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Computing Functionals of Multidimensional
Diffusions via Monte Carlo Methods

Jan Baldeaux and Eckhard Platen

Abstract We discuss suitable classes of diffusion processes, for which functionals
relevant to finance can be computed via Monte Carlo methods. In particular, we
construct exact simulation schemes for processes from thisclass. However, should
the finance problem under consideration require e.g. continuous monitoring of the
processes, the simulation algorithm can easily be embeddedin a multilevel Monte
Carlo scheme. We choose to introduce the finance problems under the benchmark
approach, and find that this approach allows us to exploit conveniently the analytical
tractability of these diffusion processes.

1 Introduction

In mathematical finance, the pricing of financial derivatives can under suitable con-
ditions be shown to amount to the computation of an expected value, see e.g. [53],
[56]. Depending on the financial derivative and the model under consideration, it
might not be possible to compute the expected value explicitly, however, numerical
methods have to be invoked. A candidate for the computation of such expectations
is the Monte Carlo method, see e.g. [11], [30], and [44]. Applying the Monte Carlo
method typically entails the sampling of the distribution of the relevant financial
state variables, e.g. an equity index, a short rate, or a commodity price. It is then,
of course, desirable to have at one’s disposal a recipe for drawing samples from the
relevant distributions. In case these distributions are known, one refers to exact sim-
ulation schemes, see e.g. [55], but also [7], [8], [9], and [16], for further references
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on exact simulation schemes. If exact simulation schemes are not applicable, dis-
crete time approximations, as analyzed in [44] and [55] become relevant. In recent
years, it has been shown under certain assumptions that using the multilevel Monte
Carlo method, see [29] and also [38], [39], the standard Monte Carlo convergence
rate, achieved by exact simulation schemes, can be recovered.

For modeling financial quantities of interest, it is important to know a priori if
exact simulation schemes exist, so that financial derivatives can be priced, even if
expected values cannot be computed explicitly. In this paper, we discuss classes of
stochastic processes for which this is the case. For one-dimensional diffusions, Lie
symmetry analysis, see [10], and [54] turns out to be a usefultool. Besides allowing
one to discover transition densities, see [21], it also allows us to compute Laplace
transforms of important multidimensional functionals, see e.g. [20]. In particular,
we find that squared Bessel processes fall into the class of diffusions that can be
handled well via Lie symmetry methods.

The Wishart process, [13], is the multidimensional extension of the squared
Bessel process. It turns out, see [33] and [34], that Wishartprocesses are affine pro-
cesses, i.e. their characteristic function is exponentially affine in the state variables.
We point out that in [33], and [34] the concept of an affine process was generalized
from real-valued processes to matrix-valued processes, where the latter category
covers Wishart processes. Furthermore, the characteristic function can be computed
explicitly, see [33], and [34]. Finally, we remark that in [1] an exact simulation
scheme for Wishart processes was presented.

Modeling financial quantities, one aims for models which provide an accurate
reflection of reality, whilst at the same time retaining analytical tractability. The
benchmark approach, see [56], offers a unified framework to derivative pricing, risk
management, and portfolio optimization. It allows us to usea much wider range of
empirically supported models than under the classical no-arbitrage approach. At the
heart of the benchmark approach sits the growth optimal portfolio (GOP). It is the
portfolio which maximizes expected log-utility from terminal wealth. In particular,
the benchmark approach uses the GOP as numéraire and the real world probability
for taking expectations. We find that the class of processes for which exact simula-
tion is possible is easily accommodated under the benchmarkapproach, which we
illustrate using examples.

The remaining structure of the paper is as follows: In Section 2 we introduce the
benchmark approach using a particular model for illustration, the minimal market
model (MMM), see [56]. Section 3 introduces Lie symmetry methods and discusses
how they can be used in the context of the benchmark approach.Section 4 presents
Wishart processes and shows how they can be used to extend theMMM. Section 6
concludes the paper.
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2 Benchmark Approach

The GOP plays a pivotal role as benchmark and numéraire under the benchmark
approach. It also enjoys a prominent position in the finance literature, see [43], but
also [12], [45], [42], [49], [50], and [58]. The benchmark approach uses the GOP
as the numéraire. Since the GOP is the numéraire portfolio, see [49], contingent
claims are priced under the real world probability measure.This avoids the restric-
tive assumption on the existence of an equivalent risk-neutral probability measure.
We remark, it is argued in [56] that the existence of such a measure may not be
a realistic assumption. Finally, we emphasize that the benchmark approach can be
seen as a generalization of risk-neutral pricing, as well asother pricing approaches,
such as actuarial pricing, see [56].

