covering of fractal sets in a two-dimensional space using

ellipses which become increasingly anisotropic as their size is reduced. If the semi-

minor axis is ǫ and the semi-major axis is δ, we set δ = ǫα, where 0 < α < 1 is an

exponent characterising the anisotropy of the covers. For point set fractals, in most

cases we find that the number of points N which can be covered by an ellipse centred

on any given point has expectation value 〈N〉 ∼ ǫβ, where β is a generalised dimension.

We investigate the function β(α) numerically for various sets, showing that it may be

different for sets which have the same fractal dimension.

1. Introduction

Figures 1 and 2 illustrate two different fractal point sets in two dimensions (their origins

will be described shortly). The fractal dimensions (as defined in [1, 2]) of these sets are

very similar (the correlation dimension are D2 ≈ 1.76 and D2 ≈ 1.71 respectively),

but inspection of these figures suggests that the fine-scale structure of these sets is

quite different. In this paper we consider whether it is possible to make a distinction

between the local structures of fractals by using covering sets which become increasingly

anisotropic as the covers are made smaller. We show that this can distinguish different

sets which have the same fractal dimension. Moreover, we shall argue that the use of

anisotropic covers can be important in analysing the scattering of radiation from fractal

distributions of matter.

The sets illustrated in figures 1 and 2 are point set fractals which arise as models

for the distribution of particles resulting from two distinct physical processes. Figure 1

illustrates a model of particles in a turbulent flow, in circumstances where inertial effects

are large enough to ensure that the particles are not simply advected. It is known that

such systems may exhibit clustering [3] and that the attractor is a fractal measure

[4, 5]. An enlargement of a subset of figure 1 shows that the particle distribution is

locally highly anisotropic, with the particles tending to be clustered close to lines in the

plane, even though the statistics of the distribution are globally rotationally invariant.

http://arxiv.org/abs/1204.3718v1
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Figure 1. Distribution of particles with significant inertia moving in a two-dimensional

area-preserving velocity field (the equations of motion are specified in section 3). The

particles tend to cluster and for the parameters used in this simulation (see section 3)

the correlation dimension is D2 ≈ 1.76

This is consistent with the structure of strange attractors in low-dimensional dissipative

dynamical systems, where the attractor has a local structure which is the Cartesian

product of a line and a one-dimensional Cantor set [6]. The second example, figure 2, is

a diffusion-limited aggregation (DLA) cluster in two dimensions [7]. The local structure

of this set cannot be approximated as a Cartesian product. Also, if a subset of a DLA

cluster such as figure 2 is examined at a higher magnification, it does not appear to be

more markedly anisotropic in structure. Thus it appears as if some fractal sets, such as

that illustrated in figure 1, may exhibit a pronounced anisotropy under magnification,

whereas this effect is much less pronounced (or possibly absent) in others, such as figure

2.

Throughout this paper we confine our attention to point sets in the plane, but

generalisations to higher dimensions are obvious. We use the following approach to

characterise the local structure of a point set. Take a given element of the set, and

consider an ellipse centred on this point, with its semi-minor axis of length ǫ and its

semi-major axis of length δ = ǫα, where 0 < α < 1. We assume δ ≪ ξ and ǫ≪ ξ, where

ξ is the characteristic lengthscale of the system below which fractal scaling is observable,

and that ǫ ≫ ǫ0, where ǫ0 is the lengthscale where the fractal scaling is cut off by the

finite number of points sampling the fractal measure. We then choose the orientation

of the cover so that it maximises the number of other points which are contained in

this ellipse. We denote the number of points under this optimally-oriented cover by N .

We repeat this for ellipses centred on other randomly selected points in the set, and

compute the average value 〈N 〉 of the number of points which can be covered. In most
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Figure 2. Distribution of particles determined by a diffusion-limited aggregation

(DLA) process. This distribution has (approximately) the same fractal dimension as

figure 1: D2 ≈ 1.71

of the examples of point-set fractals which we investigated, the mean number of points

in this ellipse is found to have a power-law dependence:

〈N (ǫ, α)〉 ∼ ǫβ(α) , δ = ǫα (1)

where the exponent β depends upon α. In the case where α = 1, the ellipse is a circle, so

that this case reduces to a definition of the correlation dimension: D2 = β(1) (compare

with the discussion of the correlation dimension in [8]). In general β must decrease

monotonically as α decreases.

