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STOCHASTIC REPRESENTATION OF SOLUTIONS TO DEGENERATE

ELLIPTIC AND PARABOLIC BOUNDARY VALUE AND OBSTACLE

PROBLEMS WITH DIRICHLET BOUNDARY CONDITIONS

PAUL M. N. FEEHAN AND CAMELIA POP

Abstract. We prove stochastic representation formulae for solutions to elliptic and parabolic
boundary value and obstacle problems associated with a degenerate Markov diffusion process.
In particular, our article focuses on the Heston stochastic volatility process, which is widely
used as an asset price model in mathematical finance and a paradigm for a degenerate diffusion
process where the degeneracy in the diffusion coefficient is proportional to the square root of the
distance to the boundary of the half-plane. The generator of this process with killing, called the
elliptic Heston operator, is a second-order, degenerate, elliptic partial differential operator whose
coefficients have linear growth in the spatial variables and where the degeneracy in the operator
symbol is proportional to the distance to the boundary of the half-plane. In mathematical finance,
solutions to terminal/boundary value or obstacle problems for the parabolic Heston operator
correspond to value functions for American-style options on the underlying asset.
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Appendix C. Regular points and continuity properties of stochastic representations 43
Appendix D. Further comparisons with previous classical results for solutions to

boundary value or obstacle problems and their stochastic representations 47
D.1. Existence and uniqueness of solutions to elliptic boundary value problems 47
D.2. Stochastic representations for solutions to elliptic boundary value problems 47
D.3. Existence and uniqueness of solutions to parabolic terminal/boundary value

problems 48
References 48

1. Introduction

Since its discovery by Mark Kac [25], inspired in turn by the doctoral dissertation of Richard
Feynman [15], the Feynman-Kac (or stochastic representation) formula has provided a link be-
tween probability theory and partial differential equations which has steadily deepened and devel-
oped during the intervening years. Moreover, judging by continuing interest in its applications to
mathematical finance [27] and mathematical physics [33, 37], this trend shows no sign of abating.
However, while stochastic representation formulae for solutions to linear, second-order elliptic
and parabolic boundary and obstacle problems are well established when the generator, −A, of
the Markov stochastic process is strictly elliptic [5, 20, 26, 34] in the sense of [21, p. 31], the lit-
erature is far less complete when A is degenerate elliptic, that is, only has a non-negative definite
characteristic form in the sense of [35], and its coefficients are unbounded.

In this article, we prove stochastic representation formulae for solutions to an elliptic boundary
value problem,

Au = f on O, (1.1)

and an elliptic obstacle problem,

min{Au− f, u− ψ} = 0 on O, (1.2)

respectively, subject to a partial Dirichlet boundary condition,

u = g on Γ1. (1.3)

Here, the subset O j H is a (possibly unbounded) domain (connected, open subset) in the open
upper half-space H := Rd−1 × (0,∞) (where d ≥ 2), Γ1 = ∂O ∩H is the portion of the boundary,
∂O, of O which lies in H, f : O → R is a source function, the function g : Γ1 → R prescribes
a Dirichlet boundary condition along Γ1 and ψ : O ∪ Γ1 → R is an obstacle function which is
compatible with g in the sense that

ψ ≤ g on Γ1, (1.4)

while A is an elliptic differential operator on O which is degenerate along the interior, Γ0, of
∂H ∩ ∂O and may have unbounded coefficients. We require Γ0 to be non-empty throughout
this article as, otherwise, if O is bounded (and the coefficients of A are, say, continuous on Ō),
then standard results apply [5, 20, 26, 34]. However, an additional boundary condition is not
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necessarily prescribed along Γ0. Rather, we shall see that our stochastic representation formulae
will provide the unique solutions to (1.1) or (1.2), together with (1.3), when we seek solutions
which are suitably smooth up to the boundary portion Γ0, a property which is guaranteed when
the solutions lie in certain weighted Hölder spaces (by analogy with [9]), or replace the boundary
condition (1.3) with the full Dirichlet condition,

u = g on ∂O, (1.5)

in which case the solutions are not guaranteed to be any more than continuous up to Γ0 and
ψ : Ō → R is now required to be compatible with g in the sense that,

ψ ≤ g on ∂O. (1.6)

We also prove stochastic representation formulae for solutions to a parabolic terminal/boundary
value problem,

− ut +Au = f on Q, (1.7)

and a parabolic obstacle problem,

min{−ut +Au− f, u− ψ} = 0 on Q, (1.8)

respectively, subject to the partial terminal/boundary condition,

u = g on ð1Q. (1.9)

Here, we define Q := (0, T )× O, where 0 < T <∞, and define

ð1Q := (0, T ) × Γ1 ∪ {T} × (O ∪ Γ1) , (1.10)

to be a subset of the parabolic boundary of Q, and now assume given a source function f : Q→ R,
a Dirichlet boundary data function g : ð1Q → R, and an obstacle function ψ : Q ∪ ð1Q → R
which is compatible with g in the sense that,

ψ ≤ g on ð1Q. (1.11)

Just as in the elliptic case, we shall either consider solutions which are suitably smooth up to
(0, T )×Γ0, but impose no explicit Dirichlet boundary condition along (0, T )×Γ0, or replace the
boundary condition in (1.9) with the full Dirichlet condition

u = g on ðQ, (1.12)

where

ðQ := (0, T ) × ∂O ∪ {T} × Ō, (1.13)

is the full parabolic boundary of Q, in which case the solutions are not guaranteed to be any
more than continuous up to (0, T ) × Γ0 and ψ : Q ∪ ðQ → R is now compatible with g in the
sense that

ψ ≤ g on ðQ. (1.14)

Before giving a detailed account of our main results, we summarize a few applications.
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1.1. Applications. In mathematical finance, a solution, u, to the elliptic obstacle problem (1.2),
(1.3), when f = 0, can be interpreted as the value function for a perpetual American-style option
with payoff function given by the obstacle function, ψ, while a solution, u, to the corresponding
parabolic obstacle problem (1.8), (1.9), when f = 0, can be interpreted as the value function
for a finite-maturity American-style option with payoff function given by a terminal condition
function, h = g(T, ·) : O → R, which typically coincides on {T} × O with the obstacle function,
ψ. For example, in the case of an American-style put option, one chooses ψ(x, y) = (E − ex)+,
∀(x, y) ∈ O, where E > 0 is a positive constant. While solutions to (1.1), (1.3) do not have an
immediate interpretation in mathematical finance, a solution, u, to the corresponding parabolic
terminal/boundary value problem (1.7), (1.9), when f = 0, can be interpreted as the value
function for a European-style option with payoff function given by the terminal condition function,
h. For example, in the case of a European-style put option, one chooses h(x, y) = (E − ex)+,
∀(x, y) ∈ O.

Stochastic representation formulae underly Monte Carlo methods of numerical computation of
value functions for option pricing in mathematical finance [22]. As is well-known to practitioners,
the question of Monte Carlo simulation of solutions to the Heston stochastic differential equation
is especially delicate [3, 32]. We hope that our article sheds further light on these issues.

1.2. Summary of main results. In this article, we set d = 2 and choose −A to be the generator
of the two-dimensional Heston stochastic volatility process with killing rate r [23], a degenerate
diffusion process well known in mathematical finance,

−Av :=
y

2

(
vxx + 2ρσvxy + σ2vyy

)
+ (r − q − y/2)vx + κ(θ − y)vy − rv, v ∈ C∞(H). (1.15)

Nonetheless, we expect that many of our results would extend to a much broader class of degen-
erate Markov processes and we shall address such questions elsewhere. Throughout this article,
the coefficients of A are required to obey

Assumption 1.1 (Ellipticity condition for the Heston operator coefficients). The coefficients
defining A in (1.15) are constants obeying

σ 6= 0,−1 < ρ < 1, (1.16)

and κ > 0, θ > 0, and1 q, r ∈ R.

Let (Ω,F ,F,Q) be a filtered probability space satisfying the usual conditions, where F =
{F (s)}s≥0 is the Q-completion of the natural filtration of (W (s))s≥0, and (W (s))s≥0 is a standard
Brownian motion with values in R2. For 0 ≤ t < T < ∞, let Tt,T denote the set of F-stopping
times with values in [t, T ]. Let (Xt,x,y(s), Y t,y(s))s≥t denote a continuous version of the strong
solution to the Heston stochastic differential equation

dX(s) =

(
r − q − Y (s)

2

)
ds+

√
Y (s) dW1(s), s > t,

dY (s) = κ (ϑ− Y (s)) ds+ σ
√
Y (s)

(
ρ dW1(s) +

√
1− ρ2 dW2(s)

)
, s > t,

(X(t), Y (t)) = (x, y),

(1.17)

which exists by Corollary 2.8, where the coefficients are as in Assumption 1.1. For brevity, we
sometimes denote z = (x, y) and (Zt,z(s))s≥t = (Xt,x,y(s), Y t,y(s))s≥t. We omit the superscripts

1We impose additional conditions, such as q ≥ 0, r ≥ 0, or r > 0, depending on the problem under consideration;
we only require that q ≥ 0 when deriving the supermartingale property in Lemma 2.11 (1), a property used only
in the elliptic case.
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(t, z) and (t, x, y) when the initial condition is clear from the context, or we omit the superscript
t when t = 0. We let

β :=
2κϑ

σ2
, (1.18)

µ :=
2κ

σ2
, (1.19)

denote the Feller parameters associated with the Heston process.

1.2.1. Existence and uniqueness of solutions to elliptic boundary value problems. For an integer
k ≥ 0, we let Ck(O) denote the vector space of functions whose derivatives up to order k are
continuous on O and let Ck(Ō) denote the Banach space of functions whose derivatives up to
order k are uniformly continuous and bounded on O [2, §1.25 & §1.26]. If T $ ∂O is a relatively
open set, we let Ck

loc(O∪T ) denote the vector space of functions, u, such that, for any precompact

open subset U ⋐ O ∪ T , we have u ∈ Ck(Ū).
We shall often appeal to the following

Hypothesis 1.2 (Growth condition). If v is a function then, for all (x, y) in its domain of
definition,

|v(x, y)| ≤ C(1 + eM1y + eM2x), (1.20)

where C > 0, 0 ≤M1 < min {r/ (κϑ) , µ}, and M2 ∈ [0, 1).

Let U j H be an open set. We denote

τ t,zU := inf
{
s ≥ t : Zt,z(s) /∈ U

}
, (1.21)

and we let
νt,zU := inf

{
s ≥ t : Zt,z(s) /∈ U ∪

(
Ū ∩ ∂H

)}
. (1.22)

Notice that if Ū ∩ ∂H = ∅, then τ t,zU = νt,zU . We also have that τ t,zU = νt,zU when β ≥ 1, because
in this case the process Zt,z does not reach the boundary ∂H, by Lemma 2.10 (1). By [34, p.

117], both τ t,zU and νt,zU are stopping times with respect to the filtration F, since F is assumed to
satisfy the usual conditions. When the initial condition, (t, z), is clear from the context, we omit
the superscripts in the preceding definitions (1.21) and (1.22) of the stopping times. Also, when
t = 0, we omit the superscript t in the preceding definitions.

Theorem 1.3 (Uniqueness of solutions to the elliptic boundary value problem). Let r > 0, q ≥ 0,
and f be a Borel measurable function2 on O which obeys the growth condition (1.20) on O. Then

(1) If β ≥ 1, assume g ∈ Cloc(Γ1) obeys (1.20). Let

u ∈ Cloc(O ∪ Γ1) ∩C2(O)

be a solution to the elliptic boundary value problem (1.1), (1.3) and which obeys (1.20) on
O. Then, u = u∗ on O ∪ Γ1, where

u∗(z) := Ez
Q
[
e−rτOg(Z(τO))1{τO<∞}

]
+ Ez

Q

[∫ τO

0
e−rsf(Z(s)) ds

]
, (1.23)

where τO is defined by (1.21), for all z ∈ O ∪ Γ1.
(2) If 0 < β < 1, assume g ∈ Cloc(∂O) obeys (1.20) on ∂O, and let u ∈ Cloc(Ō)∩C2(O) be a

solution to the elliptic boundary value problem (1.1), (1.5) and which obeys (1.20) on O.
Then, u = u∗ on Ō, where u∗ is given by (1.23).

2We require f to be Borel measurable in order to ensure that expectations such as that in (1.23) are well-defined.
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For α ∈ (0, 1), we let Ck+α(O) denote the subspace of Ck(O) consisting of functions whose
derivatives up to order k are locally α-Hölder continuous on O (in the sense of [21, p. 52]) and
let Ck+α(Ō) denote the subspace of Ck(Ō) consisting of functions whose derivatives up to order
k are uniformly α-Hölder continuous on O [21, p. 52], [2, §1.27]. If T $ ∂O is a relatively open

set, we let Ck+α
loc (O ∪ T ) denote the vector space of functions, u, such that, for any precompact

open subset U ⋐ O ∪ T , we have u ∈ Ck+α(Ū ).

Remark 1.4 (Existence of solutions to the elliptic boundary value problem with traditional
Hölder regularity). Existence of solutions

u ∈ Cloc(Ō) ∩ C2+α(O)

to problem (1.1) with boundary condition g ∈ Cloc(∂O) in (1.5) and source function f ∈ Cα(O),
when 0 < β < 1, and of solutions

u ∈ Cloc(O ∪ Γ1) ∩C2+α(O)

with boundary condition g ∈ Cloc(Γ̄1) in (1.3) and source function f ∈ Cα(O), when β ≥ 1, is
proved in Theorem 3.1. See also the comments preceding problem (3.2).