To fix ideas in a simple manner, we model a well-diversified index, which we
interpret as the GOP, using the stylized version of the MMM, see [56]. Though
parsimonious, this model is able to capture important empirical characteristics of
well-diversified indices. It has subsequently been extended in several ways, see e.g.
[56], and also [4]. To be precise, consider a filtered probability space(Ω ,A ,A ,P),
where the filtrationA = (At)t∈[0,∞) is assumed to satisfy the usual conditions,
which carries for simplicity one source of uncertainty, a standard Brownian mo-
tion W = {Wt , t ∈ [0,∞)}. The deterministic savings account is modeled using the
differential equation

dS0
t = rS0

t dt ,

for t ∈ [0,∞) with S0
0 = 1, wherer denotes the constant short rate. Next, we intro-

duce the model for the well diversified index, the GOPSδ∗
t , which is given by the

expression
Sδ∗

t = S0
t S̄δ∗

t = S0
t Yt αδ∗

t . (1)

HereYt =
αδ∗

t

S̄δ∗
t

is a square-root process of dimension four, satisfying the stochastic

differential equation (SDE)

dYt = (1−ηYt)dt+
√

Yt dWt , (2)

for t ∈ [0,∞) with initial valueY0 > 0 and net growth rateη > 0. The deterministic
function of timeαδ∗

t is given by the exponential function

αδ∗
t = α0exp{ηt} ,

with scaling parameterα0 > 0. Furthermore, it can be shown by the Itô formula that
αδ∗

t is the drift at timet of the discounted GOP

S̄δ∗
t :=

Sδ∗
t

S0
t
,
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so that the parameters of the model areSδ∗
0 , α0, η , andr. We note that one obtains

for the GOP the SDE

dSδ∗
t = Sδ∗

t

(

(

r +
1
Yt

)

dt+

√

1
Yt

dWt

)

, (3)

which illustrates the well-observed leverage effect, since as the indexSδ∗
t decreases,

its volatility 1√
Yt
=

√

αδ∗
t

S̄δ∗
t

increases and vice versa.

It is useful to define the transformed timeϕ(t) as

ϕ(t) = ϕ(0)+
1
4

∫ t

0
αδ∗

s ds.

Setting
Xϕ(t) = S̄δ∗

t ,

we obtain the SDE
dXϕ(t) = 4dϕ(t)+2

√

Xϕ(t)dWϕ(t) , (4)

where

dWϕ(t) =

√

αδ∗
t

4
dWt

for t ∈ [0,∞). This shows thatX = {Xϕ , ϕ ∈ [ϕ(0),∞)} is a time transformed
squared Bessel process of dimension four andW= {Wϕ , ϕ ∈ [ϕ(0),∞)} is a Wiener
process in the transformedϕ-time ϕ(t) ∈ [ϕ(0),∞), see [57]. The merit of the dy-
namics given by (4) is that transition densities of squared Bessel processes are well
studied; in fact we derive them in Section 3 using Lie symmetry methods.

We remark that the MMM does not admit a risk-neutral probability measure be-

cause the Radon-Nikodym derivativeΛt =
S̄δ∗

0

S̄δ∗
t

of the putative risk-neutral measure,

which is the inverse of a time transformed squared Bessel process of dimension
four, is a strict local martingale and not a martingale, see [57]. On the other hand,
Sδ∗ , is the numéraire portfolio, and thus, when used as numéraire to denominate
any nonnegative portfolio, yields a supermartingale underthe real-world probabil-
ity measureP. This implies that the financial market under considerationis free
of those arbitrage opportunities that are economically meaningful in the sense that
they would allow to create strictly positive wealth out of zero initial wealth via a
nonnegative portfolio, that is, under limited liability, see [48] and [56]. This also
means that we can price contingent claims underP employingSδ∗ as the numéraire.
This pricing concept is referred to as real-world pricing, which we now recall, see
[56]: for a nonnegative contingent claim with payoffH at maturityT, whereH is

AT -measurable, andE

(

H
Sδ∗

T

)

< ∞, we define the value process at timet ∈ [0,T] by
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Vt := Sδ∗
t E

(

H

Sδ∗
T

∣

∣

∣

∣

At

)

. (5)

Note that sinceVT =H, the benchmarked price processVt

Sδ∗
t

is an(A ,P)-martingale.

