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Abstract:

Recently, Holm and Ivanov, proposed and studied a class of multi-component generalisa-
tions of the Camassa-Holm equations [D D Holm and R I Ivanov, Multi-component gen-
eralizations of the CH equation: geometrical aspects, peakons and numerical examples, J.
Phys A: Math. Theor 43, 492001 (20pp), 2010]. We consider two of those systems, denoted
by Holm and Ivanov by CH(2,1) and CH(2,2), and report a class of integrating factors
and its corresponding conservation laws for these two systems. In particular, we obtain
the complete sent of first-order integrating factors for the systems in Cauchy-Kovalevskaya
form and evaluate the corresponding sets of conservation laws for CH(2,1) and CH(2,2).

1 Introduction

It is well known that certain conservation laws of shallow water wave equations, such as
the Camassa-Holm equation [4] and the the Degasperis-Procesi equation [8], are useful
to prove blow-up, cf. the papers [5], [I6] and [15]. Furthermore, conservation laws play
a central role in the prove of the global existence (in time) for solutions evolving from
certain initial data, cf. the paper [6], and for proving the stability of peakons for both
model equations, cf. the papers [7], [12] and [13]. In the context of the Camassa-Holm
equation they are instrumental in the set-up of a theory of global weak solutions for
nonlinear nonlocal conservation laws, cf. the considerations in the papers [2], [3] and [10]

In the current paper we derive all first-order integrating factors and its correspond-
ing conservation laws for some recently proposed multi-component generalizations of the
Camassa-Holm equation [I1]. We concentrate on two explicit systems, namely CH(2,1)
and CH(2,2), proposed by Holm and Ivanov in [I1] (see [.Tal) — (LDl and (I.6al) — (L.6b)
below).

We recently reported in [9] the complete set of first-order integrating factors and con-
servation laws for a classs of Camassa-Holm type equations, which includes the Camassa-
Holm equation [4] and the the Degasperis-Procesi equation [8]. Our approach is based on
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the direct method described by Anco and Bluman in their paper [I], which can be ap-
plied to derive conservation laws of evolution equations that are in Cauchy-Kovalevskaya
form. We now apply this method for the derivation of integrating factors for CH(2,1) and
CH(2,2).

Consider the two-component Camassa-Holm equations introduced and denoted by
Holm and Ivanov [11] as CH(2,1), which has the following form:

01q: + 2quy + uqy + opp, =0 (1.1a)

Pt + pug + upy =0, (1.1b)
where

q=01U— Uggy + S (1.2)

and s, o and o7 are arbitrary constants. The physically interesting cases are ¢ = +1 and
o1 =1 or o1 = 0. By defining the new dependent variables

u:= Ui, uy :=Us, Ugpy :=Us, p:=Uy (1.3)
and the change of independenbt variables,

X :=t, T:=uz, (1.4)
we can write system (LTal) — (LID) in the following Cauchy-Kovalevskaya form:

Ei:=Uir—-U;=0 (1.5a)

Ey:=Uyr—U3=0 (1.5b)

By = Usy — oUy 'Us x + Ur 'Us x — 301Us + 2U UsUs + oUp 2UsUs x

+oU 20U — sUT Uy = 0 (1.5¢)
Ey:=Uyr + U Uy x + U URU, = 0. (1.5d)

The second 2-component Camassa-Holm equation that we study in the current paper,
denoted by CH(2,2), has the form [I1]

q1,t +uoq1,z + 2q1uoe + U1G2z + 2q2u1 4 =0 (1.6a)

92,6 + u0q2,2 + 2q2u0,z = 0, (1.6b)
where

g1 = U1 — Ulgze + 81 (1.7a)

g2 = Up — UQ,zx + 3u% — u%m — 2UuqU1 gz + 451U + S2. (1.7b)



Here s1, s9 are arbitrary constants. By defining the new dependent variables
Uug :— U1, UO@ = UQ, u07m = Ug, Uy = U4, ul,x = U5, ul,m = U6 (1.8)

and the change of independenbt variables (L4), we can present (L6al) — (LGD) in the
following Cauchy-Kovalevskaya form:

Ei:=Uir—-Uy=0 (1.9a)
Ey:=Upr—Us =0 (1.9b)
E3:=Usr + 12U UUs — 4UT ' ULUL x + 22U UsUs x — 451U U x
+4UsUg — 451Us + 2U;  UsUs — 6U; UxUS + 2U; U UZ — 259U 1 Us
451Uy UsUy — 12U 20U + 2U7 ' UsUy, x — 8UT 'ULUUs
+165, U U U5 + 4UT2URUsUs x — 851U 2URU, x + AU 2URULUS3
HAUT2UZULUZ + 8UT2UURUs — 1651U 2UsU; — 42U 2Us U
+HAU2UFUsUs x — AU U3ULUs + 452Uy P ULUs — 12U 2UsUy x