Remark 1.5 (Existence of solutions with Daskalopoulos-Hamilton-Köch Hölder regularity). Ide-
ally, the solutions to the elliptic boundary value problem (1.1), (1.3) described in Remark 1.4
would actually lie in Cloc(Ō) ∩ C2+α

s (O) for all β > 0, where C2+α
s (O) is an elliptic analogue

of the parabolic Daskalopoulos-Hamilton-Köch Hölder spaces described in [9, 29]. A function
u ∈ C2+α

s (O) has the property that u,Du, yD2u are Cα
s continuous up to Γ0 and yD2u = 0

on Γ0, where C
α
s (O) is defined by analogy with the traditional definition of Cα(O), except that

Euclidean distance between points in O is replaced by the cycloidal distance function.

We let C1,1
s,loc(O ∪Γ0) denote the subspace of C

2
loc(O ∪Γ0) consisting of functions, u, such that,

for any precompact open subset U ⋐ O ∪ Γ0,

sup
(x,y)∈U

|u(x, y)| + |Du(x, y)| + |yD2u(x, y)| <∞, (1.24)

where Du denotes the gradient and D2u the Hessian matrix of u.

Theorem 1.6 (Uniqueness of solutions to the elliptic boundary value problem (1.1), (1.3), when
0 < β < 1). Let r > 0, q ≥ 0, 0 < β < 1, and let f be as in Theorem 1.3. Let g ∈ Cloc(Γ1) obey
(1.20) on Γ1 and suppose that

u ∈ Cloc(O ∪ Γ1) ∩ C2(O) ∩ C1,1
s,loc(O ∪ Γ0)

is a solution to the elliptic boundary value problem (1.1), (1.3) which obeys (1.20) on O. Then,
u = u∗ on O ∪ Γ1, where u

∗ is given by

u∗(z) := Ez
Q
[
e−rνOg(Z(νO))1{νO<∞}

]
+ Ez

Q

[∫ νO

0
e−rsf(Z(s)) ds

]
, (1.25)

and νO is defined by (1.22), for all z ∈ O ∪ Γ1.

Remark 1.7 (Existence and uniqueness of strong solutions in weighted Sobolev spaces to the el-
liptic boundary value problem). Existence and uniqueness of strong solutions in weighted Sobolev
spaces to problem (1.1) with boundary condition (1.3) along Γ1, for all β > 0, is proved in [7,
Theorem 1.18], and Hölder continuity of such solutions up to Γ0 is proved in [14, Theorem 1.10].
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Remark 1.8 (Comparison of uniqueness results). To obtain uniqueness of solutions to the elliptic
boundary value problem (1.1) with boundary condition (1.3) only specified along Γ1, we need to
assume the stronger regularity hypothesis

u ∈ Cloc(O ∪ Γ1) ∩ C2(O) ∩ C1,1
s,loc(O ∪ Γ0)

when 0 < β < 1, while the regularity assumption

u ∈ Cloc(O ∪ Γ1) ∩C2(O)

suffices when β ≥ 1. The analogous comments apply to the elliptic obstacle problems described in
Theorems 1.9 and 1.10, the parabolic terminal/boundary value problems described in Theorems
1.13 and 1.16, and the parabolic obstacle value problems described in Theorems 1.20 and 1.21.

1.2.2. Uniqueness of solutions to elliptic obstacle problems. For θ1, θ2 ∈ T , we set

Jθ1,θ2
e (z) := Ez

Q

[∫ θ1∧θ2

0
e−rsf(Z(s)) ds

]

+ Ez
Q

[
e−rθ1g(Z(θ1))1{θ1≤θ2}

]
+ Ez

Q

[
e−rθ2ψ(Z(θ2))1{θ2<θ1}

]
.

(1.26)

We then have the

Theorem 1.9 (Uniqueness of solutions to the elliptic obstacle problem). Let r > 0, q ≥ 0, and
f be as in Theorem 1.3, and ψ be a Borel measurable function satisfying (1.20) on O.

(1) If β ≥ 1, let ψ ∈ Cloc(O ∪ Γ1) and g ∈ Cloc(Γ1) obey (1.20) and (1.4) on Γ1. Let

u ∈ Cloc(O ∪ Γ1) ∩C2(O)

be a solution to the elliptic obstacle problem (1.2), (1.3) such that u and Au obey (1.20)
on O. Then, u = u∗ on O ∪ Γ1, where u

∗ is given by

u∗(z) := sup
θ∈T

JτO ,θ
e (z), (1.27)

and τO is defined by (1.21), for all z ∈ O ∪ Γ1.
(2) If 0 < β < 1, let ψ ∈ Cloc(Ō) and g ∈ Cloc(∂O) obey (1.20) and (1.6) on ∂O. Let

u ∈ Cloc(Ō) ∩ C2(O)

be a solution to the elliptic obstacle problem (1.2), (1.5), such that u and Au obey (1.20)
on O. Then, u = u∗ on Ō, where u∗ is given by (1.27).

Theorem 1.10 (Uniqueness of solutions to the elliptic obstacle problem (1.2), (1.3), when
0 < β < 1). Let r > 0, q ≥ 0, 0 < β < 1, and f be as in Theorem 1.9. Let ψ ∈ Cloc(O ∪ Γ1) obey
(1.20) on O and let g ∈ Cloc(Γ1) obey (1.20) and (1.4) on Γ1. If

u ∈ Cloc(O ∪ Γ1) ∩ C2(O) ∩ C1,1
s,loc(O ∪ Γ0)

is a solution to the elliptic obstacle problem (1.2), (1.3) such that u and Au obey (1.20), then
u = u∗ on O ∪ Γ1, where u

∗ is given by

u∗(z) := sup
θ∈T

JνO ,θ
e (z), (1.28)

and νO is defined by (1.22), for all z ∈ O ∪ Γ1.
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Remark 1.11 (Existence and uniqueness of strong solutions in weighted Sobolev spaces to the
elliptic obstacle problem). Existence and uniqueness of strong solutions in weighted Sobolev
spaces to problem (1.2) with Dirichlet boundary condition (1.3) along Γ1, for all β > 0, is proved
in [7, Theorem 1.6], and Hölder continuity of such solutions up to boundary portion Γ0 is proved
in [14, Theorem 1.13].

1.2.3. Existence and uniqueness of solutions to parabolic terminal/boundary value problems. We
shall need to appeal to the following analogue of Hypothesis 1.2:

Hypothesis 1.12 (Growth condition). If v is a function then, for all (t, x, y) in its domain of
definition,

|v(t, x, y)| ≤ C(1 + eM1y + eM2x), (1.29)

where C > 0, 0 ≤M1 < µ, and M2 ∈ [0, 1].

We let C(Q) denote the vector space of continuous functions on Q, while C(Q̄) denotes the
Banach space of functions which are uniformly continuous and bounded on Q. We let Du denote
the gradient and let D2u denote the Hessian matrix of a function u on Q with respect to spatial
variables. We let C1(Q) denote the vector space of functions, u, such that u, ut, and Du are
continuous on Q, while C1(Q̄) denotes the Banach space of functions, u, such that u, ut, and
Du are uniformly continuous and bounded on Q; finally, C2(Q) denotes the vector space of
functions, u, such that ut, Du, and D2u are continuous Q, while C2(Q̄) denotes the Banach
space of functions, u, such that u, ut, Du, and D

2u are uniformly continuous and bounded on
Q. If T $ ∂Q is a relatively open set, we let Cloc(Q ∪ T ) denote the vector space of functions, u,
such that, for any precompact open subset V ⋐ Q ∪ T , we have u ∈ C(V̄ ).

Theorem 1.13 (Uniqueness of solutions to the parabolic boundary value problem). Let f be a
Borel measurable function on Q which obeys (1.29). Then

(1) If β ≥ 1, assume g ∈ Cloc(ð1Q) obeys (1.29) on ð1Q. Let

u ∈ Cloc(Q ∪ ð1Q) ∩ C2(Q)

be a solution to the parabolic terminal/boundary value problem (1.7), (1.9) which obeys
(1.29) on Q. Then, u = u∗ on Q ∪ ð1Q, where u∗ is given by

u∗(t, z) := Et,z
Q

[∫ τO∧T

t
e−r(s−t)f(s, Z(s)) ds

]

+ Et,z
Q

[
e−r(τO∧T−t)g(τO ∧ T,Z(τO ∧ T ))

]
,

(1.30)

and τO is defined by (1.21), for all (t, z) ∈ Q ∪ ð1Q.
(2) If 0 < β < 1, assume g ∈ Cloc(ðQ) obeys (1.29) on ðQ, and let

u ∈ Cloc(Q ∪ ðQ) ∩C2(Q)

be a solution to the parabolic terminal/boundary value problem (1.7), (1.12) which obeys
(1.29) on Q. Then, u = u∗ on Q ∪ ðQ, where u∗ is given by (1.30).

For α ∈ (0, 1), we let Cα(Q) denote the subspace of C(Q) consisting of locally α-Hölder
continuous functions, u, on Q, that is, for any precompact open set V ⋐ Q,

[u]Cα(V ) := sup
(ti,zi)∈V
i=1,2

|u(t1, z1)− u(t2, z2)|(
|z1 − z2|+

√
|t1 − t2|

)α <∞, (1.31)
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and we let Cα(Q̄) ⊂ C(Q̄) denote the Banach space of functions, u, which are uniformly α-Hölder
continuous on Q, that is

[u]Cα(Q) <∞.

When Q is unbounded, we let Cα
loc(Q̄) denote the subspace of Cα(Q) consisting of functions, u,

such that, for any precompact open set V ⋐ Q̄, we have

[u]Cα(V ) <∞.

We let C2+α(Q) denote the subspace of C2(Q) consisting of functions, u, such that u, ut, and
the components of Du and D2u belong to Cα(Q), and let C2+α(Q̄) ⊂ C2(Q̄) denote the Banach
space of functions, u, such that u, ut, and the components of Du and D2u belong to Cα(Q̄).

Remark 1.14 (Existence of solutions to the parabolic boundary value problem). Existence of
solutions

u ∈ Cloc(Q ∪ ðQ) ∩C2+α(Q)

to problem (1.7), with Dirichlet boundary data g ∈ Cloc(ðQ) in (1.12), and source function
f ∈ Cα

loc(Q̄), when 0 < β < 1, and of solutions

u ∈ Cloc(Q ∪ ð1Q) ∩ C2+α(Q)

to problem (1.7) with Dirichlet boundary data g ∈ Cloc(ð1Q) in (1.9) and source function f ∈
Cα
loc(Q̄), when β ≥ 1, is proved in Theorem 5.4. See also to the comments preceding problem

(5.2).

Remark 1.15 (Existence of solutions with Daskalopoulos-Hamilton-Köch Hölder regularity). As
in the elliptic case, the solutions to the parabolic terminal/boundary value problem (1.7), (1.9)
described in Remark 1.14 would actually lie in Cloc(Q̄) ∩ C2+α

s (Q) for all β > 0, where C2+α
s (Q)

is the parabolic Daskalopoulos-Hamilton-Köch Hölder space described in [9, 29]. A function
u ∈ C2+α

s (Q) has the property that u,Du, yD2u are Cα
s continuous up to Γ0 and yD2u = 0 on

(0, T ) × Γ0, where C
α
s (Q) is defined by analogy with the traditional definition of Cα(Q), except

that Euclidean distance between points in Q is replaced by the cycloidal distance function.

We let C1,1
s,loc((0, T ) × (O ∪ Γ0)) denote the subspace of C2

loc((0, T ) × (O ∪ Γ0)) consisting of

functions, u, such that, for any precompact open subset V ⋐ [0, T ]× (O ∪ Γ0),

sup
(t,z)∈V

|u(t, z)| + |Du(t, z)| + |yD2u(t, z)| <∞. (1.32)

We have the following alternative uniqueness result.

Theorem 1.16 (Uniqueness of solutions to the parabolic boundary value problem (1.7), (1.9),
when 0 < β < 1). Let 0 < β < 1 and f be as in Theorem 1.13. Let g ∈ Cloc(ð1Q) obey (1.29) on
ð1Q, and

u ∈ Cloc(Q ∪ ð1Q) ∩ C2(Q) ∩ C1,1
s,loc((0, T ) × (O ∪ Γ0))

be a solution to the parabolic boundary value problem (1.7), (1.9) which obeys (1.29) on Q. Then,
u = u∗ on Q ∪ ð1Q, where u∗ is given by

u∗(t, z) := Et,z
Q

[∫ νO∧T

t
e−r(s−t)f(s, Z(s)) ds

]

+ Et,z
Q

[
e−r(νO∧T−t)g(νO ∧ T,Z(νO ∧ T ))

]
,

(1.33)

and νO is defined by (1.22), for all (t, z) ∈ Q ∪ ð1Q.
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Remark 1.17 (Existence and uniqueness of strong solutions in weighted Sobolev spaces to the
parabolic terminal/boundary value problem). Existence and uniqueness of strong solutions in
weighted Sobolev spaces to problem (1.7) with Dirichlet boundary condition (1.9) along ð1Q, for
all β > 0, is proved in [8].

Remark 1.18 (Growth of solutions to parabolic boundary value problems). Karatzas and Shreve
allow faster growth of solutions when the growth on the coefficients of the differential operator is
constrained [26, Theorem 4.4.2 & Problem 5.7.7], and polynomial growth of solutions is allowed
for linear growth coefficients and source function f with at most polynomial growth [26, Theorem
5.7.6].