Formula (5) represents the real-world pricing formula, which provides the minimal
possible price and will be used in this paper to price derivatives. If the expectation in
equation (5) cannot be computed explicitly, one can resort to Monte Carlo methods.
In that case, it is particularly convenient, if the relevantfinancial quantities, such as
Sδ∗

T can be simulated exactly. In the next section, we derive the transition density of

Sδ∗ via Lie symmetry methods, which then allows us to simulateSδ∗
T exactly. Note,

in Section 4, we generalize the MMM to a multidimensional setting and present a
suitable exact simulation algorithm.

3 Lie Symmetry Methods

The aim of this section is to present Lie symmetry methods as an effective tool
for designing tractable models in mathematical finance. Tractable models are, in
particular, useful for the evaluation of derivatives and risk measures in mathematical
finance. We point out that in the literature, Lie symmetry methods have been used to
solve mathematical finance problems explicitly, see e.g. [19], and [40]. Within the
current paper we want to demonstrate that they can also be used to design efficient
Monte Carlo algorithms for complex multidimensional functionals.

The advantage of the use of Lie symmetry methods is that it is straightforward
to check whether the method is applicable or not. If the method is applicable, then
the relevant solution or its Laplace transform has usually already been obtained in
the literature or can be systematically derived. We will demonstrate this in finance
applications using the benchmark approach for pricing.

We now follow [20], and recall that if the solution of the Cauchy problem

ut = bxγ uxx+ f (x)ux−g(x)u, x> 0, t ≥ 0, (6)

u(x,0) = ϕ(x) , x∈ Ω = [0,∞) , (7)

is unique, then by using the Feynman-Kac formula it is given by the expectation

u(x, t) = E

(

exp

(

−
∫ t

0
g(Xs)ds

)

ϕ(Xt)

)

,

whereX0 = x, and the stochastic processX = {Xt , t ≥ 0} satisfies the SDE

dXt = f (Xt)dt+
√

2bXγ
t dWt .
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We now briefly describe the intuition behind the applicationof Lie Symmetry meth-
ods to problems from mathematical finance, in particular, the integral transform
method developed in [47], and the types of results this approach can produce. Lie’s
method allows us to find vector fields

v = ξ (x,y,u)∂x+ τ(x, t,u)∂t +φ(x, t,u)∂u ,

which generate one parameter Lie groups that preserve solutions of (6). It is standard
to denote the action ofv on solutionsu(x, t) of (6) by

ρ(expεv)u(x, t) = σ(x, t;ε)u(a1(x, t;ε),a2(x, t;ε)) (8)

for some functionsσ , a1, anda2, whereε is the parameter of the group,σ is referred
to as the multiplier, anda1 anda2 are changes of variables of the symmetry. For the
applications we have in mind,ε andσ are of crucial importance,ε will play the role
of the transform parameter of the Fourier or Laplace transform andσ will usually
be the Fourier or Laplace transform of the transition density. Following [19], we
assume that (6) has a fundamental solutionp(t,x,y). For this paper, it suffices to
recall that we can express a solutionu(x, t) of the PDE (6) subject to the initial
conditionu(x,0) = f (x) in the form

u(x, t) =
∫

Ω
f (y)p(t,x,y)dy, (9)

where p(t,x,y) is a fundamental solution of (6). The key idea of the transform
method is to connect (8) and (9). Now consider a stationary, i.e. a time-independent
solution, sayu0(x). Of course, (8) yields

ρ (expεv)u0(x) = σ (x, t;ε)u0 (a1(x, t;ε)) ,

which also solves the initial value problem. We now sett = 0 and use (8) and (9) to
obtain

∫

Ω
σ(y,0,ε)u0 (a1(y,0, ;ε)) p(t,x,y)dy= σ (x, t;ε)u0 (a1 (x, t;ε)) . (10)

Sinceσ , u0, anda1 are known functions, we have a family of integral equations for
p(t,x,y). To illustrate this idea using an example, we consider the one-dimensional
heat equation

ut =
1
2

g2uxx. (11)

We will show that ifu(x, t) solves (11), then forε sufficiently small, so does

ũ(t,z) = exp

{

εt2

2g2 −
zε
g2

}

u(z− tε, t) .

Takingu0 = 1, (10) gives
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∫ ∞

−∞
exp

{

−yε
g2

}

p(t,x,y)dy= exp

{

tε2

2g2 −
xε
g2

}

.