+2U U3 U3 x + AU 2URUs x — AUT ' ULUS — 2UT2URUL x

~U; U x + U U3 x — 3U2 =0 (1.9¢)
E4 = U4,T — U5 =0 (1.9d)
E5 = U5,T — U6 =0 (1.96)

Eg := Usr + AU U UsUs — 85,U7 ' ULUs + 2U7 U2 — 3Us — U Uy x
+U U x — 22U 2ULUs x + 6U 2UU3 — Uy 'UsUs x + Uy 2UsUn x
+6U; 2UFU x — 2U; 2UsUsUs, x + 45107 2UsUy x — 2U; 2U2UsUy
—2U 2UsUsUZ — AU 2UaUUs + 851U 2Us U3 + 289U 2UsUy
—2U2U4UsUs x + 2U  UsUs — 252U *Us + 2U Uy Us

—25,U; Uy — 6U ' UZU5 = 0. (1.9f)

The above first-order Cauchy-Kovalevskaya systems can now be investigated for inte-
grating factors to derive conservation laws for the systems; which then leads to conservation
laws of the systems CH(1,1) and CH(2,2) in the original variables.
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2 General description

In this section we breifly describe the direct method [1] of integrating factors (or multipli-
ers) for the general first-order Cauchy-Kovalevskaya system of six equations:

Ej = Uj,T_Fj(Uly"'7U67U1,X7"'7U6,X):07 j:1,2,...,6. (21)

Every conserved density, ®”, and conserved flux, ®¥, of system (ZII) must satisfy

Dr®T + Dx®* =0, (2.2)

E=0

where, in general, both ®7 and ®X are functions of X, T, U. ; as well as X-derivatives of Uj.
Moreover, every ®T requires six integrating factors, {Ay, As,...,Ag}, which are directly
related to the conserved density by the relation [I]

Ay = E[UL)®T,  k=1,2,...,6. (2.3)

Here E is the Euler Operator,

E[Uy] ::a——DTo 0 +) (-1)'D} o a' , (2.4)

where we use the notation

U,
Uix = 3xi

The conditions on the integrating factors, {A;}, of system (ZI) are
E[Uy) (A Ey + Ay Ey + -4+ Ag FEg) = 0, k=1,2,...,6. (2.5)

However, since all integrating factors of system (2.I]) are adjoint symmetries of the system
(1)), we can calculate {A;} by the condition

Ly U] Ly [th] - Ly, [Ui] Ay 0
Ly U] Ly, [Us] -+ Ly, [Us] Az 0

_ (2.6)
L, [Us) L,[Us] --- L [Us] Ae /|5 0
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and then require the self-adjointness condition on {A;} (as integrating factors are varia-
tional quatities), namely

LA1 [Ul] LA1 [U2] T LA1 [UG] Eq
La,[Uh] L, [Us] -+ L, [Us] Es
Lag[Uh]  LaglUs] -+ Lag[Us] Ee
Ly, [Uh] Ly, [Uh) - L3, (U1 B
L3, [Us] L3, [Us) - L3, [Us] By
L3, [Us] L3, [Us) -+ L3, [Us] Eg
(2.8)
Here L is the linear operator and L* its adjoint:
oP & P, &K 9P
L T D} - Dk 2.
P[U]] 8Uj + pt an,iT T + ! an,kX X ( 98‘)
LL[U;] 8P+Zp:( 1) D} +§q: kpk o 9P (2.9b)
0= o —. .
PERT Uy T & e an T = X 0U; x

Note that the self-adjointness condition, (27]), is independent of the form of the evolution
system (ZI) and only depends on the functional arguments of {A;} as well as the number
of equations in the system.

3 Integrating factors for system (I.5al) — (1.5d]) and conser-
vation laws for ([I.1al) — ([L.1bl):

Solving conditions (2.6) and (2.7)) for system (L5al) — (LL5d), the complete set of first-order
integrating factors {Aq,..., A4}, of the form

A= Aj(X,T,Ul,...,U4,U17x,...,U47x), j=12,...,4
give two cases, depending on the relations between ¢ and o7y:

Case 1: 0 = o;1. The first-order integrating factors for system (L5al) — (L.5d]) are then
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given by

1
zh:Alcq%@—qu%h—imﬂ%44@@@X—dh+ﬂh%—3dﬁ—aUﬂ

+A3 (Ug —30U; — S) + MUy
Ay = —X\U1 x + A3Us

Ay = MU UL + MUT + A3Uh
—2772 -2 |-
A=)\ O’U4 Ul—U4 U1U3+§SU4 Ui —o0 ) —2X0U1Uy

—)\30U4 + )\4U1,

(3.1a)
(3.1b)

(3.1¢)

(3.1d)

where ); are arbitrary constants. This leads to the following three sets of conserved
density, ®', and conserved flux, ®*, for the original system (LIal) — (LID) for this case

(separated by means of the arbitrary \’s):

_ _ 1
dl =p Yy — op 1u—§p lg
1
Y = p g, —optu® —op — §sp_1u
1 1
®L = uryy + §u§ - §0u2 — 50p2
1

o5 = Wy — Uptty — §su2 —op*u—ou?