Remark 1.19 (Barrier option pricing and discontinuous terminal/boundary conditions). In ap-
plications to finance, O will often be a rectangle, (x0, x1) × (0,∞), where −∞ ≤ x0 < x1 ≤ ∞;
the growth exponents will be M1 = 0 and M2 = 1 — indeed, the source function f will always be
zero and the spatial boundary condition function g : (0, T )×Γ1 → R will often be zero. However,
the spatial boundary condition, g : (0, T ) × Γ1 → R, and terminal condition, g : {T} × Ō → R,
may be discontinuous where they meet along {T} × ∂O, as in the case of the down-and-out put,
with

g(t, x, y) =

{
0, 0 < t < T, x = x0, y > 0,

(K − ex)+ t = T, x0 < x <∞, y > 0,

where g is discontinuous at (T, x0, y) if K − ex0 > 0, that is, x0 < logK. We shall consider
the question of establishing stochastic representations for solutions to parabolic terminal/value
problems (European-style option prices) or parabolic obstacle problems (American-style option
prices) with discontinuous data elsewhere.

1.2.4. Uniqueness of solutions to parabolic obstacle problems. For θ1, θ2 ∈ Tt,T , 0 ≤ t ≤ T , we set

Jθ1,θ2
p (t, z) := Et,z

Q

[∫ θ1∧θ2

t
e−r(s−t)f(s, Z(s)) ds

]
+ Et,z

Q

[
e−r(θ2−t)ψ(θ2, Z(θ2))1{θ2<θ1}

]

+ Et,z
Q

[
e−r(θ1−t)g(θ1, Z(θ1))1{θ1≤θ2}

]
.

(1.34)

We have the following uniqueness result of solutions to the parabolic obstacle problem with
different possible boundary conditions, depending on the value of the parameter β > 0.

Theorem 1.20 (Uniqueness of solutions to the parabolic obstacle problem). Let f be as in
Theorem 1.13, and ψ be a Borel measurable function satisfying (1.29).

(1) If β ≥ 1, assume ψ ∈ Cloc(Q ∪ ð1Q) and g ∈ Cloc(ð1Q) obeys (1.29) on ð1Q and (1.11).
Let

u ∈ Cloc(Q ∪ ð1Q) ∩ C2(Q)

be a solution to the parabolic obstacle problem (1.8), (1.9) such that u and Au obey (1.29)
on Q. Then, u = u∗ on Q ∪ ð1Q, where u∗ is given by

u∗(t, z) := sup
θ∈Tt,T

JτO∧T,θ
p (t, z), (1.35)

and τO is defined by (1.21), for all (t, z) ∈ Q ∪ ð1Q.
(2) If 0 < β < 1, assume ψ ∈ Cloc(Q̄) and g ∈ Cloc(ðQ) obeys (1.29) on ðQ and (1.14). Let

u ∈ Cloc(Q ∪ ðQ) ∩C2(Q)

be a solution to the parabolic obstacle problem (1.8), (1.12) such that u and Au obey (1.29)
on Q. Then, u = u∗ on Q ∪ ðQ, where u∗ is given by (1.35).
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Theorem 1.21 (Uniqueness of solutions to the parabolic obstacle problem (1.8), (1.9), when
0 < β < 1). Let 0 < β < 1 and f be as in Theorem 1.13. Assume ψ ∈ Cloc(Q ∪ ð1Q), and
g ∈ Cloc(ð1Q) obey (1.29) on ð1Q and (1.11). Let

u ∈ Cloc(Q ∪ ð1Q) ∩ C2(Q) ∩ C1,1
s,loc(Q ∪ (0, T )× (O ∪ Γ0))

be a solution to the parabolic obstacle problem (1.8), (1.9) such that u and Au obey (1.29). Then,
u = u∗ on Q ∪ ð1Q, where u∗ is given by

u∗(t, z) := sup
θ∈Tt,T

JνO∧T,θ
p (t, z), (1.36)

and νO is defined by (1.22), for all (t, z) ∈ Q ∪ ð1Q.

Remark 1.22 (Existence and uniqueness of strong solutions in weighted Sobolev spaces to the
parabolic obstacle problem). Existence and uniqueness of strong solutions in weighted Sobolev
spaces to problem (1.8) with Dirichlet boundary condition (1.9) along ð1Q, for all β > 0, is proved
in [8].

1.3. Survey of previous results on stochastic representations of solutions to boundary
value or obstacle problems. Stochastic representations of solutions to elliptic and parabolic
boundary value and obstacle problems discussed by Bensoussan and Lions [5] and Friedman [20]
are established under the hypotheses that the matrix of coefficients, (aij), of the second-order
spatial derivatives in an elliptic linear, second-order differential operator, A, is strictly elliptic
and that all coefficients of A are bounded. Relaxations of these hypotheses, as in [20, Chapter
13 & 15], and more recently [43], fail to include the Heston generator mainly because the matrix
(aij) does not satisfy

Hypothesis 1.23 (Extension property for positive definite, C2 matrix-valued functions). Given
a subdomain V $ (0,∞) ×Rd, for d ≥ 1, we say that a matrix-valued function,

a : V → Rd×d,

which is C2 on V and a(t, z) is positive definite for each (t, z) ∈ V has the extension property if
there is a matrix-valued function,

ã : [0,∞) × Rd → Rd×d,

which coincides with a on V but is C2 on [0,∞) × Rd and ã(t, z) is positive definite for each
(t, z) ∈ [0,∞) × Rd.

Naturally, Hypothesis 1.23 is also applicable when the matrix a is constant with respect to time,
that is, in elliptic problems. Note that in the case of the Heston process, d = 2, V = (0,∞)×H,
and

a(t, x, y) :=

(
y σρy
σρy σ2y

)
, ∀(x, y) ∈ H,

and so the matrix a does not satisfy Hypothesis 1.23. We now give more detailed comparisons for
each of the four main problems which we consider in this article. Additional comparison details
are provided in Appendix D.
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1.3.1. Elliptic boundary value problems. Stochastic representations of solutions to non-degenerate
elliptic partial differential equations are described in [20, Theorem 6.5.1], [26, Proposition 5.7.2],
[34, Theorem 9.1.1 & Corollary 9.1.2] and [5, Theorems 2.7.1 & 2.7.2].

Stochastic representations of solutions to a certain class of degenerate elliptic partial differential
equations are described by Friedman in [20, Chapter 13], but those results do not apply to the
Heston operator because a square root, (σij), of the matrix (aij) cannot be extended as a uniformly
Lipschitz continuous function on R2, that is, [20, Condition (A), p. 308] is not satisfied. Stroock
and Varadhan [39, §5-8] also discuss existence and uniqueness of solutions to degenerate elliptic
partial differential equations, but their assumption that the matrix (aij) satisfies Hypothesis 1.23
does not hold for the Heston operator (see [39, Theorem 2.1]).

More recently, Zhou [43] employs the method of quasiderivatives to establish the stochastic
representation of solutions to a certain class of degenerate elliptic partial differential equations,
and obtains estimates for the derivatives of their solutions. However, his results do not apply
to the Heston operator because [43, Assumptions 3.1 & Condition (3.2)] are not satisfied in this
case. Moreover, the Dirichlet condition is imposed on the whole boundary of the domain (see
[43, Equation (1.1)]), while we take into consideration the portion of the boundary, Γ0, where the
differential operator A becomes degenerate.

1.3.2. Elliptic obstacle problems. We may compare Theorems 1.9 and 1.10 with the uniqueness
assertions (in increasing degrees of generality) for non-degenerate elliptic operators in [5, Theo-
rems 3.3.1, 3.3.2, 3.3.4, 3.3.5, 3.3.8, 3.3.19, 3.3.20, & 3.3.23]. See also [34, Theorem 10.4.1] and
[20, Theorems 16.4.1, 16.4.2, 16.7.1, & 16.8.1] for uniqueness assertions non-degenerate elliptic
operators, though with more limited applicability.

1.3.3. Parabolic boundary value problems. Uniqueness of solutions to non-degenerate parabolic
partial differential equations and their stochastic representations are described in [20, Theorems
6.5.2, 6.5.3], [26, Theorem 5.7.6] and [5, Theorems 2.7.3 & 2.7.4].

Friedman obtains fundamental solutions and stochastic representations of solutions to certain
degenerate parabolic partial differential equations in [19], while he obtains uniqueness and sto-
chastic representations of solutions to the Cauchy problem in [18]; those results are summarized
in [20, Chapter 15]. Nevertheless, the results in [20, Chapter 15] and [19] do not apply to the
Heston operator because Hypothesis 1.23 does not hold, that is [20, Condition (A), p. 389] is
not satisfied. Therefore, the method of construction in [19, Theorem 1.2] of a candidate for a
fundamental solution does not apply to the Heston operator. A stochastic representation for a
solution to the Cauchy problem for a degenerate operator is obtained in [20, §15.10], but the
hypotheses of [20, Theorem 15.10.1] are again too restrictive and exclude the Heston operator.

Ekström and Tysk [12] consider the problem of pricing European-style options on an underlying
process which is the solution to a degenerate, one-dimensional stochastic differential equation
which satisfies [12, Hypothesis 2.1], and so includes the Feller square root (or Cox-Ingersoll-
Ross) process, (2.1). The option price is the classical solution in the sense of [12, Definition
2.2] to the corresponding parabolic partial differential equation [12, Theorem 2.3]. Under their
assumption that the payoff function g(T, ·) is in C1([0,∞)), they show that their classical solution
has the regularity property,

u ∈ C([0, T ]× [0,∞)) ∩C1([0, T ) × [0,∞)) ∩ C2([0, T )× (0,∞)),

and obeys the second-order boundary condition,

lim
(t,y)→(0,t0)

yuyy(t, y) = 0, ∀t0 ∈ (0, T ) (by [12, Proposition 4.1]).
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As a consequence, in the framework of our article, their solution obeys

u ∈ C1,1
s,loc((0, t0)× [0,∞)), ∀t0 ∈ (0, T ),

where the vector space of functions C1,1
s,loc((0, t0)× [0,∞)) is defined by analogy with (1.32).

In [11], Ekström and Tysk extend their results in [12] to the case of two-dimensional stochastic
volatility models for option prices, where the variance process satisfies the assumptions of [12,
Hypothesis 2.1].

Bayraktar, Kardaras, and Xing [4] address the problem of uniqueness of classical solutions, in
the sense of [4, Definitions 2.4 & 2.5], to a class of two-dimensional, degenerate parabolic partial
differential equations. Their differential operator has a degeneracy which is similar to that of
the Heston generator, −A, and to the differential operator considered in [12], but the matrix of
coefficients, (aij), of their operator may have more than quadratic growth with respect to the
spatial variables (see [4, Standing Assumption 2.1]). Therefore, weak maximum principles for
parabolic partial differential operators on unbounded domains such as [30, Exercise 8.1.22] do
not guarantee uniqueness of solutions in such situations. The main result of their article – [4,
Theorem 2.9] – establishes by probabilistic methods that uniqueness of classical solutions, obeying
a natural growth condition, holds if and only if the asset price process is a martingale.

In our article, we consider the two-dimensional Heston stochastic process, (1.17), where the
component Y of the process satisfies [12, Hypothesis 2.1] and [4, Standing Assumption 2.1]. We
only require the payoff function, g(T, ·), to be continuous with respect to the spatial variables
and have exponential growth, as in (1.29). Notice that the conditions on the payoff function are
more restrictive in [12, Hypothesis 2.1] and [4, Standing Assumption 2.3] than in our article.
We consider the parabolic equation associated to the Heston generator, −A, on bounded or
unbounded subdomains, O, of the upper half plane, H, with Dirichlet boundary condition along
the portion, Γ1, of the boundary ∂O contained in H. Along the portion, Γ0, of the boundary
contained in ∂H, we impose a suitable Dirichlet boundary condition, depending on the value of
the parameter β in (1.18), which governs the behavior of the Feller square-root process when
it approaches the boundary point y = 0. In each case, we establish uniqueness of solutions by
proving that suitably regular solutions must have the stochastic representations in Theorems
1.13 and 1.16, and we prove existence and regularity of solutions, in a special case, in Theorems
5.4 and 5.5, complementing the results of [12]. In addition, we consider the parabolic obstacle
problem and establish uniqueness and the stochastic representations of suitably regular solutions
in Theorems 1.20 and 1.21.

1.3.4. Parabolic obstacle problems. We may compare Theorems 1.20 and 1.21 with the uniqueness
assertions and stochastic representations of solutions (in increasing degrees of generality) for non-
degenerate operators in [5, Theorems 3.4.1, 3.4.2, 3.4.3, 3.4.5, 3.4.6, 3.4.7, 3.4.8].

1.4. Further work. The authors are developing an extension of the main results of this article to
a broader class of degenerate Markov processes in higher dimensions and more general boundary
conditions (including Neumann and oblique boundary conditions).

1.5. Outline of the article. For the convenience of the reader, we provide a brief outline of
the article. We begin in §2 by reviewing or proving some of the key properties of the Feller
square root and Heston processes which we shall need in this article. In §3, we prove existence
and uniqueness (in various settings) of solutions to the elliptic boundary value problem for the
Heston operator, while in §4, we prove uniqueness (again in various settings) of solutions to the
corresponding obstacle problem. We proceed in §5, to prove existence and uniqueness of solutions
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to the parabolic terminal/boundary value problem for the Heston operator and in §6, we prove
uniqueness of solutions to the corresponding parabolic obstacle problem. Appendices A, B, and
C contain technical additional results which we shall need throughout our article.

