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Abstract. For ultrashort pulses having different states of polarization, the

experienced time delay when passing through small apertures is different. In the case

of a small slit (or a circular aperture), we report a significantly stronger dispersion for

the TE (or azimuthal) mode as compared to that for the TM (or radial) mode, creating

a noticeable time delay between the two orthogonal polarization states, even for very

thin apertures. The birefringent effect of small apertures is caused by waveguide mode

dispersion. In essence, the propagation constant of the excited modes varies with

wavelength differently for othogonal polarization states: it increases with the incoming

wavelength for TE (or azimuthal) and remains constant for TM (or radial) mode. A

fundamental understanding of this phenomenon helps to explain, for example, the use

of small apertures as wave plates [1]. Furthermore, this effect can be exploited by

tailoring the width and thickness of the aperture to obtain the desired pulse-shape and

delay.
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1. Introduction

Advances in pulsed-laser physics have recently resulted in pulse lengths down to the

femtosecond scale, which corresponds in the optical regime to only a few cycles of

oscillations [2]. These ultrashort pulses offer an even greater accuracy and sensitivity in

a whole range of experiments, such as micro-machining, femtochemistry, multi-photon

fluorescence microscopy, terahertz generation and many other fields, improving the

understanding of the fundamental phenomena studied. The interaction of a pulse with

any type of optical component is bound to introduce dispersion and therefore changes,

normally broadens, the pulse-shape. A good understanding of the dispersion effects by

the optical elements commonly used in an experimental set-up is therefore essential.

Of a fundamental importance is the small aperture of finite thickness. Apertures

with simple geometries have been studied in great detail, yielding advances in for

example diffraction theory [3], and more recently advances in near field optics, e.g.

extraordinary transmission and excitation of surface plasmons [4]. Earlier studies

emphasize on the interaction between small aperture and light with a transverse

magnetic (TM) mode, which supports the presence of surface waves. Additionally, a

waveguide model for a perfect conductor forbids the presence of transmitted light with

a transverse electric (TE) mode for apertures having widths below the cut-off dimension

of λ/2. In his seminal paper [5], Schouten et al. showed that in the optical regime, the

finite conductivity of the materials surrounding the aperture allows for extraordinary

transmission, even below the cut-off width for TE-polarized light. Experimentally, it has

been recently demonstrated that TE-polarized light is still present after transmission

through a very small slit, and in fact plays a role when tailoring a slit as a quarter wave

plate [1]. Previous studies have shown that diffraction and scattering of a light pulse by

a geometry of dimensions close to the wavelength in the optical regime result in a field

distribution that is strongly polarization-dependent [6, 7].

In this article, we discuss the birefringent effect of small apertures when illuminated

by an ultrashort pulse. We study the illumination of (i) a 1-D slit structure, as well as

(ii) a 2-D circular aperture with an ultrashort pulse. Even though commonly used

apertures are typically very thin, the encountered dispersion effects are significant

due to the small width of the aperture in combination with the broad bandwidth of

the pulse. In Section 3 we demonstrate that the dispersion effect by an aperture is

strongly polarization-dependent. We report that the incoming pulse with field oscillating

parallelly to the aperture experiences a larger time delay compared to that oscillating

perpendicularly. To elucidate the strong polarization-dependent dispersion behaviour,

we present the spectral distribution of the excited waveguide modes and the contributing

propagation constants in Section 4. This fundamental knowledge can be exploited for

several possible applications such as pulse shaping, optical switching, or creating optical

retarders using small apertures.
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2. Optical configuration

2.1. Illumination, material and geometry

A realistic model of an ultrashort pulse in the optical regime is based on an

experimentally generated femtosecond pulse [8]. To avoid non-causal artifacts in the

time response which are present in a Gaussian model [9], we have used only positive

frequencies as described in [10]. To match the experimental conditions, we have chosen

ω0 = 1.2×1015 rad/s the cutoff frequency, ω1 = 1.2×1015 rad/s which is approximately

equal to the spectral bandwidth of the pulse, and s = 10 a positive integer that is

proportional to the number of cycles in the pulse. Based on these parameters, the

ultrashort pulse contains five cycles, has a total length of 7.5 fs, and a bandwidth of

500 < λ < 1200 nm, with its peak at λ0 = 825 nm. We show in Figure 1(a) the time-

trace U(t), and in Figure 1(b) the corresponding wavelength distribution U(λ) of the

ultrashort pulse.
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Figure 1. (a) The time trace of an ultrashort pulse consisting of five cycles within a

time span of 7.5 fs and (b) its corresponding spectral distribution, with the peak at

825 nm. (c) The dispersion relation of aluminum (ñAl) has a resonance frequency that

coincides with the corresponding central wavelength.