<I>§) = Ugy — OU

1 1 3
D% = uug, + §u92£ — su — 50,02 - §0u2.

(3.2a)

(3.2b)

(3.3a)

(3.3b)

(3.4a)

(3.4b)

Case 2: 0 # oy. The first-order integrating factors for system (L5al) — (LL5d) are then

given by
Ay = Xo (Us,x — sUy + 2U U3 — 301Ut — oU})
+23 (Us — 301U1 — 5) + MUy
Ay = — U1 x + \3Us
Az = M U?E + \3U;

A4 = —2)\20U1U4 — )\30'U4 + >\4U1,

(3.5a)
(3.5b)
(3.5¢)

(3.5d)
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where A; are arbitrary constants. This leads to the following two sets of conserved density,
P!, and conserved flux, ®%, for the original system ([Ial) — (IR for this case:

1y, 1 , 1 ,

! = wug, + Eui — 50Ut = 50p (3.6a)
1
o7 = Wlyy — Uply — §su2 —op*u—ou? (3.6b)
O = Uy, — ou (3.7a)
1 1 3
D = g, + §u92£ — su — 50,02 — 501u2 (3.7b)

Remark: The obvious conservation law for system ([Ia) — (LID), namely &' = p, &% =
pu, has not been included in the above list.

4 Integrating factors for system (I.9a)) — (1.9f) and conser-
vation laws for (I.6a)) — (1.6D):

Solving conditions (2.6]) and (2.7)) for system (L.9a)) — (L.9f), the complete set of first-order
integrating factors {Aq,...,Ag}, of the form

Aj :Aj(X7T7U17-"7U67U1,X7--'7U6,X)7 ] = 1727"' 76
are the following:

Ay =X\ (2UsUy + 2U3Uy + 2U4UZ + AU U — 6U; — 251Uy — 8s1U7 — 6U1 Uy

—2s9Uy4 + U5,X) + A (Ug + QUE? — 451Uy — 3U7 — 282)

+A3 (U6 —3U4 — 281) (4.1&)
Ay = —)\1U4,X + X Us + A3Us (4.1b)
Ag = 2X U Uy + A2 (Ur — 2UF) + AUy (4.1c)

Ay = Xi (2U1UZ + 2U1Us + 2U4Us x — 255Uy — 3UT — 18U U7 + Us,x
—1651U Uy + 8U UsUs) + Ao (24U} — 4U3U, — AULUZ — 12U3Us — 2Us x
+2451U5 — 451Uy + 4s2Us) + A3 (Us + 4UsU — 3Uy + 2U7Z — 12U7
—1251U4 — 253) (4.1d)
As = M\ (AU ULUs — Uy x — 2U4Us x) + Ao (AU Us — AUFUs + 2Us x )
+As3 (Uy + 4U4Us) (4.1e)

Ao = A1 (Uf +4U1U7) — 40U; + X3 (Ur +2U7F) (4.1f)
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This leads to the following set of three conserved densities and conserved flux for the

system (LGal) — (L.6h):

P! = ULUQ, gz + u%ul,m — Uguq — 2slu% — 2u:1)’ (4.2a)

z 2 2 2 2
o7 = (uo + ul) U1zt + 2UouUrU 2o + 2uourug 5 + (4u0u1 + uo) Ul za

1

—§u(2) (6uy + 2s1) — ug (GU‘I’ + 2s9uq + 831u%) — UQ UL ¢ (4.2b)

(IDE = 2U U1 gz + U0 gz — UD — 2u% + 2uim — 451U (4.3a)
1
Q5 = —2uguq 41 + (uo — 2u%)u07m — 4u§’u1,m + §u(2)x + 2(ug — u%)u%x
3 9 2 2

—2(s9 + 2s1u1)ug — U0 + 2ui(s2 + 4s1u1 + 3uy) (4.3b)

(I)g = Ul,zx — UL (4.4&)

5 = (uo + 2“%)“1,9090 + U1U0,zz + U0,zU1,z + 2U1Uix — (251 + 3uq)ug

—2uq (82 + 3s1u1 + ZU%) (4.4b)

5 Concluding remarks

We have derived the complete set of first-order integrating factors for the systems CH(2,1)
and CH(2,2) in Cauchy-Kovalevskaya form. The corresponding sets of conservation laws
related to these integrating factors have been derived for both these systems. It would
certainly be interesting to calculate higher-order integrating factors, although the compu-
tations involved for such calculations appear to be rather challenging. We aim to report
some results in a future paper.

We expect that the same method than was applied here could also be used to find
conservation laws for more general CH-systems proposed in [II] and [14]. However, for
larger systems of equations, the computations involved in deriving the complete sets of in-
tegrating factors (even of first-order) can pose significant difficulties and computer algebra
systems should be implemented to overcome these computational problems.
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