1.6. Notation and conventions. When we label a condition an Assumption, then it is con-
sidered to be universal and in effect throughout this article and so not referenced explicitly in
theorem and similar statements; when we label a condition a Hypothesis, then it is only consid-
ered to be in effect when explicitly referenced. We let N := {1, 2, 3, . . .} denote the set of positive
integers. For x, y ∈ R, we denote x ∧ y := min{x, y}, x ∨ y := max{x, y} and x+ := x ∨ 0.

2. Properties of the Heston stochastic volatility process

In this section, we review or develop some important properties of the Feller square root process
and the Heston stochastic volatility process.

By [13, Theorem 1.9], it follows that for any initial point (t, y) ∈ [0,∞) × [0,∞), the Feller
stochastic differential equation,

dY (s) = κ (ϑ− Y (s)) ds+ σ
√

|Y (s)|dW (s), s > t,

Y (t) = y,
(2.1)

admits a unique weak solution (Y t,y(s),W (s))s≥t, called the Feller square root process, where
(W (s))s≥t is a one-dimensional Brownian motion on a filtered probability space

(
Ω,F ,Pt,y,F

)

such that the filtration F = {F (s)}s≥0 satisfies the usual conditions [26, Definition 1.2.25].
Theorem 1.9 in [13] also implies that the Heston stochastic differential equation (1.17) admits a
unique weak solution,

(
Zt,z(s),W (s)

)
s≥t

, for any initial point (t, z) ∈ [0,∞)×H̄, where (W (s))s≥t

is now an R2-valued Brownian motion on a filtered probability space
(
Ω,F ,Qt,z ,F

)
such that the

filtration F = {F (s)}s≥0 satisfies the usual conditions. When the initial condition (t, y) or (t, z)
is clear from the context, we omit the superscripts in the definition of the probability measures
Pt,y and Qt,z, respectively.

Moreover, the weak solutions to the Feller and Heston stochastic differential equations are
strong. To prove this, we begin by reviewing a result of Yamada [42].

Definition 2.1 (Coefficients for a non-Lipschitz stochastic differential equation). [42, p. 115]
In this article we shall consider one-dimensional stochastic differential equations whose diffusion
and drift coefficients, α, b, obey the following properties:

(1) The functions α, b : [0,∞) × R → R are continuous.
(2) (Yamada condition) There is an increasing function ̺ : [0,∞) → [0,∞) such that ̺(0) = 0,

for some ε > 0 one has
∫ ε
0 ̺

−2(y) dy = ∞, and

|α(t, y1)− α(t, y2)| ≤ ̺(|y1 − y2|), y1, y2 ∈ R, t ≥ 0. (2.2)

(3) There is a constant C1 > 0 such that

|b(t, y2)− b(t, y1)| ≤ C1|y2 − y1|, y1, y2 ∈ R, t ≥ 0. (2.3)

(4) There is a constant C2 > 0 such that

|α(t, y)| + |b(t, y)| ≤ C2(1 + |y|), t ≥ 0, y ∈ R. (2.4)

Clearly, the coefficients of the Feller stochastic differential equation obey the hypotheses in
Definition 2.3, where α(t, y) = σ

√
y and b(t, y) = κ(θ − y). Indeed, one can choose C1 = κ,

C2 = max{κ, κθ, σ}, and ̺(y) = σ
√
y, as the mean value theorem yields

√
y2 −

√
y1 = c(y1, y2)(y2 − y1),
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where

c(y1, y2) =
1

2

∫ 1

0

1√
y1 + t(y2 − y1)

≤ 1√
y2 − y1

,

for 0 < y1 < y2. See [42, Remark 1] for other examples of suitable functions ̺.

Remark 2.2. When ̺(u) = uγ , γ ∈ [12 , 1] [42, Remark 1], then Definition 2.1 implies that α(t, ·)
is Hölder continuous with exponent γ, uniformly with respect to t ∈ [0,∞).

Definition 2.3 (Solution to a non-Lipschitz stochastic differential equation). [42, p. 115], [36,
Definitions IX.1.2 & IX.1.5] Let (Ω,F ,P,F) be a filtered probability space satisfying the usual
conditions. We call a pair (Y (s),W (s))s≥0 a weak solution to the non-Lipschitz one-dimensional
stochastic differential equation,

dY (s) = b(s, Y (s)) ds + α(s, Y (s)) dW (s), s ≥ 0, Y (0) = y, (2.5)

where y ∈ R, if the following hold:

(1) The processes Y (s) and W (s) are defined on (Ω,F ,P,F);
(2) The process Y (s) is continuous with respect to s ∈ [0,∞) and is F-adapted;
(3) The process W (s) is a standard F-Brownian motion.

We call (Y (s),W (s))s≥0 a strong solution to (2.5) if Y is FW -adapted, where FW is the P-
completion of the filtration of F generated by (W (s))s≥0. (Compare [24, Definition IV.1.2], [26,
Definition 5.2.1], and [34, §5.3].)
Theorem 2.4. [42, p. 117] There exists a weak solution (Y,W ) to (2.5).

Remark 2.5. Yamada’s main theorem [42, p. 117] asserts considerably more than Theorem 2.4.
In particular, his article shows that (2.5) may be solved using the method of finite differences.
Simpler results may suffice to merely guarantee the existence of a weak solution, as we need here;
see Skorokhod [38].

Proposition 2.6. There exists a unique strong solution to (2.5).

Proof. Theorem 2.4 ensures that (2.5) admits a weak solution. Conditions (2.2) and (2.3) ensure
that pathwise uniqueness holds for (weak) solutions to (2.5) by Revuz and Yor [36, Theorem IX.3.5
(ii)], while Karatzas and Shreve [26, Corollary 5.3.23] imply that (2.5) admits a strong solution;
see [26, p. 310]. Conditions (2.2) and (2.3) guarantee the uniqueness of strong solutions to (2.5) by
Karatzas and Shreve [26, Proposition 5.2.13]; compare Yamada and Watanabe [40, 41]. (Pathwise
uniqueness is also asserted for (2.5) by [24, Theorem IV.3.2] when (2.5) is time-homogeneous,
noting that the coefficients α, b are not required to be bounded by Ikeda and Watanabe [24, p.
168]). We conclude that a strong solution to (2.5) exists and is unique. �

Corollary 2.7. Given any initial point (t, y) ∈ [0,∞) × [0,∞), there exists a unique strong
solution, (Y t,y(s),W (s))s≥t, to the Feller stochastic differential equation.

Proof. Immediate from Proposition 2.6. �

Corollary 2.8. Given (t, z) ∈ [0,∞)×H̄, there exists a unique strong solution, (Zt,z(s),W (s))s≥t,
to the Heston stochastic differential equation, where (W (s))s≥0 is a standard two-dimensional F-
Brownian motion on (Ω,F ,P,F).

Proof. By Proposition 2.6, the Cox-Ingersoll-Ross stochastic differential equation has a unique
strong solution, (Y t,y(s),W2(s))s≥t, where (W2(s))s≥t is a standard one-dimensional F-Brownian
motion on (Ω,F ,P,F) and (Y t,y(s))s≥t is FW2-adapted. But given (Y t,y(s))s≥t and a standard
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two-dimensional F-Brownian motion, (W (s))s≥t = (W1(s),W2(s))s≥t on (Ω,F ,P,F), the process
(Xt,x,y(s))s≥t, and thus (Zt,z(s))s≥t = (Xt,x,y(s), Y t,y(s))s≥t, is uniquely determined by

Xt,x,y(s) = x+

∫ s

t

(
r − q − 1

2
Y t,y(u)

)
du

+

∫ s

t

√
Y t,y(u)

(√
1− ρ2dW1(u) + ρdW2(u)

)
.

This completes the proof. �

Lemma 2.9 (Properties of the Feller square-root process). The unique strong solution of the
Feller stochastic differential equation started at any (t, y) ∈ [0,∞)× [0,∞) satisfies

Y (s) ≥ 0 Pt,y-a.s., ∀s ≥ t, (2.6)

and also ∫ s

t
1{Y (u)=0} du = 0, ∀s ≥ t, (2.7)

L(s, x) = 0, ∀x ≤ 0,∀s ≥ t, (2.8)

where L(·, ·) is the local time of the Feller square-root process.

Proof. Without loss of generality, we may assume that t = 0. In [4, Lemma 2.4], it is proved that
L(s, 0) = 0, for all s ≥ 0, but it is not clear to us why it also follows that

L(s, 0−) := lim
x↑0

L(s, x) = 0, ∀s ≥ 0,

a property we shall need in our proof of (2.6). To complete the argument, we consider the
following stochastic differential equation,

dỸ (s) = b(Ỹ (s)) ds + α(Ỹ (s)) dW (s), s > 0,

Ỹ (0) = y,

where we let
b(y) := κ(ϑ − y) and α(y) := 1{y≥0}σ

√
y, ∀y ∈ R. (2.9)

This stochastic differential equation admits a unique strong solution by Proposition 2.6. We will

show that Ỹ (s) ≥ 0 a.s., for all s ≥ 0, so that uniqueness of solutions to the Feller stochastic

differential equation (2.1) implies that Ỹ = Y a.s. and Y will satisfy the same properties as Ỹ .

Thus, it is enough to prove (2.7) and (2.8) for Ỹ . Property (2.6) is a consequence of the preceding

two properties of Ỹ .

Let L̃ be the local time process for the continuous semimartingale Ỹ (see [26, Theorem 3.7.1]).
From [26, Theorem 3.7.1 (iii)], we know that, for any Borel measurable function k : R → [0,∞),
we have ∫ s

0
k(Ỹ (u))σ2Ỹ +(u) du = 2

∫

R
k(x)L̃(s, x)dx, ∀s ≥ 0. (2.10)

Assume, to obtain a contradiction, that L̃(s, 0) > 0. From the right-continuity in the spatial

variable of L̃(s, ·) [26, Theorem 3.7.1 (iv)], there are positive constants c and x0 such that L̃(s, x) ≥
c, for all x ∈ [0, x0]. For ε > 0, we define k(x) = x−1, for x ∈ [ε, x0], and 0 otherwise. With this
choice of k, the left-hand-side in identity (2.10) is bounded in absolute value by σ2s, for any ε > 0,
while the right-hand-side of (2.10) is greater or equal than 2c log (x0/ε), which diverges as ε tends

to 0. Therefore, our assumption that L̃(s, 0) > 0 is false, and so L̃(s, 0) = 0. Moreover, we notice
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that for any bounded, Borel-measurable function k with support in (−∞, 0) the left-hand-side

in identity (2.10) is identically zero. Thus, we conclude that L̃(s, x) = 0, for all x < 0, and also

L̃(s, 0−) = 0.

We use this result to show that P(Ỹ (s) ≤ 0,∀s ≥ 0) = 0. From [26, p. 223, third formula] and
the fact that κ, ϑ > 0, we see that

0 = L̃(s, 0) − L̃(s, 0−) = κϑ

∫ s

0
1{Ỹ (u)=0} du,

which implies that P(Ỹ (s) = 0,∀s ≥ 0) = 0. It remains to show that P(Ỹ (s) ∈ (−∞, 0)) = 0,

for all s ≥ 0, which is equivalent to proving that for any ε > 0 and s ≥ 0, we have P(Ỹ (s) ∈
(−∞,−ε)) = 0. Let ϕ : R → [0, 1] be a smooth cut-off function such that ϕ|(−∞,−ε) ≡ 1 and

ϕ|(0,∞) ≡ 0. We can choose ϕ such that ϕ′ ≤ 0. Then, it follows by Itô’s formula that

ϕ(Ỹ (s)) = ϕ(Ỹ (0)) +

∫ s

0

(
κ(ϑ− Ỹ (u))ϕ′(Ỹ (u)) +

1

2
α2(Y (u))ϕ′′(Y (u))

)
du

+

∫ s

0
α(Ỹ (u))ϕ′(Ỹ (u)) dW (u)

= ϕ(Ỹ (0)) +

∫ s

0
κ(ϑ− Ỹ (u))ϕ′(Ỹ (u)) du (as α(y) = 0 when ϕ′ 6= 0).

We notice that the right-hand-side is non-negative, while the left-hand-side is non-positive, as

ϕ′ ≤ 0 on R, and ϕ′ = 0 on (0,∞). Therefore, we must have ϕ(Ỹ (s)) = 0 a.s. which implies that

P(Ỹ (s) ∈ (−∞,−ε)) = 0. This concludes the proof of the lemma. �

For a, y, t ≥ 0, we let

T t,y
a := inf

{
s ≥ t : Y t,y(s) = a

}
(2.11)

denote the first time the process Y started at y at time t hits a. When the initial condition, (t, y),
is clear from the context, we omit the superscripts in the preceding definition (2.11). Also, when
t = 0, we omit the superscript t.

Lemma 2.10 (Boundary classification at y = 0 of the Feller square root process). Let Y y be
the unique strong solution to the Feller stochastic differential equation (2.1) with initial condition
Y y(0) = y. Then

(1) For β ≥ 1, y = 0 is an entrance boundary point in the sense of [28, §15.6(c)].
(2) For 0 < β < 1, y = 0 is a regular, instantaneously reflecting boundary point in the sense

of [28, §15.6(a)], and
lim
y↓0

T y
0 = 0 a.s., (2.12)

where T y
0 is given by (2.11).