In the case of a 1-D slit structure, the aperture is embedded in aluminum that

has a dynamic dispersion relation ñAl(λ) in the optical region of interest, shown in

Figure 1(c). Also, to demonstrate the general validity, we extend the problem into

a three-dimensional case where a 2-D circular aperture is embedded in a perfectly

electric conducting (PEC) layer. To take full advantage of the symmetry of the

geometry, we separate the field in a transverse electric and a transverse magnetic

component, corresponding to linear polarization (TE/TM) states for the slit and

cylindrical polarization (azimuthal/radial) states for the circular aperture. The slit

aperture is schematically shown in Figure 2(a), and the circular aperture in Figure 2(b).

The aperture dimensions are chosen to be near, but smaller than the center wavelength
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Figure 2. Geometry of the apertures. (a) The slit aperture is embedded in an

aluminum layer, while (b) the circular aperture is embedded in a perfectly electric

conducting (PEC) layer. We assume that the structures are illuminated by an

ultrashort pulse at normal incidence with a planar wave for the 1-D slit structure case,

and a cylindrically symmetric distribution of a converging wave for the 2-D circular

aperture case.

of the pulse. It is d = 700 nm thick and has a width of ws = 700 nm for the slit, and

has a diameter of wa = 1500 nm for the circular aperture.

2.2. Method of calculation

We have used the modal decomposition technique in our calculation, since it allows

us to express the field inside the aperture by a set of coefficients corresponding to

the waveguide modes of the aperture. Each of these modes has a characteristic field

distribution in the transversal plane, and a specific propagation constant which is

directly related to dispersion. The coupling coefficients indicate the amount of energy

available in each mode and are determined by matching the waveguide modes with the

field outside the aperture using the boundary conditions.

In this paper, we apply two different rigorous vectorial methods — namely (i) the

Fourier modal method for the 1-D slit case; and (ii) the modal method [11] for the

2-D circular aperture case. Details of the method to calculate the propagation of an

ultrashort pulse through a 1-D slit can be found in our previous work [6], where we have

assumed an incoming plane with a temporal evolution as described in Figure 1(a). For

the case of a 2-D circular aperture in Figure 2(b), the modal method is best suited for

modelling problems in PEC materials since analytic expressions of the field expansion

are known. Mathematically, the incoming beam with cylindrically polarized state using

cylindrical coordinates (ρ, ϕ, z) can be expressed by a Bessel-Gauss beam, defined by

the function:

U(r) = wpk0

∫ k0

0

k0kρ
k2
z

J1(ρkρ)e
−

(

wpk0kρ

2kz

)2

eikzzdkρ , (1)

with U either the azimuthally polarized electric or magnetic field in the unit [V/m] or

[A/m], respectively; wp = 1 µm is proportional to the transverse beam extent of the
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pulse; k0 is the wave vector in vacuum and a function of wavelength, with kρ and kz the

wave vector components in cylindrical coordinates. Because of the choice in polarization

state of the pulse, the field distribution is described by the first order Bessel function of

the first kind J1.

3. Results

Changes in the properties or shape of the pulse during propagation, for instance envelope

broadening and pulse chirping, can be attributed to dispersion effects. Dispersion is, in

essence, an effect caused by a frequency dependence of the phase velocity vp (zeroth-

order dispersion) and/or group velocity vg (first-order dispersion). In a waveguide

structure, dispersion is also defined as the dependence of the phase velocity vp in a

medium on the propagation mode [12].
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Figure 3. Transverse electric (dashed) and magnetic (solid) component at (a)

z = 5 µm from the centre of the slit aperture, and at (b) z = 5 µm and ρ = 2 µm from

the center of the circular aperture, illuminated by an ultrashort pulse.