A related approach to the characterisation of fractal sets was proposed by

Grassberger and co-workers [8, 9, 10, 11], who considered covering a set (which is

embedded in a d-dimensional space) with d-dimensional ellipsoids, with principal axes

ǫi, ordered so that ǫ1 > ǫ2 > . . . > ǫd. Their work emphasises the case where the local

structure of the fractal is a Cartesian product of sets, with dimensions ∆i, ordered so

that ∆1 > ∆2 > . . . > ∆d. It is asserted that the ellipsoids cover most efficiently when

they align with the principal axes, such that the longest axes align with the directions

of the highest density sets. According to this hypothesis the number of points covered

is expected to satisfy

〈N 〉 ∼ ǫ∆1

1 ǫ∆2

2 ǫ∆3
3 . . . ǫ∆d

d . (2)

Examining the dependence of N upon the ǫi would allow the partial dimensions ∆i

to be determined. This approach was mentioned in several papers [8, 9, 10, 11], with

the motivation to characterise a fractal set by means of its partial dimensions, ∆i,

satisfying
∑d

i=1∆i = D2. These works do not prescribe how (or whether) the ratio

ǫi+1/ǫi approaches zero as ǫ1 → 0. In our work this limiting behaviour is specified by
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Figure 3. Scattering of a beam of light with wavevector k, width δ and wavelength

ǫ: a cluster of N particles covered by an ǫ-δ ellipse scatters light coherently when the

condition for specular reflection is satisfied. The wavevector k′ satisfies the condition

for specular reflection if the major axis of the ellipse is perpendicular to k−k
′. In this

case the scattered intensity from the particles under the cover is increased by a factor

of order N .

the parameter α. Our numerical investigations encompass fractal sets which have a

Cartesian product structure, and those which do not.

In the case of point set fractals which represent a physical distribution of particles,

the existence of a highly anisotropic local structure has important physical implications

for the scattering of light. It is known that s-wave scattering of light from a fractal

point set gives rise to an algebraic relation between the scattering wavenumber k and

the scattered intensity I, such that

I(k) ∼ k−D2 . (3)

Heuristic arguments supporting this are developed in [12]; see [13] for a discussion of

some of the complications which can arise in verifying this suggestion. The distribution

of this scattering intensity may, however, be highly inhomogeneous. In particular, if

the particles have a strong tendency to accumulate along lines in two dimensions (like

the example shown in figure 1), or on planes in higher dimensions, light may scatter

specularly from these structures. We argue that this motivates the investigation of the

anisotropic covering with ellipsoids. Consider weak scattering of light with wavelength

ǫ which propagates as a beam of width δ. When the path length for light scattered

from different particles is large compared to ǫ, the scattering of light from N particles

is incoherent, so that the contribution to the scattered intensity is I ∼ N . If, however,

an ellipsoid of major axis δ and minor axis ǫ can be aligned to cover N particles, then

there will exist directions where the path length difference is less than one wavelength,

so that this set of N particles scatters light coherently (see figure 3). In these directions

where the condition for specular reflection is satisfied by the optimal covering ellipsoid,

there is a greatly increased intensity I ∼ N 2.

We have argued that light scattering from fractal sets may be extremely

inhomogeneous because of specular scattering from particles which accumulate on
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Figure 4. In the case where the fractal set is a Cartesian product of two Cantor sets,

with dimensions Dx and Dy in the x and y directions, the optimal covering ellipse

might be expected to have its major axis aligned with the direction corresponding to

the denser set. In the case Dy > Dx, the major axis of the ellipse would be expected

to align with the y-axis (vertical in this figure). Here we illustrate a sample of the

actual optimal covers, which have a distribution of angles of their principal axes.

surfaces. This motivated us to study the covering of a fractal by anisotropic covering

sets, and the results are reported here. We investigate the dependence of the generalised

dimension β upon the anisotropy exponent α. We show that the form of the function

β(α) can distinguish between different fractal sets which have the same value of the

correlation dimension D2 = β(1). The description of light scattering proved to be a

very complex issue, which will be considered elsewhere.

2. Some elementary estimates

Before discussing our numerical investigations, we consider some simple arguments

about the form of the generalised dimension β(α), defined by equation (1).

First we address the issue of whether the exponent β exists. When α = 1, the

exponent β coincides with the correlation dimension of the set. For other values of α,

we do not know of any general argument which proves that the dependence of the optimal

covering N has a power law relation to the size ǫ of the covering elements. For most

of the point-set fractals which we examined we did find good numerical evidence that

〈N 〉 ∼ ǫβ for small values of ǫ (extending down towards values of ǫ where the discrete

sampling of the set becomes a limitation). The exceptions occurred for some cases of

the motion of inertial particles in a random flow, and for some of the sets considered in

section 4, including the example illustrated in figure 4: these are discussed in sections 3

and 4 respectively.