Settinga=− ε
g2 , we get

∫ ∞

−∞
exp{ay}p(t,x,y)dy= exp

{

a2g2t
2

+ax

}

. (12)

We recognize that (12) is the moment generating function of the Gaussian distri-
bution, sop(t,x,y) is the Gaussian density with meanx and varianceg2t. We alert
the reader to the fact thatε plays the role of the transform parameter andσ corre-
sponds to the moment generating function. Finally, we recall a remark from [17],
namely the fact that Laplace and Fourier transforms can be readily obtained through
Lie algebra computations, which suggests a deep relationship between Lie sym-
metry analysis and harmonic analysis. Lastly, we remark that in order to apply the
approach, we require the PDE (6) to have nontrivial symmetries. The approach de-
veloped by Craddock and collaborators, see [17], [18], [19], [20], and [21], provides
us with the following: A statement confirming if nontrivial symmetries exist and an
expression stemming from (10), which one only needs to invert to obtainp(t,x,y).
We first present theoretical results, and then apply these tothe case of the MMM.
Now we discuss the question whether the PDE (6) has nontrivial symmetries, see
[20], Proposition 2.1.

Theorem 1. If γ 6= 2, then the PDE

ut = bxγuxx+ f (x)ux−g(x)u, x≥ 0,b> 0 (13)

has a nontrivial Lie symmetry group if and only if h satisfies one of the following
families of drift equations

bxh′−bh+
1
2

h2+2bx2−γg(x) = 2bAx2−γ +B, (14)

bxh′−bh+
1
2

h2+2bx2−γg(x) = Ax4−2γ

2(2−γ)2
+ Bx2−γ

2−γ +C, (15)

bxh′−bh+
1
2

h2+2bx2−γg(x) = Ax4−2γ

2(2−γ)2
+ Bx3− 3

2 γ

3− 3
2γ

+ Cx2−γ

2−γ −κ , (16)

with κ = γ
8 (γ −4)b2 and h(x) = x1−γ f (x).

For the caseγ = 2, a similar result was obtained in [20], Proposition 2.1. Regarding
the first Ricatti equation, (14), the following result was described in [20], Theorem
3.1:

Theorem 2.Supposeγ 6= 2 and h(x) = x1−γ f (x) is a solution of the Ricatti equation

bxh′−bh+
1
2

h2+2bx2−γg(x) = 2bAx2−γ +B.
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Then the PDE (13) has a symmetry of the form

Uε(x, t) = 1

(1+4εt)
1−γ
2−γ

exp

{

−4ε(x2−γ+Ab(2−γ)2t2)
b(2−γ)2(1+4εt)

}

(17)

exp

{

1
2b

(

F

(

x

(1+4εt)
2

2−γ

)

−F (x)

)}

(18)

u

(

x

(1+4εt)
2

2−γ
, t

1+4εt

)

, (19)

where F′(x) = f (x)/xγ and u is a solution of the respective PDE. That is, forε
sufficiently small, Uε is a solution of (13) whenever u is. If u(x, t) = u0(x) with u0 an
analytic, stationary solution there is a fundamental solution p(t,x,y) of (13) such
that

∫ ∞

0
exp{−λy2−γ}u0(y) p(t,x,y)dy=Uλ (x, t) .

Here Uλ (x, t) =U 1
4b(2−γ)2λ . Further, if u0 = 1, then

∫ ∞
0 p(t,x,y)dy= 1.

For the remaining two Ricatti equations, (15) and (16), we refer the reader to Theo-
rems 2.5 and 2.8 in [17].

We would now like to illustrate how the method can be used. Consider a squared
Bessel process of dimensionδ , whereδ ≥ 2,

dXt = δdt+2
√

XtdWt ,

whereX0 = x > 0. The drift f (x) = δ satisfies equation (14) withA = 0. Conse-
quently, using Theorem 2 withA= 0 andu(x, t) = 1, we obtain

Uε (x, t) = exp

{

− 4εx
b(1+4εt)

}

(1+4εt)−
δ
b ,

whereb= 2. Settingε = bλ
4 , we obtain the Laplace transform

Uλ (x, t) =
∫ ∞

0
exp{−λy} p(t,x,y)dy

= exp

{

− xλ
1+2λ t

}

(1+2λ t)−
δ
2 ,

which is easily inverted to yield

p(t,x,y) =
1
2t

(

x
y

) ν
2

Iν

(√
xy

t

)

exp

{

− (x+ y)
2t

}

, (20)

whereν = δ
2 − 1 denotes the index of the squared Bessel process. Equation (20)

shows the transition density of a squared Bessel process started at time 0 inx for
being at timet in y. Recall thatIν denotes the modified Bessel function of the first
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kind. This result, together with the real world pricing formula, (5), allows us to price
a wide range of European style and path-dependent derivatives with payoffs of the
type H = f (S∗t1,S

∗
t2, . . . ,S

∗
td), whered ≥ 1 andt1, t2, . . . , td are given deterministic

times.
By exploiting the tractability of the underlying processes, Lie symmetry methods

allow us to design efficient Monte Carlo algorithms, as the following example from
[2] and [3] shows. We now consider the problem of pricing derivatives on realized
variance. Here we define realized variance to be the quadratic variation of the log-
index, and we formally compute the quadratic variation of the log-index in the form,

[

log(Sδ∗· )
]

T
=
∫ T

0

dt
Yt

.