Proof. A direct calculation give us that the scale function, s, and the speed measure, m, of the
Feller square root process are given by

s(y) = y−βeµy and m(y) =
2

σ2
yβ−1e−µy, ∀y > 0
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where β = 2κϑ/σ2 and µ = 2κ/σ2. We consider the following quantities, for 0 < a < b <∞ and
x > 0,

S[a, b] :=

∫ b

a
s(y)dy, S(a, b] := lim

c↓a
S[c, b],

M [a, b] :=

∫ b

a
m(y)dy, M(a, b] := lim

c↓a
M [c, b],

N(0) :=

∫ x

0
S[y, x]m(y)dy.

Then, for β ≥ 1, we have S(0, x] = ∞ and N(0) < ∞, which implies that y = 0 is an entrance
boundary point ([28, p. 235]), while for 0 < β < 1, we have S(0, x] < ∞ and M(0, x] < ∞, and
so y = 0 is a regular boundary point ([28, p. 232]).

Next, we consider the case 0 < β < 1. To establish (2.12), we consider the following quantities

ua,b(y) := Py (Tb < Ta) =
S[a, y]

S[a, b]
,

va,b(y) := Ey
P [Ta ∧ Tb] = 2ua,b(y)

∫ b

y
S[z, b]m(z)dz + 2 (1− ua,b(y))

∫ y

a
S(a, z]m(z)dz,

as in [28, Equations (15.6.1) & (15.6.5)] and [28, Equations (15.6.2) & (15.6.6)], respectively.
Notice that T y

a → T y
0 , when y ↓ 0, by the continuity of the paths of Y . Then, for fixed b > 0, we

obtain

lim
y↓0

Py(Tb < T0) = lim
y↓0

lim
a↓0

Py(Tb < Ta) = 0,

lim
y↓0

Ey
P [T0 ∧ Tb] = lim

y↓0
lim
a↓0

Ey
P [Ta ∧ Tb] = 0,

from where (2.12) follows. �

Next, we have the following

Lemma 2.11 (Properties of the Heston process). Let (Z(s))s≥0 be the unique strong solution to

the Heston stochastic differential equation (1.17).

(1) Assume q ≥ 0 and r ∈ R. Then, for any constant c ∈ [0, 1],
(
e−rcsecX(s)

)
s≥0

is a positive supermartingale. (2.13)

(2) For any positive constant c ≤ µ,
(
e−cκϑsecY (s)

)
s≥0

is a positive supermartingale. (2.14)

Proof. To establish (2.13), we use Itô’s formula to give

d
(
e−rcsecX(s)

)
= −e−rcsecX(s)

(
cq +

1

2
c(1− c)Y (s)

)
ds

+ ce−rcsecX(s)
√
Y (s) dW1(s).

(2.15)

Notice that the drift coefficient is non-positive, since Y (s) ≥ 0 a.s. for all s ≥ 0 by Lemma 2.9,
and q ≥ 0, and c ∈ [0, 1].



STOCHASTIC REPRESENTATION OF SOLUTIONS TO DIRICHLET VARIATIONAL INEQUALITIES 19

Similarly, to establish (2.14) for the Feller square root process, we have

d
(
e−cκϑsecY (s)

)
= e−cκϑsecY (s)c

(
cσ2/2− κ

)
Y (s)ds

+ cσe−cκϑsecY (s)
√
Y (s)

(
ρdW1(s) +

√
1− ρ2dW2(s)

)
.

(2.16)

When c ≤ µ, we see that the drift coefficient in the preceding stochastic differential equation is
non-negative.

The supermartingale properties (2.13) and (2.14) follow if we show in addition that the pro-
cesses are integrable random variables for each time s ≥ 0. For simplicity, we let Q(s) denote
either one of the processes we consider, and we let θn be the first exit time of the Heston process
(X(s), Y (s))s≥0 from the rectangle (−n, n)× (−n, n), where n ∈ N. We set Qn(s) := Q(s ∧ θn),
for all s ≥ 0. We then have

dQn(s) = 1{s≤θn}dQn(s), ∀s > 0, ∀n ∈ N.

Using equations (2.15) and (2.16), it is clear that (Qn(s))s≥0 are supermartingales, because the
coefficients of the stochastic differential equations are bounded and the drift terms are non-
positive. Therefore, we know that

Ex,y
Q [Qn(t)|F (s)] ≤ Qn(s), ∀t ≥ s, ∀s ≥ 0, ∀n ∈ N. (2.17)

Clearly, we also have Qn(t) → Q(t) a.s., as n → ∞, for all t ≥ s and s ≥ 0. Taking the limit as
n→ ∞ in (2.17) and using the positivity of the processes, Fatou’s lemma yields

Ex,y
Q [Q(t)|F (s)] ≤ lim inf

n→∞
Ex,y
Q [Qn(t)|F (s)]

≤ lim inf
n→∞

Qn(s) (by (2.17))

= Q(s), ∀t ≥ s, ∀s ≥ 0,

and so (2.13) and (2.14) follow. �

The next lemma is used to show that the functions u∗ given by (1.23) and (1.25) are well-defined
and satisfy the growth assumption (1.20).

Lemma 2.12. Suppose r > 0, and f , g, ψ are Borel measurable functions on O and satisfy
assumption (1.20). Then there is a positive constant C̄, depending on r, κ, ϑ, M1, M2 and C in

(1.20), such that for any θ1, θ2 ∈ T , the function Jθ1,θ2
e in (1.26) satisfies the growth assumption,

|Jθ1,θ2
e (x, y)| ≤ C̄

(
1 + eM1y + eM2x

)
, ∀(x, y) ∈ O,

where 0 < M1 < min {r/ (κϑ) , µ} and M2 ∈ [0, 1) are as in (1.20).

Remark 2.13. The obstacle function ψ in (1.26) is only relevant for solutions to problem (1.2).
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Proof. The conclusion is a consequence of the properties of the Heston process given in Lemma
2.11. We first estimate the integral term in (1.26). For z ∈ O, then

Ez
Q

[∫ θ1∧θ2

0
e−rs|f(Z(s))|ds

]

≤ CEz
Q

[∫ ∞

0
e−rs

(
1 + e−rseM1Y (s) + e−rseM2X(s)

)
ds

]
(by (1.20))

≤ C

(
1 +

∫ ∞

0
e−(r−M1κϑ)sEz

Q

[
e−M1κϑseM1Y (s)

]
ds

+

∫ ∞

0
e−(1−M2)rsEz

Q

[
e−rM2seM2X(s)ds

]
ds

)
.

Using the condition M1 < min {r/(κϑ), µ} and (2.14), together with M2 < 1 and (2.13), we see
that

Ez
Q

[∫ θ1∧θ2

0
e−rs|f(Z(s))|ds

]
≤ C̄

(
1 + eM1y + eM2x

)
, (2.18)

for a positive constant C̄ depending on r,M1κϑ,M2 and the constant C in the growth assumption
(1.20) on f , g and ψ.

Next, we show that the first non-integral term in (1.26) can be written as

Ez
Q

[
e−rθ1g(Z(θ1))1{θ1≤θ2}

]
= Ez

Q

[
e−rθ1g(Z(θ1))1{θ1≤θ2,θ1<∞}

]
, (2.19)

for any θ1 ∈ T which is not necessarily finite. This is reasonable because by rewriting

Ez
Q

[
e−rθ1g(Z(θ1))1{θ1≤θ2}

]
= Ez

Q

[
e−rθ1g(Z(θ1))1{θ1≤θ2∧T}

]

+ Ez
Q

[
e−rθ1g(Z(θ1))1{T<θ1≤θ2}

]
,

we shall see that the second term converges to zero, as T → ∞. Using the growth assumption on
g in (1.20), we have

Ez
Q

[
e−rθ1 |g(Z(θ1))| 1{T<θ1≤θ2}

]
≤ CEz

Q

[
e−rθ1

(
1 + eM1Y (θ1) + eM2X(θ1)

)
1{T<θ1}

]
,

and so by Lemma 2.11, we obtain

Ez
Q

[
e−rθ1g(Z(θ1))1{T<θ1≤θ2}

]
≤ C

(
e−rT + e−(r−M1κϑ)T eM1y + e−r(1−M2)T eM2x

)
.

Since M1 < r/(κϑ) and M2 < 1, we see that the right hand side converges to 0, as T → ∞. This
justifies the identity (2.19).

Now, we use Fatou’s lemma to obtain the bound (1.20) on the first non-integral term in (1.26).
For z ∈ O,

Ez
Q

[
e−rθ1 |g(Z(θ1))| 1{θ1≤θ2}

]

≤ lim inf
n→∞

Ez
Q

[
e−r(θ1∧n)|g(Z(θ1 ∧ n))|

]

≤ lim inf
n→∞

C
(
1 + Ez

Q

[
e−r(θ1∧n)eM1Y (θ1∧n)

]
+ Ez

Q

[
e−r(θ1∧n)eM2X(θ1∧n)

])
(by (1.20)).
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Because M1 < µ, we may apply the supermartingale property (2.14) with c := M2. We use also
that M1 < r/ (κϑ) to obtain M1κϑ < r, and so it follows by the Optional Sampling Theorem [26,
Theorem 1.3.22] that

Ez
Q

[
e−r(θ1∧n)eM1Y (θ1∧n)

]
≤ Ez

Q

[
e−M1κϑ(θ1∧n)eM1Y (θ1∧n)

]

≤ eM1y, ∀n ∈ N.

Using the fact that M2 < 1, we see by the supermartingale property (2.13) applies with c :=M1.
By the Optional Sampling Theorem [26, Theorem 1.3.22] we have

Ez
Q

[
e−r(θ1∧n)eM2X(θ1∧n)

]
≤ Ez

Q

[
e−rM2(θ1∧n)eM2X(θ1∧n)

]

≤ eM2x, ∀n ∈ N.

Therefore, we obtain

Ez
Q

[
e−rθ1 |g(Z(θ1))| 1{θ1≤θ2}

]
≤ C

(
1 + eM1y + eM2x

)
.

We obtain the same bound on the second non-integral term in (1.26) because the obstacle function
ψ satisfies the same growth condition (1.20) as the boundary data g. �

To prove Theorems 1.13 and 1.16, we make use of the following auxiliary result

Lemma 2.14. Let z ∈ H and T ∈ (0, T0], where T0 is a positive constant. Let (Zz(s))s≥0 be the
unique strong solution to the Heston stochastic differential equation (1.17) with initial condition
Zz(0) = z. Then there is a positive constant c, depending on y, κ, ϑ, σ and T0, such that for any
constant p satisfying

0 ≤ p <
c

2σT
, (2.20)

we have

sup
θ∈T0,T

Ez
Q

[
epX

z(θ)
]
<∞, (2.21)

where T0,T denotes the set of (Ω,F ,Qz ,F)-stopping times with values in [0, T ].

Proof. We use the method of time-change. Denote

Mi(t) :=

∫ t

0

√
Y (s)dWi(s), i = 1, 2,

and observe that there is a two-dimensional Brownian motion (B1, B2) [26, Theorem 3.4.13] such
that

Mi(t) = Bi

(∫ t

0
Y (s)ds

)
, i = 1, 2.

Thus, we may rewrite the solution of the Heston stochastic differential equation (1.17) in the
form

X(t) = x+ (r − q)s− 1

2

∫ t

0
Y (s)ds+B1

(∫ t

0
Y (s)ds

)
, (2.22)

Y (t) = y + κϑs− κ

∫ t

0
Y (s)ds + σB3

(∫ t

0
Y (s)ds

)
, (2.23)

where B3 := ρB1 +
√

1− ρ2B2 is a one-dimensional Brownian motion.
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For any continuous stochastic process (P (t))t≥0, we let

MP (t) := max
0≤s≤t

P (s), ∀t ≥ 0.

We first prove the following estimate.

Claim 2.15. There are positive constants n0 and c, depending on y, κ, ϑ, σ and T0, such that

Qz (n ≤MY (T ) ≤ n+ 1) ≤ 2√
π
e−cn/(2σ2T )1{n≥n0} + 1{n<n0}, ∀n ∈ N. (2.24)

Proof. Notice that if MY (T ) ≤ n+ 1, where n ∈ N, then
∫ T

0
Y (s)ds ≤ (n+ 1)T,

and so, for any positive constant m,
{

max
0≤t≤T

B3

(∫ t

0
Y (s)ds

)
≥ m,MY (T ) ≤ n+ 1

}
⊆ {MB3

((n+ 1)T ) ≥ m} . (2.25)

Using the inclusion

{n ≤MY (T )} ⊆
{

max
0≤t≤T

B3

(∫ t

0
Y (s)ds

)
≥ n− y − κϑT

σ

}
(by (2.23)),

we obtain by (2.25),

Qz (n ≤MY (T ) ≤ n+ 1) ≤ Qz

(
MB3

((n+ 1)T ) ≥ n− y − κϑT

σ

)
.

The expression for the density of the running maximum of Brownian motion [26, Equation (2.8.4)]
yields

Qz

(
MB3

((n+ 1)T ) ≥ n− y − κϑT

σ

)
≤
∫ ∞

(n−y−κϑT )/(σ
√

(n+1)T )

2√
2π
e−x2/2dx.

As in [1, §7.1.2], we let

erfc(a) :=
2√
π

∫ ∞

a
e−x2/2dx, ∀a ∈ R,

and so,

Qz (n ≤MY (T ) ≤ n+ 1) ≤ 1√
2
erfc

(
n− y − κϑT

σ
√

(n+ 1)T

)
.