Next we give an upper bound on β(α). Let us consider the expectation 〈N 〉 for

the case where N is independent of the orientation of the ellipse. The total number of
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particles in a disc of radius δ is proportional to δD2 . If the set is locally isotropic then

the coverage is independent of the angle of the major axis of the ellipse, and a fraction

ǫ/δ of these points lie in the ellipse. Recalling that δ = ǫα, for this isotropic fractal we

have 〈N 〉 ∼ δD2−1ǫ ∼ ǫ1−α+αD2 ≡ ǫβ+(α), so that

β+(α) = 1 + (D2 − 1)α . (4)

is an upper bound on the exponent β.

We were not able to obtain a precise and non-trivial lower bound for β(α), but

the following argument suggests a possible form for a lower bound. Consider the case

where the point fractal samples a Cartesian product of two one-dimensional Cantor sets,

with dimensions Dx and Dy. In the following we assume that Dy ≥ Dx. Because the

set is ‘denser’ in the direction of the y-axis, we expect that the optimal alignment of

each ellipse is when its major axis is aligned with the y-axis (the same hypothesis was

proposed in [8, 9]). The expected number of particles captured by a covering ellipse is

then 〈N 〉 ∼ δDyǫDx = ǫαDy+Dx , so that the dimension of this product set is

β(α) = αDy +Dx . (5)

Now consider the smallest possible dimension which could be achieved according to this

argument, if we allow the dimensions Dx, Dy of the component sets to vary so that

Dx +Dy = D2. The greatest number of particles in the ellipse, and hence the smallest

dimension, is obtained by setting Dy = 1 and Dx = D2 − 1. This gives a putative lower

bound to the dimension:

β−(α) = D2 − 1 + α . (6)

The assumption that the covering ellipses align precisely with the y-axis is not really

correct, as evidenced by figure 4. It is plausible that the probability for an ellipses to be

significantly mis-aligned decreases as ǫ → 0, but we were not able to obtain conclusive

numerical evidence. We note that the argument leading to the proposed lower bound,

β−(α), is very similar to that presented in [8, 9] to motivate the concept of partial

dimensions.

In addition to the fact that the optimal covering ellipses do not align perfectly

with the preferred axes, there is a further complication which could affect the argument

leading to the estimate in equation (6). In sets such as that illustrated in figure 1, the

local structure is a Cartesian product of a line and a one-dimensional Cantor set. The

line is, however, curved. It is interesting to consider whether this curvature can alter

the estimate in equation (6). In order to consider the effect of this curvature, introduce

two coordinates: y is a coordinate for the expanding (unstable) manifold centred on the

reference particle and x is a coordinate for the stable manifold. Because the manifolds

are curved, the equation of the unstable manifold will be of the form x ∼ Cy2 for small

y, where C is a constant. Consider a family of ellipses, with fixed δ and decreasing α

which are aligned so as to provide the optimal cover for a cluster centred on a reference

particle. As α is reduced, the curvature of the unstable manifold can become important,

because it will take a cluster of particles outside the covering ellipse (see figure 5). This
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y

x

Figure 5. In many dynamical systems the attractor is locally a Cartesian product of

a Cantor set and a line. If this line is curved, an ellipse may cease to be an efficient

cover as α is decreased. The x- and y-coordinates are referred to in section 2.

happens when x(δ) ∼ ǫ, that is when Cǫ2α ∼ ǫ. Accordingly, we might propose that the

optimal covering strategy of aligning the principal axis of the ellipses with the unstable

manifold starts to break down when at a critical value of the exponent, αc = 1
2
. On

the basis of this argument we would expect that β(α) might exceed equation (6) when

α < 1
2
, in cases where the fractal is generated by a dynamical system for which the lines

representing the unstable manifold are curved.