Recall from Section 2 thatY = {Yt , t ≥ 0} is a square-root process whose dynamics
are given in equation (2). In particular, we focus on put options on volatility, where
volatility is defined to be the square-root of realized variance. We remark that call
options on volatility can be obtained via the put-call parity relation in Lemma 4.1 in
[2]. The real-world pricing formula (5) yields the following price for put options on
volatility

Sδ∗
t E





(K−
√

1
T

∫ T
0

ds
Ys
)+

Sδ∗
T

∣

∣

∣

∣

At



 . (21)

For computing the expectation in (21) via Monte Carlo methods, one first needs
to have access to the joint density of(Sδ∗

T ,
∫ T

0
ds
Ys
) and subsequently perform the

Monte Carlo simulation. Before presenting the relevant result, we recall thatSδ∗
T =

S0
Tαδ∗

T YT , i.e. it suffices to have access to the joint distribution of(YT ,
∫ T

0
dt
Yt
). We

remark that if we have access to the Laplace transform of(YT ,
∫ T

0
dt
Yt
), i.e.

E

(

exp

(

−λYT − µ
∫ T

0

dt
Yt

))

, (22)

then we have, in principle, solved the problem. From the point of view of imple-
mentation though, inverting a two-dimensional Laplace transform numerically is
expensive. The following result from [20], see Corollaries5.8 - 5.9, goes further: In
fact the fundamental solution corresponds to inverting theexpression in (22) with
respect toλ , which significantly reduces the computational complexity.

Lemma 1. The joint Laplace transform of YT and
∫ T

0
dt
Yt

is given by

E

(

exp

(

−λYT − µ
∫ T

0

1
Yt

dt

))

=
Γ (3/2+ν/2)

Γ (ν +1)
βx−1exp

(

η
(

T + x− x
tanh(ηT/2)

))
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1
β α

exp
(

β 2/(2α)
)

M−k,ν/2

(

β 2

α

)

,

whereα = η
(

1+ coth(ηt
2 )
)

+λ , β = η
√

x
sinh( ηt

2 )
, ν = 2

√

1
4 +2µ, and Ms,r(z) denotes

the Whittaker function of the first kind. In [20], the inversewith respect toλ was
already performed explicitly and is given as

p(T,x,y) =
η

sinh(ηT/2)

(y
x

)1/2

exp

(

η
(

T + x− y− x+ y
tanh(ηT/2)

))

Iν

(

2η√xy

sinh(ηT/2)

)

. (23)

Consequently, to recover the joint density of(YT ,
∫ T

0
dt
Yt
), one only needs to invert

a one-dimensional Laplace transform. For further details,we refer the interested
reader to [3]. By gaining access to the relevant joint densities, this example demon-
strates that Lie symmetry methods allow us to design efficient Monte Carlo algo-
rithms for challenging finance problems.

4 Wishart Processes

Very tractable and highly relevant to finance are models thatgeneralize the pre-
viously mentioned MMM. Along these lines, in this section wediscuss Wishart
processes with a view towards exact simulation. As demonstrated in [13], Wishart
processes turn out to be the multidimensional extensions ofsquared Bessel pro-
cesses. However, they also turn out to be affine, see [33], and[34]. Prior to the latter
two contributions, the literature was focused on affine processes taking values in
the Euclidean space, see e.g. [27], and [28]. Subsequently,matrix-valued affine pro-
cesses were studied, see e.g. [22], and [35]. Since [33], and[34], it has been more
widely known that Wishart processes are analytically tractable, since their charac-
teristic function is available in closed form; see also [31]. In this section, we exploit
this fact when we discuss exact simulation of Wishart processes.