Because for any a ≥ 1,
∫ ∞

a
e−x2/2dx ≤

∫ ∞

a
xe−x2/2dx

= e−a2/2,

we see that

erfc(a) ≤ 2√
π
e−a2/2, ∀a ≥ 1.

By hypothesis, T ∈ (0, T0], which implies that

n− y − κϑT

σ
√

(n+ 1)T
≥ n− y − κϑT0

σ
√

(n+ 1)T0
, ∀n ∈ N.
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Hence, provided we have

n− y − κϑT0

σ
√

(n + 1)T0
≥ 1,

which is true for all n ≥ n0(y, κ, ϑ, σ, T0), the smallest integer such that the preceding inequality
holds, we see that

Qz (n ≤MY (T ) ≤ n+ 1) ≤ 2√
π
e−(n−y−κϑT )2/(2σ2(n+1)T ), ∀n ≥ n0. (2.26)

Similarly, for a possibly larger n0(y, κ, ϑ, σ, T0), using again the fact that T ∈ (0, T0], we may
choose a positive constant c, depending also on y, κ, ϑ, σ and T0, such that for all n ≥ n0, we
have

(n − y − κϑT )2

2σ2(n+ 1)T
≥ c

n

2σ2T
.

Then, using the preceding inequality, we obtain the estimate (2.24) from (2.26). This completes
the proof of the claim. �

Next, we employ (2.24) to obtain (2.21). For any stopping time θ ∈ T0,T , we may write

epX(θ) =

∞∑

n=0

epX(θ)1{MY (T )≤n+1}1{n≤MY (T )≤n+1},

and, by Hölder’s inequality, it follows

Ez
Q

[
epX(θ)

]
≤

∞∑

n=0

Ez
Q

[
epX(θ)1{MY (T )≤n+1}

]1/2
Qz (n ≤MY (T ) ≤ n+ 1)1/2 . (2.27)

Using (2.22) and the condition p ≥ 0 in (2.20), we have

Ez
Q

[
epX(θ)1{MY (T )≤n+1}

]

≤ ep(x+|r−q|T )Ez
Q

[
exp

(
2pB1

(∫ θ

0
Y (s)ds

))
1{MY (T )≤n+1}

]

≤ ep(x+|r−q|T )Ez
Q

[
exp

(
2p max

0≤t≤T
B1

(∫ t

0
Y (s)ds

))
1{MY (T )≤n+1}

]

≤ ep(x+|r−q|T )Ez
Q

[
e2pMB1

((n+1)T )
]
, ∀n ∈ N (by (2.25)).

We see from the expression for the density of the running maximum of Brownian motion [26,
Exercise (2.8.4)] that

Ez
Q

[
e2pMB1

((n+1)T )
]
=

∫ ∞

0
e2px

2√
2π(n+ 1)T

e−x2/(2(n+1)T )dx

≤ 2e2p
2(n+1)T , ∀n ∈ N (by Mathematica),

and so,

Ez
Q

[
epX(θ)1{MY (T )≤n+1}

]
≤ 2ep(x+|r−q|T )e2p

2(n+1)T , ∀n ∈ N. (2.28)
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Inequalities (2.24), (2.27) and (2.28) give us

Ez
Q

[
epX(θ)

]
≤

√
2ep(x+|r−q|T )/2

n0−1∑

n=0

ep
2(n+1)T

+
2

π1/4
ep(x+|r−q|T )/2

∞∑

n=n0

ep
2(n+1)T e−cn/(4σ2T )

=
√
2ep(x+|r−q|T )/2

n0−1∑

n=0

ep
2(n+1)T

+
2

π1/4
ep(x+|r−q|T )/2+p2T

∞∑

n=n0

e(p
2T−c/(4σ2T ))n.

We choose p such that

0 ≤ p <

√
c

2σT
,

that is, condition (2.20) is obeyed, and we obtain a bound on Ez
Q

[
epX(θ)

]
which is independent

of the choice of θ ∈ T0,T . Thus, (2.21) follows. (Note that (2.21) holds trivially when p = 0.) �

3. Elliptic boundary value problem

In this section, we prove Theorem 1.3. In addition to the uniqueness result in Theorem 1.3 we
establish the existence and uniqueness of solutions in Theorem 3.1.

The existence and uniqueness of solutions to problem (1.1) with boundary condition (1.3)
along Γ1, when β ≥ 1, and with boundary condition (1.5) along ∂O, when 0 < β < 1, are similar
in nature. Therefore, we define

∂βO :=

{
Γ1 if β ≥ 1,

∂O if 0 < β < 1.
(3.1)

and treat the previous mentioned boundary value problems together as

{
Au = f on O,

u = g on ∂βO.
(3.2)

Now, we can give the

Proof of Theorem 1.3. Our goal is to show that if u ∈ Cloc(O ∪ ∂βO) ∩ C2(O) is a solution to
problem (3.2), satisfying the pointwise growth condition (1.20), then it admits the stochastic
representation (1.23).

We let {Ok : k ∈ N} denote an increasing sequence of C2+α subdomains of O (see [21, Definition
§6.2]) such that each Ok has compact closure in O, and

⋃

k∈N
Ok = O.



STOCHASTIC REPRESENTATION OF SOLUTIONS TO DIRICHLET VARIATIONAL INEQUALITIES 25

By applying Itô’s lemma (Theorem B.1), we obtain for all t > 0,

d
(
e−r(t∧τOk

)u(Z(t ∧ τOk
))
)

= −1{t≤τOk
}e

−rtAu(Z(t))dt

+ 1{t≤τOk
}e

−rt
√
Y (t)

(
(ux(Z(t)) + σρuy(Z(t))) dW1(t) + σ

√
1− ρ2uy(Z(t))dW2(t)

)
.

Since the subdomain Ok ⊂ O is bounded and u ∈ C2(O), the dWi-terms, i = 1, 2, in the preceding
identity are martingales, and so we obtain

Ez
Q

[
e−r(t∧τOk

)u(Z(t ∧ τOk
))
]
= u(z)− Ez

Q

[∫ t∧τOk

0
e−rsf(Z(s))ds

]
. (3.3)

We take the limit as k tends to ∞ in the preceding identity. By the growth estimate (2.18), we
may apply the Lebesgue Dominated Convergence Theorem to show that the integral term in (3.3)
converges to

Ez
Q

[∫ t∧τO

0
e−rsf(Z(s))ds

]
.

For the non-integral term on the left hand side of (3.3), using the continuity of u on O ∪ ∂βO

and of the sample paths of the Heston process, we see that

e−r(t∧τOk
)u(Z(t ∧ τOk

)) → e−r(t∧τO)u(Z(t ∧ τO)), a.s. as k → ∞.

Using [6, Theorem 16.13], we prove that

Ez
Q

[
e−r(t∧τOk

)u(Z(t ∧ τOk
))
]
→ Ez

Q

[
e−r(t∧τO)u(Z(t ∧ τO))

]
, as k → ∞,

by showing that {
e−r(t∧τOk

)u(Z(t ∧ τOk
)) : k ∈ N

}

is a collection of uniformly integrable random variables. By [6, Remark related to formula (16.23)],
it suffices to show that their p-th order moment is uniformly bounded (independent of k), for
some p > 1. We choose p > 1 such that pM1 < µ and pM2 < 1. Notice that this is possible
because we assumed the coefficients M1 < µ andM2 < 1. Then, from the growth estimate (1.20),
we have ∣∣∣e−r(t∧τOk

)u(Z)
∣∣∣
p
≤ Ce−rp(t∧τOk

)
(
1 + epM1Y + epM2X

)
, ∀k ∈ N.

From the inequality (2.14) with c = pM1 < µ and property (2.13) applied with c = pM2 ∈ (0, 1),
we obtain using M1 < r/(κϑ)

Ez
Q

[∣∣∣e−r(t∧τOk
)u(Z(t ∧ τOk

))
∣∣∣
p]

≤ C
(
1 + epM1y + epM2x

)
, ∀k ∈ N.

Therefore, by taking limit as k tends to ∞ in (3.3) we obtain

Ez
Q

[
e−r(t∧τO)u(Z(t ∧ τO))

]
= u(z) − Ez

Q

[∫ t∧τO

0
e−rsf(Z(s))ds

]
. (3.4)

As we let t tend to ∞, the integral term on the right-hand side in the preceding identity clearly
converges to

Ez
Q

[∫ τO

0
e−rsf(Z(s)) ds

]
.
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It remains to consider the left-hand side of (3.4). Keeping in mind that u ∈ Cloc(O ∪∂βO) solves
(3.2), we rewrite this term as

Ez
Q

[
e−r(t∧τO)u(Z(t ∧ τO))

]
= Ez

Q
[
e−rτOg(Z(τO))1{τO≤t}

]
+ Ez

Q
[
e−rtu(Z(t))1{τO>t}

]
.

Using the growth assumption (1.20), we notice as above that both collections of random variables
in the preceding identity,

{
e−rτOg(Z(τO))1{τO≤t} : t ≥ 0

}
and

{
e−rtu(Z(t))1{τO>t} : t ≥ 0

}
,

are uniformly integrable, and they converge a.s. to e−rτOg(Z(τO))1{τO<∞} and zero, respectively.
Therefore, by [6, Theorem 16.13], letting t tend to ∞ in (3.4), we obtain

Ez
Q

[
e−rτOg(Z(τO))1{τO<∞}

]
= u(z)− Ez

Q

[∫ τO

0
e−rsf(Z(s)) ds

]
,

which implies that u = u∗ on O ∪ ∂βO, where u∗ is defined by (1.23). �

Proof of Theorem 1.6. Our goal is to show that if 0 < β < 1 and u ∈ Cloc(O ∪ Γ1) ∩ C2(O) ∩
C1,1
s,loc(O ∪Γ0) is a solution to problem (1.1), satisfying the growth estimate (1.20), then it admits

the stochastic representation (1.25).
We consider the following sequence of increasing subdomains of O,

Uk := {z ∈ O : |z| < k,dist (z,Γ1) > 1/k} , k ∈ N, (3.5)

with non-empty boundary portions Γ̄0 ∩ Uk. Let ε > 0 and denote

Y ε := Y + ε, and Zε := (X,Y ε) . (3.6)

By applying Itô’s lemma (Theorem B.1), we obtain

Ez
Q

[
e−r(t∧νUk

)u(Zε(t ∧ νUk
))
]
= u(z)− Ez

Q

[∫ t∧νUk

0
e−rsAεu(Zε(s))ds

]
, ∀t > 0, (3.7)

where νUk
is given by (1.22), and Aε denotes the elliptic differential operator,

Aεv := Av +
ε

2
vx + κεvy −

ε

2

(
vxx + 2ρσvxy + σ2vyy

)
, ∀v ∈ C2(O). (3.8)

Using (1.1), we can write (3.7) as

Ez
Q

[
e−r(t∧νUk

)u(Zε(t ∧ νUk
))
]
= u(z) − Ez

Q

[∫ t∧νUk

0
e−rsf(Zε(s))ds

]

− Ez
Q

[∫ t∧νUk

0
e−rs(Aε −A)u(Zε(s))ds

]
.

(3.9)

First, we take limit as ε tends to 0 in the preceding identity. We may assume without loss of
generality that ε < 1/k, for any fixed k ≥ 1. We evaluate the residual term (Aε −A)u with (3.8)
to give

|(Aε −A) u(Zε(s))| ≤ Cε|Du|C(Ū2k)
+ C

(
1{Y ε(s)≤√

ε} +
√
ε
)
|yD2u|C(Ū2k)

, (3.10)

for all 0 ≤ s ≤ t ∧ νUk
, where C is a positive constant depending only on the Heston constant

coefficients. This follows from the fact that

εD2u(Zε(s)) = εD2u(Zε(s))1{Y ε(s)≤√
ε} + εD2u(Zε(s))1{Y ε(s)>

√
ε}, ∀s ≥ 0,
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and so,

ε|D2u(Zε(s))| ≤ Y ε(s)|D2u(Zε(s))|1{Y ε(s)≤√
ε} + ε

Y ε(s)√
ε

|D2u(Zε(s))|1{Y ε(s)>
√
ε}

≤
(
1{Y ε(s)≤√

ε} +
√
ε
)
Y ε(s)|D2u(Zε(s))|.

Combining the preceding inequality with the definition (3.8) of Aε, we obtain (3.10). Since

u ∈ C1,1
s,loc(O ∪ Γ0), and

1{Y ε(s)≤√
ε} → 0, as ε ↓ 0,

we see that by (3.10) yields, for each k ≥ 1,

Ez
Q

[∫ t∧νUk

0
e−rs(Aε −A)u(Zε(s))ds

]
→ 0, as ε ↓ 0. (3.11)

In addition, using the continuity of f and u on compact subsets of O ∪ Γ0, we have

Ez
Q

[
e−r(t∧νUk

)u(Zε(t ∧ νUk
))
]
→ Ez

Q

[
e−r(t∧νUk

)u(Z(t ∧ νUk
))
]
, as ε ↓ 0,

Ez
Q

[∫ t∧νUk

0
e−rsf(Zε(s))ds

]
→ Ez

Q

[∫ t∧νUk

0
e−rsf(Z(s))ds

]
, as ε ↓ 0.