3. Numerical investigations of dynamical fractals

Figure 1 illustrates the distribution of independently moving inertial particles in a

random velocity field. The equations of motion for the position of a given particle

are [3]

ṙ = v , v̇ = −γ[v − u(r(t), t)] (7)

where γ is the rate at which the particles relax towards the fluid velocity, and where

u(r, t) is a randomly fluctuating velocity field satisfying the incompressibility condition

∇ ·u = 0. Particles in the fluid flow cluster if the damping timescale γ−1 is comparable

to a timescale characterising the velocity field. In the simulations used in this paper, we

used a random vector field with a very small correlation time, using the same definitions

as in [14], where the importance of inertial effects is characterised by a dimensionless

parameter, which was referred to as ε in that work, but which is denoted by η in

this paper. It is defined in terms of the correlation function of the velocity gradient

experienced by a particle with trajectory r(t):

η2 =
1

2γ

∫

∞

−∞

dt

〈(

∂ux
∂x

)

(r(t), t)

(

∂ux
∂x

)

(0, 0)

〉

. (8)

In figure 1, we showed a realisation of the long-time dynamics. The velocity is

periodic on the unit square, and was generated from a random stream function

ψ(r, t). The statistics of the stream function are 〈ψ(r, t)〉 = 0, 〈ψ(r, t)ψ(0, 0)〉 =
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Figure 6. The mean number of points in an optimal cover, 〈N〉, as a function of ǫ,

for various values of α. The slope increases monotonically with α, which ranges from

α = 0.2 to α = 1 in increments of 0.2. These data, for the random flow model with

η = 0.1, show excellent fits to a power law over a wide range of ǫ.

A2 exp(−|r|2/2ξ2) exp(−|t|/τ), with ξ = 0.1, τ small and A chosen such that η = 0.1.

The correlation dimension for this value of η is D2 ≈ 1.76 [14].

We examined whether the mean value of the optimal covering number, 〈N 〉, shows

a power-law dependence upon ǫ. The data for η = 0.1, shown in figure 6, are a good fit

to a power-law for values of α as low as 0.2. At very small values of α, the area of the

ellipses decreases very rapidly as ǫ → 0, so that the values of 〈N 〉 become too small to

give reliable results.

For the inertial particles model we found a number of cases where the covering data

was not well fitted by a power-law in ǫ. This occurs for small values of α and for values

of η where the value of D2 is close to its minimum, which is D2 ≈ 1.35 at η ≈ 0.35.

Figure 7 illustrates the case where the fit to a power-law was the least good.

In figure 8 we exhibit the β(α) curves for this systems at several different values

of the inertial parameter η. Fractal attractors of dynamical systems typically have a

local structure which is a Cartesian product of a Cantor set and a line. Following the

discussion in section 2 we therefore expect that the exponent β(α) should be given by

equation (6), that is β(α) ≈ β−(α). We find, however, that β−(α) is not a very good

approximation, and figure 8 shows that different β(α) curves may be obtained for cases

with the same fractal dimension (these arise because D2 has a minimum with respect to

varying η) . In section 2 we also suggested that the generalised dimension β(α) might

be higher than β−(α) when α ≤ 1
2
because the unstable manifold is curved. Figure 8

does not show evidence of any discontinuous change at α = 1
2
.

We also investigated β(α) for fractals generated by two other dynamical processes.

We simulated diffusion limited aggregation (DLA, one realisation of which was

illustrated in figure 2), in the usual manner [7]: points make a random walk on a
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Figure 7. Same as figure 6, except η = 0.4, where D2 ≈ 1.36. In this case the covering

data are not a good fit to a power-law in ǫ for α ≤ 0.75.
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Figure 8. β(α) for inertial particles in a random velocity field, using a model defined

in [14]. The curves are labelled according to the parameter η which quantifies the

importance of particle inertia.

lattice until they contact the cluster, after which they are frozen and become part of the

growing set. In the case of isotropic diffusion, the correlation dimension of the resulting

cluster is D2 ≈ 1.71. The values of the slopes β extracted from least-squares fits similar

to those in figure 6 are plotted in figure 9 as a function of α.
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Figure 9. β(α) for a diffusion limited aggregation (DLA) cluster with 2.7 × 105

particles, and for the Sinai map with a = 0.35.

We also investigated the fractal generated by the Sinai map, defined by

xn+1 = xn + yn + a cos(2πyn)mod 1

yn+1 = xn + 2ynmod 1 (9)

with a = 0.35, which has an attractor with correlation dimension D2 ≈ 1.62. The β(α)

curve for this map is also shown in figure 9.

4. Sierpinski substitution fractals

The examples of dynamical fractals which we considered in section 3 are all multifractal

sets, and it is desirable to investigate β(α) for a model which is a simple fractal, avoiding

the complications that arise when dealing with multifractal sets [15]. Here we construct

a class of generalisations of the Sierpinski carpet, which are simple fractals rather than

multifractal measures. The construction that we use is closely related to one proposed

independently by Bedford [16] and McMullen [17]. We show that different elements

from this class of sets can have different β(α) functions despite having precisely the

same value of D2 = β(1).