Firstly, we fix notation and present an existence result. Wishart processes are
S+d or S+d valued, i.e. they assume values in the set of positive definite or positive
semidefinite matrices, respectively. This makes them natural candidates for the mod-
eling of covariance matrices, as noted in [33]. Starting with [33] and [34], there is
now a substantial body of literature applying Wishart processes to problems in fi-
nance, see [14], [15], [23], [24], [25], [26], and [32]. In the current paper we study
Wishart processes in a pure diffusion setting. For completeness, we mention that
matrix valued processes incorporating jumps have been studied, see e.g. in [5], and
[46]. These processes are all contained in the affine framework introduced in [22],
where we direct the reader interested in affine matrix valuedprocesses.
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In the following, we introduce the Wishart process as described in the work of
Grasselli and collaborators; see [25] and [35]. Forx ∈ S+d , we introduce theS+d
valued Wishart processXx = X = {Xt , t ≥ 0}, which satisfies the SDE

dXt =
(

αa⊤a+bXt +Xtb
⊤
)

dt+
(√

XtdWta+a⊤dW⊤
t

√
Xt

)

, (24)

whereα ≥ 0, b∈ Md, a∈ Md. HereMd denotes the set ofd×d matrices taking
values inℜ. An obvious question to ask is whether equation (24) admits asolution,
and, furthermore, if such a solution is unique and strong. For results on weak solu-
tions we refer the reader to [22], and for results on strong solutions to [51]. We now
present a summary of results, which in this form also appeared in [1]; see Theorem
1 in [1].

Theorem 3.Assume that x∈ S+d , andα ≥ d−1, then equation (24) admits a unique
weak solution. If x∈ S+d andα ≥ d+1, then this solution is strong.

In this paper, we are interested in exact simulation schemesto be used in Monte
Carlo methods. Hence weak solutions suffice for our purposesand we assume that
α > d−1, so that the weak solution is unique. As in [1], we useWISd(x,α,b,a) to
denote a Wishart process andWISd(x,α,b,a; t) for the value of the process at the
time pointt.

We begin with the study of some special cases, which includesan extension of
the MMM to the multidimensional case. We useBt to denote ann×d Brownian
motion and set

Xt = B⊤
t Bt . (25)

Then it can be shown thatX = {Xt , t ≥ 0} satisfies the SDE

dXt = nIddt+
√

XtdWt +dW⊤
t

√
Xt ,

whereWt is ad×d Brownian motion, andId denotes thed×d identity matrix. This
corresponds to the case where we set

a= Id , b= 0, α = n.

We now provide the analogous scalar result, showing that Wishart processes gener-
alize squared Bessel processes: Letδ ∈ N , and set

x=
δ

∑
k=1

(wk)2 .

Now we set

Xt =
δ

∑
k=1

(Wk
t +wk)2 . (26)

ThenX can be shown to satisfy the SDE

dXt = δdt+2
√

XtdBt ,
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whereB = {Bt , t ≥ 0} is a scalar Brownian motion. This shows that (25) is the
generalization of (26). Furthermore, it is also clear how tosimulate (25).

Next, we illustrate how Wishart processes can be used to extend the MMM from
Section 2. We recall some results pertaining to matrix-valued random variables, see
e.g. [36], and [52]. We introduce some auxialiary notation.We denote byMm,n(ℜ)
the set of allm×n matrices with entries inℜ. Next, we present a one-to-one rela-
tionship between vectors and matrices.

Definition 1. Let A∈ Mm,n(ℜ) with columnsai ∈ ℜm, i = 1, . . . ,n, and define the
functionvec: Mm,n(ℜ)→ ℜmn via

vec(A) =







a1
...

an






.

We can now define the matrix variate normal distribution.

Definition 2. A p×n random matrix is said to have a matrix variate normal distri-
bution with meanM ∈ Mp,n(ℜ) and covarianceΣ ⊗Ψ , whereΣ ∈ S +

p , Ψ ∈ S +
n ,

if vec(X⊤) ∼ Npn(vec(M⊤),Σ ⊗Ψ ), whereNpn denotes the multivariate normal
distribution onℜpn with meanvec(M⊤) and covarianceΣ ⊗Ψ . We will use the
notationX ∼ Np,n(M,Σ ⊗Ψ).

Next, we introduce the Wishart distribution, which we link in the subsequent theo-
rem to the normal distribution.

Definition 3. A p× p-random matrixX in S +
p is said to have a noncentral Wishart

distribution with parametersp∈ N , n≥ p, Σ ∈ S +
p andΘ ∈ Mp(ℜ), if its proba-

bility density function is of the form

fX(S)

=
(

2
1
2npΓp(

n
2
)det(Σ)

n
2

)−1
etr

(

−1
2
(Θ +Σ−1S)

)

det(S)
1
2 (n−p−1)

0F1

(

n
2

;
1
4

ΘΣ−1S

)

whereS∈ S +
p and 0F1 is the matrix-valued hypergeometric function, see [36], and

[52] for a definition. We write

X ∼ Wp(n,Σ ,Θ) .