As shown in Figure 3, a metal slab with a small aperture induces dispersion. The

pulse after transmission through the apertures is shown in Figure 3(a) for the 1-D slit

and Figure 3(b) for the 2-D circular aperture, as observed at a distance of z = 5 µm

from the center of the aperture, located on the optic axis for the slit and 2 µm off the

optic axis for the circular aperture. The phase velocity vp strongly affects the shape

of the pulse oscillation, i.e the real field of the pulse. The shape of the pulse envelope

on the other hand is affected by the group velocity vg, which is the amplitude of the

field. The real field that also expresses the spectral contents of the pulse is usually the

measured quantity in the experiments.

A comparison of the transverse electric and the transverse magnetic field component

shows a difference in the optical path length of the pulse envelope equivalent to

approximately 0.5 fs (about 7% of the pulse length). The TM-component arrives earlier

then the TE-component, meaning it experiences less group delay (or smaller first-order

dispersion). For both structures under study, we observe a small second-order dispersion,

a slightly broadened pulse envelope.



Birefringence of small apertures for shaping ultrashort pulses 6

Note that similar dispersion effects have been observed by propagation of much

slower pulses through kilometers long fibers, where minute dispersion effects are still of

concern due to the very long path length [13]. Although the pulse passing through these

structures experiences dispersion effects that are dominated by the first-order dispersion,

this dispersion effect is still of importance since it influences the spectral content which

is an important information in measurements. To explain the strength and difference in

dispersion for an aperture of only 700 nm thickness, we study the propagation constant

of the waveguide modes contributing to the field inside each aperture. This study

demonstrates the waveguide dispersion that includes several modes, and therefore also

involves the intermodal dispersion effect, i.e. the group delay difference between the

different modes [12].

4. Discussions

4.1. Dispersion by a small slit
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Figure 4. The real (long-dashed lines) and imaginary part (dash-dotted lines) of the

modal propagation constant kz/k0Al
for an aluminum slit, as well as the corresponding

absolute value of the coupling coefficient (solid lines) as a function of the wavelength.

For a comparison, we also show the real (short-dashed lines) and imaginary (dotted

lines) part of the propagation constant kz/k0PEC
for a slit in a PEC layer.

The waveguide modes of the aperture form a complete orthonormal set of solutions,

and a linear combination of these modes can be used to fully represent any field inside

the waveguide. For a slit in aluminum, these modes will be similar but not identical

to the sine (TE) and cosine (TM) functions with the argument nπx/ws where n is
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the mode number. The linear combination of the modes have been solved numerically

using the Fourier modal method as discussed in [14], allowing for non-linear coordinate

transformations [15]. In the limiting case of PEC, we obtain as an exact solution the

sine and cosine modes. In Figure 4, we have plotted the complex propagation constants

and the absolute value of the coupling coefficients as a function of the wavelength

for the four lowest energy waveguide modes. Note that the value of the propagation

constant has been normalized on k0, the wave number, which is of course a function

of the wavelength as well. In the case of the perfect electric conductor, the normalized

propagation constant is kz/k0 =
√

1− (nλ/2ws)
2 with n the mode number. All the

coupling coefficients have been normalized on the energy of the pulse illuminating the

aperture area.

The plane wave illumination couples only to the modes with an odd mode number

for TE illumination and only to modes with an even mode number for TM illumination.

As expected from the boundary conditions for the transverse electric field, the zeroth

mode does not exist. The real component of the propagation constant for propagating

modes is inversely proportional to the phase velocity vp = c(k0/kz). The phase velocity

of each waveguide mode is always equal to or larger than the speed of light c. However

the propagation speed of the pulse is determined by not only the longitudinal but also

the transversal propagation constant of the mode, and can be approximated by

vg = c

[

(kz/k0)− λ
d(kz/k0)

dλ

]

−1

. (2)

The group velocity of each waveguide mode is always equal to or smaller than the speed

of light, and for the case of PEC, it simplifies to vg = c(kz/k0).