We generate an approximation to a fractal set by a hierarchical process consisting

of n generations. We generate a set of Mn points, where M is an integer, as follows.

The points xk lie in the unit square [0, 1] ⊗ [0, 1], and have coordinates of the form

(xi, yi) = (i/Nn
1 , j/N

n
2 ), where N1, N2 are positive integers satisfying N1N2 > M .

We define a ‘masking matrix’ F with elements Fij as an N1 ×N2 matrix which has

elements which are either 1 or 0, and we let M be the number of non-zero elements of
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A B

D E

Figure 10. Examples of fractal sets generated by the construction defined in section 4.

In all of these examples, N1 = N2 = 3. The Cantor set is then defined by listing the zero

elements of the masking matrix (the labels correspond to the cases considered in figure

11): (A) F22 = 0, D = ln 8/ln 3, (B) F11 = 0, D = ln 8/ln 3, (D) F21 = F22 = F23 = 0,

D = ln 6/ln 3, (E) F13 = F31 = F33 = 0, D = ln 6/ln 3 .

F. We construct the model set by the following recursive construction. Consider the

‘first generation’ set of M points xk, labelled by an index = 1 . . .M , where a point is

placed at ((i−1)/N1, (j−1)/N2) if Fij = 1. At the next generation each of these points

is replaced by a set of M points, based on a lattice with spacings N−2
1 and N−2

2 in the

x and y directions respectively, which are selected by the criterion that Fij = 1. In

general, after n generations each point xk is replaced by M points with positions xk′,

where k′ is an index of the (N1N2)
n+1 points, with positions

x
′

k′ = xk +

(

i− 1

Nn+1
1

,
j − 1

Nn+1
2

)

. (10)

A point labelled by (i, j) added to the set if and only if Fij = 1.

As an example, consider the case where N1 = N2 = 3 and where F22 = 0 is the

only element of F which is equal to zero, so that M = 8. Iterating this construction

gives a version of the Sirepinski carpet set, illustrated in figure 10A, with dimension

D = ln 8/ln 3. By varying the zero elements of the masking matrix, we can generate

many other Cantor sets, some examples of which are illustrated in the other panels of

figure 10. The resulting sets are clearly simple fractals (as opposed to multifractals).

By making other choices of the masking matrix we can construct other Cantor sets with

dimension

D =
2 lnM

ln (N1N2)
. (11)

This construction allows us to create distinct fractal sets with exactly the same

dimension, such as in panels A and B or panels D and E of figure 10. Moreover, by a

suitable choice of the masking matrix, we can generate fractal sets which are Cartesian
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products (such as figure 10D), as well as those which are not (such as figures 10A, B,

E).

We investigated the function β(α) for sets which are produced by this generalised

Sierpinski construction. The results are illustrated in figure 11, for seventeen sets

produced using a 3 × 3 masking matrix. The key at the right hand side of the figure

indicates the pattern of deletions in the masking matrix, ordered by the number of

deleted points.

First we discuss those sets which are a Cartesian product. These include examples

D, I, L, P and Q in figure 11. The simplest example is set D in figures 10 and 11. For this

set, equation (6) predicts that β(α) = D− 1+α, which shows excellent agreement with

figure 11. By setting N1 = N2 = 3 and F12 = F21 = F23 = F32 = F22 = 0 we produce

a set with dimension D = ln 4/ln 3 = 2 ln 2/ln 3, which is a Cartesian product of two

Cantor sets of dimension Dx = Dy = D/2 = ln 2/ln 3. This is example I in figure 11.

Example L is closely related: this set is similar to example I, rotated by π/4. These data

show quite poor agreement with the prediction from equation (5), from which we expect

β(α) = D(1 + α)/2 (but good agreement with each other). The other two examples

in figure 11 which are Cartesian products are very simple: P is a Cartesian product of

a line and a point, and Q is the product of a Cantor set of dimension ln 2/ln 3 and a

point. For these examples there is excellent agreement with the predictions of equations

(6) and (5), which indicate straight lines of slope unity and ln 2/ln 3 respectively.