Before stating the next result, recall that scalar non-central chi-squared random vari-
ables of integer degrees of freedom, can be constructed via sums of normal random
variables; see e.g. [41]. The following result presents thematrix variate analogy.

Theorem 4.Let X∼ Np,n(M,Σ ⊗ In), n∈ {p, p+1, . . .}. Then

XX⊤ ∼ Wp(n,Σ ,Σ−1MM⊤) .
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5 Bivariate MMM

Theorem 4 is now employed to extend the MMM to a bivariate case. We consider
exchange rate options, and follow the ideas from [37]. The GOP denominated in
units of the domestic currency is denoted bySa, and the GOP denominated in the
foreign currency bySb. An exchange rate at timet can be expressed in terms of a
ratio of two GOP denominations. Then one would pay at timet, Sa

t
Sb

t
units of currency

a to obtain one unit of the foreign currencyb. As the domestic currency is indexed
by a, the price of, say, a call option with maturityT on the exchange rate can be
expressed via the real world pricing formula (5) as:

Sa
0E







(

Sa
T

Sb
T
−K

)+

Sa
T






. (27)

We now discuss a bivariate extension of the MMM from Section 2, which is still
tractable, as we can employ the non-central Wishart distribution to compute (27).
Fork∈ {a,b}, we set

Sk
t = S0,k

t S̄k
t ,

whereS0,k
t = exp{rkt}, S0,k

0 = 1, soS0,k denotes the savings account in currency
k, which for simplicity is assumed to be a deterministic exponential function of
time. As for the stylized MMM, we model the discounted GOP,S̄k

t , denominated in
units of thekth savings account,S0,k

t , as a time-changed squared Bessel process of
dimension four. We introduce the 2×4 matrix processX = {Xt , t ≥ 0} via

Xt =





(

W1,1
ϕ1(t)

+w1,1
) (

W2,1
ϕ1(t)

+w2,1
) (

W3,1
ϕ1(t)

+w3,1
) (

W4,1
ϕ1(t)

+w4,1
)

(

W1,2
ϕ2(t)

+w1,2
) (

W2,2
ϕ2(t)

+w2,2
) (

W3,2
ϕ2(t)

+w3,2
) (

W4,2
ϕ2(t)

+w4,2
)



 .

The processesWi,1
ϕ1 , i = 1, . . . ,4, denote independent Brownian motions, subject to

the deterministic time-change

ϕ1(t) =
α1

0

4η1

(

exp{η1t}−1
)

=
1
4

∫ t

0
α1

s ds,

c.f. Section 2. Similarly, alsoWi,2
ϕ2 , i = 1, . . . ,4, denote independent Brownian mo-

tions, subject to the deterministic time change

ϕ2(t) =
α2

0

4η2

(

exp{η2t}−1
)

=
1
4

∫ t

0
α2

s ds.

Now, consider the processY = {Yt , t ≥ 0}, which assumes values inS+2 , and is
given by
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Yt := XtX
⊤
t , t ≥ 0,

which yields

Yt =






∑4
i=1

(

Wi,1
ϕ1(t)

+wi,1
)2

∑4
i=1 ∑2

j=1

(

Wi, j
ϕ j (t)

+wi, j
)

∑4
i=1∑2

j=1

(

Wi, j
ϕ j (t)

+wi, j
)

∑4
i=1

(

Wi,2
ϕ2(t)

+wi,2
)2






.

We set
S̄a

t =Y1,1
t ,

and
S̄b

t =Y2,2
t ,

so we use the diagonal elements ofYt to model the GOP in different currency de-
nominations. Next, we introduce the following dependence structure: The Brownian
motionsWi,1 andWi,2, i = 1, . . . ,4, covary as follows,

〈Wi,1
ϕ1(·),W

i,2
ϕ2(·)〉t =

ρ
4

∫ t

0

√

α1
s α2

0ds, i = 1, . . . ,4, (28)

where−1 < ρ < 1. The specification (28) allows us to employ the non-central
Wishart distribution; we work through this example in detail, as it illustrates how to
extend the stylized MMM to allow for a non-trivial dependence structure, but still
exploit the tractability of the Wishart distribution. We recall thatvec(X⊤

T ) stacks the
two columns ofX⊤

T , hence

vec(X⊤
T ) =





























(

W1,1
ϕ1(T)

+w1,1
)

...
(

W4,1
ϕ1(T)

+w4,1
)

(

W1,2
ϕ2(T)

+w1,2
)

...
(

W4,2
ϕ2(T)

+w4,2
)





























.