For the TE illumination, the main contribution is given by the first mode. Since

the real part of the normalized propagation constant (kz/k0) of this mode is smaller

than unity and monotonically decreasing over the entire wavelength range, the pulse

experiences the first-order dispersion effect, i.e. the frequency dependence of the phase

delay. In order to reconstruct the pulse, each mode needs to be multiplied with its

coupling coefficient, representing the excitation strength. The variation in amplitude

of the coupling coefficients as a function of the wavelength has only a minor influence

on the actual pulse envelope (i.e. the amplitude of the field). However, the oscillation

profile of the pulse (i.e. the real field of the pulse) is considerably changed due to the

phase of the coupling coefficients in combination with the propagation constant of the

mode that vary as a function of the wavelength. The contribution of the third mode

strongly favors the smaller wavelengths (ws > λ/2) but is only observable for very thin

apertures, since the dominant imaginary part of the propagation constant results in a

rapid decay of that mode.

For the TM illumination, the main contribution is given by the zeroth mode.

Notice the uniform wavelength dependence of the modal coefficient and the propagation

constant. This explains the pulse envelope that is almost identical to that propagating in

free-space, i.e. no dispersion effects are observed for the zeroth mode. The contribution
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of the second mode is restricted to wavelengths up to λ = 700 nm, however this

contribution experiences a significant delay as compared to the zeroth mode due to

the small and decreasing real part of the propagation constant. For larger wavelengths,

the mode is evanescent, and the frequency dependence of the group delay increases.

4.2. Dispersion by a small hole
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Figure 5. The real (long-dashed lines) and imaginary part (dash-dotted lines) of

the modal propagation constant kz/k0, as well as the absolute value of the coupling

coefficient (solid lines) as a function of the wavelength.

A similar analysis can be applied for the case of a 2-D circular aperture in a perfect

electric conductor, using the formalism described in [11] for the modal method. Since we

apply azimuthally uniform, radially- or azimuthally-polarized illumination, only a subset

of the cylindrical waveguide modes can be excited. The relevant amplitude functions of

the waveguide modes are given by the Bessel functions J1(2χ
(1)
n ρ/w) and J1(2χ

(0)
n ρ/w)

for azimuthally (corresponding to TE) and radially (corresponding to TM) polarized

illumination, respectively, with index n as the mode number. The constants χ
(m)
n are

the roots of the Bessel function of the first kind defined by Jm(χ
(m)
n ) = 0, with index m

as the order of the Bessel function, and index n as the root index.

In Figure 5, we have plotted the complex propagation constants and the absolute

value of the coupling coefficients as a function of the wavelength for the four lowest

energy waveguide modes. Again, the coupling coefficients have been normalized to the

energy of the pulse illuminating the aperture area, and the propagation constants have
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been normalized on k0 given by the following expression

kz
k0

=

√

√

√

√1−

(

χ
(m)
n λ

πwa

)2

, (3)

with m = 0 for the azimuthal and m = 1 for the radial polarization, and n the mode

number. In contrast to the 1-D slit case, both polarization states can now excite all

modes, except the zeroth. This is required by the zero field along the optical axis of all

modes due to the cylindrical nature of the polarization.

For both the azimuthally and the radially polarized illumination, the main

contribution is given by the first mode. However, for the azimuthally polarized

illumination, the propagation constant decreases significantly as a function of the

wavelength, while for the radially polarized illumination the dependence is more uniform.

The contribution of the second mode depends strongly on the wavelength, since the

propagation constant becomes evanescent from λ = 672 nm and λ = 854 nm, for

azimuthally and radially polarized illumination, respectively. The different cutoff

wavelengths for both polarizations states are a result from the difference in mode

distribution and corresponding propagation constant. Due to the PEC nature of the

material, the propagation constant changes from purely real to purely imaginary at

the cutoff wavelength. For the third mode, only a small wavelength range up to

λ = 545 nm for radially polarized illumination, contributes to the transmitted field.

The net dispersion effect of a circular aperture is also dominated by the first-order

dispersion. The radially polarized pulse experiences a smaller first-order dispersion

effect, with a smaller group delay as compared to the azimuthally polarized pulse.

Note that, however, the oscillation profile of the radially polarized pulse is changed

as compared to the incoming pulse, indicating the contribution of the strong dispersion

effect at the higher order modes.