(3.12)

Therefore, using (3.11) and the preceding limits, we find that (3.9) gives

Ez
Q

[
e−r(t∧νUk

)u(Z(t ∧ νUk
))
]
= u(z) − Ez

Q

[∫ t∧νUk

0
e−rsf(Z(s))ds

]
. (3.13)

Note that by letting k and t tend to ∞, we have

t ∧ νUk
→ νO , a.s. (3.14)

By using the same argument as that used in the proof of Theorem 1.3 to take the limit as k and
t tend to ∞ in (3.3), we can take the limit as k and t tend to ∞ in (3.13) to give

Ez
Q

[
e−rνOg(Z(νO))

]
= u(z)− Ez

Q

[∫ νO

0
e−rsf(Z(s))ds

]
.

This establishes u = u∗, where u∗ is given by (1.25), and completes the proof. �

Next, we prove existence of solutions to problem (3.2) when the boundary data g is continuous
on suitable portions of the boundary of O.

Theorem 3.1 (Existence of solutions to the elliptic boundary value problem (3.2) with continuous
Dirichlet boundary condition). In addition to the hypotheses of Theorem 1.3, assume that the
domain O ⊂ H has boundary portion Γ1 which satisfies the exterior sphere condition, and that
f ∈ Cα(O).

(1) If β ≥ 1 and also g ∈ Cloc(Γ̄1), then the function u∗ in (1.23) is a solution to problem
(1.1) with boundary condition (1.3) along Γ1. In particular, u∗ ∈ Cloc(O ∪Γ1)∩C2+α(O)
and u∗ satisfies the growth assumption (1.20).

(2) If 0 < β < 1 and also g ∈ Cloc(∂O), then the function u∗ in (1.23) is a solution to problem
(1.1) with boundary condition (1.5) along ∂O. In particular, u∗ ∈ Cloc(Ō)∩C2+α(O) and
u∗ satisfies the growth assumption (1.20).
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Proof. Following the comments preceding problem (3.2), we need to show that u∗, given by (1.23),
is a solution to problem (3.2), that u∗ ∈ Cloc(O ∪ ∂βO)∩C2(O), and that u∗ satisfies the growth
assumption (1.20).

Notice that Lemma 2.12, applied with θ1 = τO , θ2 = ∞ and ψ ≡ 0, shows that u∗ defined by
(1.23) satisfies the growth assumption (1.20). It remains to prove that u∗ ∈ Cloc(O∪∂βO)∩C2(O).
Notice that Theorem 1.3 implies that u∗ is the unique solution to the elliptic boundary value
problem (3.2), since any Cloc(O ∪ ∂βO) ∩ C2(O) solution must coincide with u∗.

By hypothesis and the definition of ∂βO in (3.1), we have g ∈ Cloc(∂βO). Since ∂βO is closed,
we may use [17, Theorem 3.1.2] to extend g to R2 such that its extension g̃ ∈ Cloc(R2). We
organize the proof in two steps.

Step 1 (u∗ ∈ C2+α(O)). Let {Ok : k ∈ N} be an increasing sequence of C2+α subdomains of O

as in the proof of Theorem 1.3. We notice that on each domain Ok the differential operator A
is uniformly elliptic with C∞(Ōk) coefficients. From our hypotheses, we have f ∈ Cα(Ōk) and
g̃ ∈ C(Ōk). Therefore, [21, Theorem 6.13] implies that the elliptic boundary value problem

{
Au = f on Ok,

u = g̃ on ∂Ok.
(3.15)

admits a unique solution uk ∈ C(Ōk) ∩ C2+α(Ok). Moreover, by Theorem C.10, uk admits a
stochastic representation on Ōk,

uk(z) = Ez
Q

[
e−rτOk g̃(Z(τOk

))1{τOk
<∞}

]
+ Ez

Q

[∫ τOk

0
e−rsf(Z(s)) ds

]
. (3.16)

Our goal is to show that uk converges pointwise to u∗ on O. Recall that τk is an increasing
sequence of stopping times which converges to τO almost surely. Using g̃ ∈ Cloc(O ∪ ∂βO) and
the continuity of the sample paths of the Heston process, the growth estimate (1.20) and Lemma
2.12, the same argument used in the proof of Theorem 1.3 shows that the sequence {uk : k ∈ N}
converges pointwise to u∗ on O.

Fix z0 := (x0, y0) ∈ O, and choose a Euclidean ball B := B(z0, r0) such that B̄ ⊂ O. We
denote B1/2 = B(z0, r0/2). As in the proof of Lemma 2.12, the sequence uk is uniformly bounded

on B̄ because it obeys

|uk(z)| ≤ C̄
(
1 + eM1y + eM2x

)
, ∀z = (x, y) ∈ B, k ∈ N.

From the interior Schauder estimates [21, Corollary 6.3], the sequence {uk : k ∈ N} has uniformly
bounded C2+α(B̄1/2) norms. Compactness of the embedding C2+α(B̄1/2) →֒ C2+γ(B̄1/2), for
0 ≤ γ < α, shows that, after passing to a subsequence, the sequence {uk : k ∈ N} converges
in C2+γ(B̄1/2) to u∗ ∈ C2+γ(B̄1/2), and so Au∗ = f on B̄1/2. Because the subsequence has

uniformly bounded C2+α(B̄1/2) norms and it converges strongly in C2(B̄1/2) to u∗, we obtain

that u∗ ∈ C2+α(B̄1/2).

Step 2 (u∗ ∈ Cloc(O ∪ ∂βO)). From the previous step, we know that u∗ ∈ C(O), so it remains
to show continuity of u∗ up to ∂βO. We consider two cases.

Case 1 (u∗ ∈ Cloc(O ∪ Γ1), for all β > 0). First, we show that u∗ is continuous up to Γ1. We fix
z0 ∈ Γ1, and let B be an open ball centered at z0, such that B̄ ∩ ∂H = ∅. Let U := B ∩ O. Let
the function ĝ be defined on ∂U such that it coincides with g on ∂U ∩ ∂O, and it coincides with
u∗ on ∂U ∩ O.
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Claim 3.2. The strong Markov property of the Heston process (Z(s))s≥0 and the definition (1.23)
of u∗, implies that

u∗(z) = Ez
Q
[
e−rτU ĝ(Z(τU ))

]
+ Ez

Q

[∫ τU

0
e−rtf(Z(t))dt

]
, ∀z ∈ U. (3.17)

Proof. By Corollary 2.8, the Heston stochastic differential equation (1.17) admits a unique strong
solution, for any initial point (t, x, y) ∈ [0,∞)×R× [0,∞), and [13, Theorem 1.16(c)] shows that
the solution satisfies the strong Markov property.

Let z ∈ U , then τ zU ≤ τ z
O
a.s. Since Z is a time-homogeneous strong Markov process, we obtain

Ez
Q

[
e−rτOg(Z(τO))

]
= Ez

Q

[
Ez
Q

[
e−rτOg(Z(τO))

]
|F (τU )

]

= Ez
Q

[
e−rτUEZ(τU )

Q

[
e−rτOg(Z(τO))

]]
,

which can be written as

Ez
Q
[
e−rτOg(Z(τO))

]
= Ez

Q
[
e−rτU g(Z(τU ))1{τU=τO}

]

+ Ez
Q

[
e−rτUEZ(τU )

Q

[
e−rτOg(Z(τO ))

]
1{τU<τO}

]
.

(3.18)

Similarly, we have for the integral term

Ez
Q

[∫ τO

0
e−rtf(Z(t))dt

]
= Ez

Q

[∫ τU

0
e−rtf(Z(t))dt

]
+ Ez

Q

[
1{τU<τO}

∫ τO

τU

e−rtf(Z(t))dt

]
,

and so, by conditioning the second term in the preceding equality on F (τU ) and applying the
strong Markov property, we have

Ez
Q

[
1{τU<τO}

∫ τO

τU

e−rtf(Z(t))dt

]
= Ez

Q

[
Ez
Q

[
1{τU≤τO}

∫ τO

τU

e−rtf(Z(t))dt

]
|F (τU )

]

= Ez
Q

[
1{τU<τO}e

−rτUEZ(τU )
Q

[∫ τO

0
e−rtf(Z(t))dt

]]
.

(3.19)

Combining (3.18) and (3.19) in (1.23), we obtain

u(z) = Ez
Q

[
e−rτU g(Z(τU ))1{τU=τO}

]
+ Ez

Q

[∫ τU

0
e−rtf(Z(t))dt

]

+ Ez
Q

[
e−rτU1{τU<τO}E

Z(τU )
Q

[
e−rτOg(Z(τO)) +

∫ τO

0
e−rtf(Z(t))dt

]]
.

Using again (1.23) for u∗(Z(τU )), the preceding equality yields (3.17). This completes the proof
of Claim 3.2. �

By [21, Theorem 6.13] and a straightforward extension of Theorem C.10 from domains with
C2 to domains with regular boundary, as in [10, §6.2.6.A], the integral term in (3.17) is the
solution on U of the uniformly elliptic partial differential equation Au∗ = f with homogeneous
Dirichlet boundary condition, and it is a continuous function up to ∂U . Notice that ∂U satisfies
the exterior sphere condition and thus ∂U is regular by Proposition C.6 (see Definition C.2 for
the definition of regular points of ∂U). The continuity of the non-integral term in (3.17) at z0
follows from Corollary C.9, as ĝ is continuous at z0 by hypotheses.

It remains to show that, when 0 < β < 1, the solution u∗ is continuous up to Γ̄0.
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Case 2 (u∗ ∈ Cloc(O ∪ Γ̄0), for all 0 < β < 1). Let z0 = (x0, 0) ∈ Γ̄0. We denote by θz the first
time the process started at z = (x, y) ∈ O hits y = 0. Obviously, we have

τ zO ≤ θz ≤ T y
0 a.s., (3.20)

where T y
0 is given by (2.11). For β ∈ (0, 1), it follows from (2.12) and the preceding inequality

between stopping times, that θz converges to 0, as y goes to 0, uniformly in x ∈ R. Therefore,
the integral term in (3.17) converges to zero. Next, we want to show that the non-integral term
in (3.17) converges to g(z0). We rewrite that term as

Ez
Q

[
e−rτOg(Z(τO))

]
− g(z0) = Ez

Q

[
e−rτO (g(Z(τO))− g(z0))

]

+ g(z0)
(
1− Ez

Q
[
e−rτO

])
.

(3.21)

From the observation that τ z
O
≤ θz a.s., we see that

Ez
Q
[
e−rτO

]
→ 1, as z → z0. (3.22)

By (3.21), it remains to show that Ez
Q [e−rτO (g(Z(τO))− g(z0))] converges to zero, as z ∈ O

converges to z0. We fix ε > 0 and choose δ1 > 0 such that

|g(z) − g(z0)| < ε, ∀z ∈ B(z0, δ1) ∩ ∂O. (3.23)

From [26, Equation (5.3.18) in Problem 5.3.15 ], there is a positive constant C1, depending on z0
and δ1, such that

sup
z∈B(z0,δ1)∩O

Ez
Q

[
sup
0≤s≤t

|Z(s)− z|
]
≤ C1

√
t,

from where it follows

sup
z∈B(z0,δ1)∩O

Qz

(
sup
0≤s≤t

|Z(s)− z| > δ1/2

)
≤ 2C1

√
t

δ1
. (3.24)

Next, we choose t > 0 sufficiently small such that

2C1

√
t

δ1
< ε, (3.25)

and, by (3.20) and (2.12), we may choose δ2 > 0 sufficiently small such that

Q
(
T δ2
0 > t

)
< ε. (3.26)

Let δ := min{δ1/2, δ2}. We rewrite

e−rτO (g(Z(τO))− g(z0)) = e−rτO (g(Z(τO))− g(z0))1{τO≤t}

+ e−rτO (g(Z(τO))− g(z0)) 1{τO>t}

to give

e−rτO (g(Z(τO ))− g(z0)) = e−rτO (g(Z(τO ))− g(z0)) 1{τO≤t,sup0≤s≤t |Z(s)−z|<δ1/2}

+ e−rτO (g(Z(τO))− g(z0)) 1{τO≤t,sup0≤s≤t |Z(s)−z|≥δ1/2}

+ e−rτO (g(Z(τO))− g(z0)) 1{τO>t}

(3.27)

By (3.23), we have for all z ∈ B(z0, δ) ∩ O

Ez
Q

[
|g(Z(τO))− g(z0)| 1{τO≤t, sup0≤s≤t |Z(s)−z|<δ1/2}

]
< ε. (3.28)
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We choose p > 1 such that pM1 < µ and pM2 < 1. Notice that this is possible because we
assumed the coefficients M1 < µ and M2 < 1. Then, from the growth estimate (1.20) for g, we
have

∣∣e−rτOg(Z(τO ))
∣∣p ≤ Ce−rpτO

(
1 + epM1Y (τO) + epM2X(τO)

)
.

From the inequality (2.14) with c = pM1 < µ and property (2.13) applied with c = pM2 ∈ (0, 1),
we obtain using the condition M1 ≤ r/(κϑ)

Ez
Q

[∣∣e−rτOg(Z(τO))
∣∣p] ≤ C

(
1 + epM1y + epM2x

)
.