It is easily seen that the mean matrixM of vec(X⊤
T ) satisfies

vec
(

M⊤
)

=





















w1,1

...
w4,1

w1,2

...
w4,2





















(29)
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and the covariance matrix ofvec(X⊤
T ) is given by

Σ ⊗ I4 =

[

Σ1,1I4 Σ1,2I4

Σ2,1I4 Σ2,2I4

]

, (30)

whereΣ is a 2×2 matrix withΣ1,1 = ϕ1(T), Σ2,2 = ϕ2(T), and

Σ1,2 = Σ2,1 =
ρ
4

∫ t

0

√

α1
s α2

s ds.

We remark that assuming−1 < ρ < 1 results inΣ being positive definite. It now
immediately follows from Theorem 4 that

XTX⊤
T ∼W2

(

4,Σ ,Σ−1MM⊤
)

,

whereM andΣ are given in equations (29) and (30), respectively. Recall that we set

Yt = XtX
⊤
t ,

S̄a
t = Y1,1

t ,

S̄b
t = Y2,2

t ,

hence we can compute (27) using

E ( f (YT)) ,

where f : S+2 → ℜ is given by

f (y) =

(

exp{r1T}y1,1

exp{r2T}y2,2 −K
)+

exp{r1T}y1,1 ,

for y ∈ S+2 , andyi,i , i = 1,2, are the diagonal elements ofy, and the probability
density function ofYT is given in Definition 3.

We now discuss further exact simulation schemes for Wishartprocesses, where
we rely on [1] and [6]. For integer valued parametersα in (24), we have the fol-
lowing exact simulation scheme, which generalizes a well-known result from the
scalar case, linking Ornstein-Uhlenbeck and square-root processes. In particular,
this lemma shows that, in principle, certain square-root processes can be simulated
using Ornstein-Uhlenbeck processes.

Lemma 2. Let A> 0, Q> 0, and define the SDEs

dXi
t =−AXi

t dt+QdWi
t ,

for i = 1, . . . ,β , whereβ ∈N , W1,W2, . . . ,Wβ are independent Brownian motions.
Then
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Zt =
β

∑
i=1

(Xi
t )

2

is a square-root process of dimensionβ , whose dynamics are characterised by an
SDE

dZt = (βQ2−2AZt)dt+2Q
√

ZtdBt ,

where B is a resulting Brownian motion.

Proof. The proof follows immediately from the Itô-formula.⊓⊔
This result is easily extended to the Wishart case, for integer valuedα, see Section
1.2.2 in [6]. We define

Vt =
β

∑
k=1

Xk,tX
⊤
k,t , (31)

where
dXk,t = AXk,tdt+Q⊤dWk,t ,k= 1, . . . ,β , (32)

whereA∈Md, Xt ∈ ℜd, Q∈Md,Wk ∈ℜd, so thatVt ∈Md. The following lemma
gives the dynamics ofV = {Vt , t ≥ 0}.

Lemma 3. Assume that Vt is given by equation (31), where Xt satisfies equation
(32). Then

dVt =
(

βQ⊤Q+AVt +VtA
⊤
)

dt+
√

VtdWtQ+Q⊤dW⊤
t

√
Vt ,

where W= {Wt , t ≥ 0} is a d×d matrix valued Brownian motion that is determined
by

√
VtdWt =

β

∑
k=1

Xk,tdW⊤
t,k .

Finally, we remind the reader that vector-valued Ornstein-Uhlenbeck processes can
be simulated exactly, see e.g. Chapter 2 in [55].

For the general case, we refer the reader to [1]. In that paper, a remarkable split-
ting property of the infinitesimal generator of the Wishart process was employed to
come up with an exact simulation scheme for Wishart processes without any restric-
tion on the parameters. Furthermore, in [1] higher-order discretization schemes for
Wishart processes and second-order schemes for general affine diffusions on posi-
tive semidefinite matrices were presented. These results emphasize that Wishart pro-
cesses are suitable candidates for financial models, since exact simulation schemes
are readily available.

6 Conclusion

In this paper, we discussed classes of stochastic processesfor which exact simu-
lation schemes are available. In the one-dimensional case,our first theorem gives
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access to explicit transition densities via Lie symmetry group results. In the mul-
tidimensional case the probability law of Wishart processes is described explicitly.
When considering applications in finance, one needs a framework that can accom-
modate these processes as asset prices, in particular, whenthey generate strict local
martingales. We demonstrated that the benchmark approach is a suitable framework
for these processes and allows to systematically exploit the tractability of the mod-
els described. For long dated contracts in finance, insurance and for pensions the
accuracy of the proposed simulation methods is extremely important.
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