4.3. Role of the aperture thickness

Another effect to consider in order to understand the exact oscillation profile of a

pulse, is the dependence of the modal contribution at specific wavelengths on the exact

thickness of the aperture. Interference effects influence the transmission, which shows

up as oscillations of the the absolute value of the coupling coefficients as a function

of the thickness of the aperture and the wavelength, shown in Figure 6. As only a

single mode is excited at larger wavelengths, the oscillations of the amplitude follow

closely the standard Fabry-Pérot interferometry relations with minima when d = Nπ/kz
where N denotes an integer. The boundary at which the single mode excitation and

a standard Fabry-Pérot behaviour start to occur, can be seen more clearly in the TM

(right) illumination cases.

The choice to consider only azimuthally or radially polarized illumination for the

circular aperture, was made from an instructional point of view such that the excited

modes uncouple. For different types of illumination other coupled modes will be excited
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Figure 6. Absolute value of the coefficient as a function of the wavelength and the

aperture thickness, with (top) the 1st and 0th mode for (a) TE and (b) TM illumination

of the slit, and (bottom) the 1st mode for (c) azimuthally and (d) radially polarized

illumination of the circular aperture, respectively.

what complicates the analysis, but similar dispersion effects between the TE and TM

response are present since these effects are determined by the waveguide shape and

dimensions.

5. Potential applications

In general, the transmitted TE/azimuthal or TM/radial pulse exhibit birefringent

retardation. One can therefore tune the geometry of such small apertures to create

wave plates, as demonstrated in [1]. It is also important to realize that similar dispersion

effects can be observed in case of arrays of apertures as well. Furthermore, the exact form

of response can be tuned by a careful selection of the size and thickness of the apertures,

leading to a whole range of potential applications. For example, it is possible to use the

observed polarization-dependent dispersion effects to our advantage by an intelligent

use of the delay between both polarization components in pump-probe experiments. A
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desired 2 fs delay between both polarization states for a slit of 700 nm width would

correspond to d = 2 µm thickness. Also, the shape of the transmitted pulse for

both polarization states can be modified in such a way to trigger or observe different

types of effects. Finally, the dispersion effects can be of particular concern for the

interpretation of near field measurements using either SNOM-tips or small apertures

and should therefore be considered during the analysis.

6. Conclusion

In conclusion, we have shown the importance of strong polarization-dependent

dispersion effects for the transmitted ultrashort pulse passing through thin and small

apertures, indicating the birefringence property of such apertures. These effects will

become increasingly important due to the recent advances in availability of these pulses,

as well as the increasing interest in near-field analysis.

Generally, the TM-polarized light is considered to have more interesting properties

as compared to the TE-polarized light. In this study, we found that the polarization-

dependent dispersion effect of the transmitted pulse oscillating along the TE direction

is significantly larger than for the TM pulse, resulting in a noticeable group delay

between both polarization states even for very thin apertures. As TM-polarized light

is associated with surface waves, in a similar manner TE-polarized light should be

associated with increased dispersion effects. These dispersion effects are caused by the

difference in wavelength dependent propagation constants of the excited modes, related

to the waveguide dispersion, and the intermodal dispersion effects.

Whilst the transmission through a slit is dominated by the 0th (TM) and the

1st (TE) mode, and corresponding difference in first-order dispersion, the transmission

through a circular aperture is dominated by the 1st mode for both the radial (TM) and

azimuthal (TE) polarization. However, even for the circular aperture, still a noticeable

difference in first-order dispersion exists.

The dispersion effects can be exploited by tailoring the width and thickness of the

aperture to shape the envelope and the oscillation profile of the pulse, as well as the

delay between two orthogonally polarized states. Tuning the geometry of the aperture

allows a match of the pulse envelope and delay to the requirements of pump-probe

experiments, or can be used for creating variable pulse retarders. Cavity resonances

inside the aperture should be considered while fine-tuning the contribution of particular

wavelength components. Finally, including the dispersion effects of the aperture, in

combination with the diffraction effects [6], is essential for a correct analysis of the

results from optical experiments using ultrashort pulses.
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