Figure 11 also shows β(α) in cases where the set is not a Cartesian product. These

differ from the data for the Cartesian product sets. They can be organised into sets

which have apparently identical β(α) curves. In most of the cases examined in figure

11, sets which have the same value of M (and hence of D2) have β(α) curves which are

identical, to within numerical fluctuations. Examples of such groups are (M = 8 : A,B),

(M = 5 : G,F), (M = 4 : J,K), (M = 3 : N,O). Note, however, that for M = 4, set M

is not a Cartesian product and yet has a β(α) curve which is clearly different from sets

J and K.

We noted that examples I and L in figure 11, which are Cartesian products of

two one-dimensional Cantor sets, had β(α) functions which show quite poor agreement

with the expected result, equation (5). It appears possible that this anomaly might

arise because these sets are a degenerate case, where Dx = Dy. We therefore also

considered two examples which are a Cartesian product of two Cantor sets with different

dimensions, namely N1 = 4, N2 = 3, with non-zero elements F11 = F13 = F41 = F43 = 1

(which is the set illustrated in figure 4), and N1 = 5, N2 = 3, with non-zero elements

F11 = F13 = F51 = F53. These are Cartesian products of two one-dimensional

Cantor sets with dimensions Dx = 1
2
(4 × 3 case) or Dx = ln 2/ln 5 (5 × 3 case),

and Dy = ln 2/ln 3. In figure 12 we show the dependence of 〈N 〉 upon ǫ on a double-

logarithmic scale, for the set illustrated in figure 4. For each value of α, including α = 1,

the plots appear to have an oscillation about a straight line, which makes it difficult to

determine accurate values for β(α). In figure 13 we show our best estimates for β(α) for

these three fractal sets, compared with the theoretical prediction in the 4×3 case, given
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Figure 11. β(α) for the generalised Sierpinski model. The curves are labelled by a

key giving the zero elements of the masking matrix in white.

by equation (5). There are substantial deviations from the theoretical curve, but note

that these are no larger than the errors in determining the fractal dimension D2 = β(1)

for these sets. We conclude that although the agreement with (5) is poor, this is due to

difficulties in fitting the data, and there is no persuasive evidence that (5) is incorrect.

Section 2 concluded with an argument which suggests that when the set is locally

a Cartesian product of a line and a Cantor set, the function β(α) may have a different

behaviour when α < 1
2
if the lines are curved. The data on the clustering of inertial

particles (reported in section 3) were not a good fit to equation (6), and they did not

show a clear signature that α = 1
2
is a critical point. A more controlled test was

made with the Sierpinski fractals considered in this section. The sets were modified by

applying a shift to all of the y-coordinates:

x = (x, y) → x
′ = (x′, y′) = (x, y + C sin(2πx)) . (12)

The sets which are reported upon in figure 11 were deformed according to this rule, with

C = 1
2
. The β(α) exponents remained unchanged for all of these sets (within numerical

fluctuations comparable to those in figure 11).
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Figure 12. For the set illustrated in figure 4, it is difficult to fit the exponent β(α)

because of an oscillation in the dependence of ln 〈N〉 upon ln ǫ.
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Figure 13. β(α) for three cases of the generalised Sierpinski model which are Cartesian

products of Cantor sets, based upon 3× 3, 4× 3 and 5× 3 deletion matrices.

5. Concluding remarks

This paper has reported the first systematic study of fractals using a set of covers

which become more anisotropic as they are made smaller. The growth of the anisotropy

is described by a parameter α, and we characterised the efficiency of covering by a

generalised dimension β(α). We found that different sets with the same correlation

dimension D2 can have different β(α), as was demonstrated very clearly for the simple
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Sierpinski substitution fractals which we considered in section 4.

In the case where the fractal is locally a Cartesian product of a line and a Cantor

set, a heuristic argument (similar to that given in [8] and subsequent papers) suggest

that β(α) should be given by (6). We find that this expression works well for simple

model sets of the type considered in section 4, and for the Sinai map, where the attractor

is locally a Cartesian product of a line and a Cantor set. In the case of clustering of

inertial particles, however, we find that equation (6) does not give a good approximation

to β(α). In cases where the Cantor set does not have a Cartesian product structure,

we were not able to derive an expression for β(α), and we find persuasive evidence that

this function is non-universal.

In three or more dimensions there may also be a tendency for particles to accumulate

on filamentary structures, as well as on planes. This could be characterised by defining

the exponent β as a function of two parameters, α1, α2 defining a covering ellipsoid with

principal axes ǫ, ǫα1 and ǫα2 .

This study was partly motivated by the desire to understand the inhomogeneity

of light scattering from fractal distributions of particles, but our investigations indicate

that this is a very complex problem, which will be considered in a separate publication.
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