Let C2 > 0 be an bound on the right-hand side of the preceding inequality, for all z = (x, y) ∈
B(z0, δ) ∩ O. By the Cauchy-Schwarz inequality, we have
∣∣Ez

Q
[
e−rτO (g(Z(τO))− g(z0)) 1{τO>t}

]∣∣ ≤ Ez
Q
[
e−rpτO |g(Z(τO))− g(z0)|p

]1/pQz (τO > t)1/p
′

,

where p′ > 1 denotes the conjugate exponent of p. Using the fact that τ z
O
≤ T δ2

0 from (3.20) and
(3.26), we obtain in the preceding inequality

∣∣Ez
Q
[
e−rτO (g(Z(τO ))− g(z0)) 1{τO>t}

]∣∣ ≤ 2C
1/p
2 Qz (T0 > t)1/p

′

≤ 2C
1/p
2 ε1/p

′
, ∀z ∈ B(z0, δ) ∩ O,

(3.29)

From the inequality,
∣∣∣Ez

Q

[
e−rτO (g(Z(τO))− g(z0)) 1{τO≤t,sup0≤s≤t |Z(s)−z|≥δ1/2}

]∣∣∣

≤ Ez
Q
[
e−rpτO |g(Z(τO))− g(z0)|p

]1/pQz

(
sup
0≤s≤t

|Z(s)− z| ≥ δ1/2

)1/p′

,

the inequalities (3.24) and (3.25) and definition of C2 yield
∣∣∣Ez

Q

[
e−rτO (g(Z(τO))− g(z0)) 1{τO≤t,sup0≤s≤t |Z(s)−z|≥δ1/2}

]∣∣∣ ≤ 2C
1/p
2 ε1/p

′
. (3.30)

Substituting (3.28), (3.29), and (3.30) in (3.27), we obtain

E
[
e−rτO (g(Z(τO ))− g(z0))

]
<
(
1 + 4C

1/p
2

)(
ε+ ε1/p

′
)
, ∀z ∈ B(z0, δ) ∩ O,

and so u∗ is continuous up to Γ̄0, when 0 < β < 1.

This concludes the proof that u∗ ∈ Cloc(O ∪ ∂βO), for all β > 0.

This completes the proof of Theorem 3.1. �

We now prove existence of solutions to problem (3.2) when the boundary data g is Hölder
continuous on suitable portions of the boundary of O.

Theorem 3.3 (Existence of solutions to the elliptic boundary value problem (3.2) with Hölder
continuous Dirichlet boundary condition). In addition to the hypotheses of Theorem 1.3, let O ⊂
H be a domain such that the boundary portion Γ1 is of class C2+α, that f ∈ Cα

loc(O ∪ Γ1) and

g ∈ C2+α
loc (O ∪ Γ1).

(1) If β ≥ 1, then u∗, given by (1.23), is a solution to problem (1.1) with boundary condition
(1.3) along Γ1. In particular, u∗ ∈ C2+α

loc (O ∪ Γ1) and satisfies the growth assumption
(1.20).
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(2) If 0 < β < 1 and g ∈ Cloc(∂O), then u∗, given by (1.23), is a solution to problem (1.1)
with boundary condition (1.5) along ∂O. In particular, u∗ ∈ Cloc(Ō)∩C2+α(O ∪Γ1) and
satisfies the growth assumption (1.20).

Proof. The proof of the theorem is the same as that of Theorem 3.1, with the exception that
Case 1 of Step 2 can be simplified by applying the classical boundary Schauder estimates. Also,
instead of using the sequence of subdomains {Ok : k ∈ N} precompactly contained in O, as in the
proof of Theorem 1.3, we consider an increasing sequence, {Dk : k ∈ N}, of C2+α subdomains of
O (see [21, Definition §6.2]) such that each Dk satisfies

O ∩ (−k, k)× (1/k, k) ⊂ Dk ⊂ O ∩ (−2k, 2k) × (1/(2k), 2k), ∀k ∈ N, (3.31)

and ⋃

k∈N
Dk = O.

Since Γ1 is assumed to be of class C2+α, we may choose Dk to be of class C2+α.
Let z0 ∈ Γ1, and r0 > 0 small enough such that B(z0, r0) ∩ Γ0 = ∅. Let

D := B(z0, r0) ∩ O and D′ := B(z0, r0/2) ∩ O.

By (3.31), we may choose k0 ∈ N large enough such that D ⊂ Dk, for all k ≥ k0. Using
f ∈ Cα(D̄), g ∈ C2+α(D̄) and applying [21, Corollary 6.7], and the fact that uk solves (3.15)

‖uk‖C2+α(D̄′) ≤ C
(
‖uk‖C(D̄) + ‖g̃‖C2+α(D̄) + ‖f‖Cα(D̄)

)
, ∀k ≥ k0, (3.32)

where C > 0 is a constant depending only on the coefficients of A, and the domains D and D′.
Combining the preceding inequality with the uniform bound on the C(D̄) norms of the sequence
{uk : k ∈ N}, resulting from Lemma 2.12, the compactness of the embedding of C2+α(D̄′) →֒
C2+γ(D̄′), when 0 ≤ γ < α, implies that a subsequence converges strongly to u∗. Therefore,
u∗ ∈ C2+γ(D̄′), and Au∗ = f on D′ and u∗ = g on ∂D′ ∩ Γ1. Moreover, u∗ ∈ C2+α(D̄′), since
uk ∈ C2+α(D̄′), for all k ≥ k0, and the sequence converges in C2(D̄′) to u∗. Combining the
boundary estimate (3.32) with Step 1 in the proof of Theorem 3.1, we obtain the conclusion that
u∗ ∈ C2+α

loc (O ∪ Γ1). �

Remark 3.4 (Validity of the stochastic representation for strong solutions). The stochastic
representation (1.25) for solutions to problem (1.1) with boundary condition along Γ1 is valid if

we replace the condition u ∈ Cloc(O ∪Γ1)∩C2(O)∩C1,1
s,loc(O ∪Γ0) in the hypotheses of Theorem

1.6, with the weaker condition u ∈ Cloc(O ∪ Γ1) ∩W 2,2
loc (O) ∩ C1,1

s,loc(O ∪ Γ0).

4. Elliptic obstacle problem

This section contains the proofs of Theorems 1.9 and 1.10. As in problem (3.2), the questions
of uniqueness of solutions to problem (1.2) with Dirichlet boundary condition along Γ1, when
β ≥ 1, and along ∂O, when 0 < β < 1, are similar in nature. We can conveniently treat them
together as {

min {Au− f, u− ψ} = 0 on O,

u = g on ∂βO,
(4.1)

where ∂βO is given by (3.1).
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Proof of Theorem 1.9. Lemma 2.12 indicates that u∗ given by (1.27) satisfies (1.20), so the growth
assumption on u in Theorem 1.9 is justified.

By the preceding remarks, it suffices to prove that the stochastic representation (1.27) holds
for solutions u ∈ Cloc(O∪∂βO)∩C2(O) to problem (4.1). We consider the two situations: u ≥ u∗

and u ≤ u∗ on O ∪ ∂βO, where u∗ is defined by (1.27).

Step 1 (Proof that u ≥ u∗ on O ∪ ∂βO). Let {Ok : k ∈ N} be an increasing sequence of C2+α

subdomains of O as in the proof of Theorem 1.3. Since u ∈ C2(O), Itô’s lemma (Theorem B.1)
yields, for any stopping time θ ∈ T ,

Ez
Q

[
e−r(θ∧τOk

)u(Z(θ ∧ τOk
))
]
= u(z)− Ez

Q

[∫ θ∧τOk

0
e−rsAu(Z(s))ds

]
. (4.2)

By splitting the right-hand side in the preceding identity,

Ez
Q

[
e−r(θ∧τOk

)u(Z(θ ∧ τOk
))
]

= Ez
Q

[
e−rτOku(Z(θ ∧ τOk

))1{τOk
≤θ}
]
+ Ez

Q

[
e−rθu(Z(θ ∧ τOk

))1{τOk
>θ}
]
,

and using u ≥ ψ on O and Au ≥ f a.e. on O, the identity (4.2) gives

u(z) ≥ Ez
Q

[
e−rθψ(Z(θ))1{θ<τOk

}
]

+ Ez
Q

[
e−rτOku(Z(τOk

))1{τOk
≤θ}
]
+ Ez

[∫ θ∧τOk

0
e−rsf(Z(s)) ds

]
.

(4.3)

Just as in the proof of Theorem 1.3, the collections of random variables
{
e−rθψ(Z(θ))1{θ<τOk

} : k ∈ N
}

and
{
e−rτOku(Z(τOk

))1{τOk
≤θ} : k ∈ N

}

are uniformly integrable because u and ψ satisfy the pointwise growth estimate (1.20). From the
continuity of u and ψ on O ∪ ∂βO, we also have the a.s. convergence,

e−rθψ(Z(θ))1{θ<τOk
} → e−rθψ(Z(θ))1{θ<τO}, as k → ∞,

e−rτOku(Z(τOk
))1{τOk

≤θ} → e−rτOu(Z(τO))1{τO≤θ}, as k → ∞.

Therefore, by [6, Theorem 16.13], we can take limit as k tends to ∞ in inequality (4.3) to obtain,
for all θ ∈ T ,

u(z) ≥ Ez
Q

[
e−rθψ(Z(θ))1{θ<τO}

]
+ Ez

Q

[
e−rτOu(Z(τO))1{τO≤θ}

]

+ Ez
Q

[∫ θ∧τO

0
e−rsf(Z(s)) ds

]
,

which yields u ≥ u∗ on O ∪ ∂βO.

Step 2 (Proof that u ≤ u∗ on O ∪ ∂βO). The continuation region,

C := {u > ψ}, (4.4)

is an open set by the continuity of u and ψ. We denote the first exit time of Zt,z from the
continuation region, C , by

τ̃ t,z :=
{
s ≥ t : Zt,z(s) /∈ C

}
, (4.5)

and write τ̃ = τ̃ t,z for brevity. This is indeed a stopping time because the process Zt,z is continuous
and C is open. By the same argument used in Step 1 with θ replaced by τ̃ , we obtain that all
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inequalities hold with equalities because u(Z(τ̃ )) = ψ(Z(τ̃ )) and Au = f on the continuation
region, C . Therefore,

u(z) = Ez
Q

[
e−rτ̃ψ(Z(τ̃ ))1{τ̃<τO}

]
+ Ez

Q

[
e−rτOg(Z(τO))1{τO≤τ̃O}

]

+ Ez
Q

[∫ τ̃∧τO

0
e−rsf(Z(s)) ds

]
,

which implies that u ≤ u∗.

By combining the preceding two steps, we obtain the stochastic representation (1.27) of solu-
tions to problem (4.1), and hence the uniqueness assertion. �

Proof of Theorem 1.10. Lemma 2.12 indicates that u∗ given by (1.28) satisfies (1.20), so the
growth assumption on u in Theorem 1.9 is justified.

Our goal is to show that if 0 < β < 1 and u ∈ Cloc(O ∪ Γ1) ∩ C2(O) ∩ C1,1
s,loc(O ∪ Γ0) is a

solution to problem (1.2) with Dirichlet boundary condition (1.4) along Γ1, and satisfying the
growth estimate (1.20), then it admits the stochastic representation (1.28). As in the proof of
Theorem 1.9, we consider the following two cases.

Step 1 (Proof that u ≥ u∗ on O ∪Γ1). Let ε > 0 and {Uk : k ∈ N} be the collection of increasing
subdomains as in (3.5). By applying Itô’s lemma, we obtain, for all t > 0 and θ ∈ T ,

u(z) = Ez
Q

[
e−r(t∧νUk

∧θ)u(Zε(t ∧ νUk
∧ θ))

]
+ Ez

Q

[∫ t∧νUk
∧θ

0
e−rsAεu(Zε(s))ds

]
, (4.6)

where νUk
is given by (1.22) and Zε is defined in (3.6), and Aε is defined by (3.8). By (1.2) and

(3.8), preceding identity gives

u(z) ≥ Ez
Q

[
e−r(t∧νUk

∧θ)u(Zε(t ∧ νUk
∧ θ))

]

+ Ez
Q

[∫ t∧νUk
∧θ

0
e−rsf(Zε(s))ds

]
+ Ez

Q

[∫ t∧νUk
∧θ

0
e−rs(Aε −A)u(Zε(s))ds

]
.

(4.7)

First, we take the limit as ε tends to 0 in (4.7). We can assume without loss of generality that
ε < 1/k, for any fixed k ∈ N. The residual term (Aε − A)u then obeys estimate (3.10) because

u ∈ C1,1
s,loc(O ∪ Γ0). Therefore, (3.11) also holds in the present case. In addition, using the

continuity of f , u, Du and yD2u on compact subsets of O ∪ Γ0, we see that (3.12) holds, and so,
by taking limit as ε ↓ 0 in (4.7),

u(z) ≥ Ez
Q

[
e−r(t∧νUk

∧θ)u(Z(t ∧ νUk
∧ θ))

]
+ Ez

Q

[∫ t∧νUk
∧θ

0
e−rsf(Z(s))ds

]
. (4.8)

Finally, letting k and t tend to ∞ and using the convergence (3.14), the same argument employed
in the proof of Theorem 1.3 can be applied to conclude that u ≥ u∗ on O ∪ Γ1, where u

∗ is given
by (1.28).

Step 2 (Proof that u ≤ u∗ on O ∪Γ1). We choose θ = τ̃ in the preceding step, where τ̃ is defined
by (4.5). By the definition (4.4) of the continuation region, C , and the obstacle problem (1.2),
we notice that inequalities (4.7) and (4.8) hold with equality and so it follows as in Step 1 that
u ≤ u∗ on O ∪ Γ1.

This completes the proof. �
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Remark 4.1 (Validity of the stochastic representation for strong solutions). The stochastic rep-
resentation (1.27) of solutions to problem (4.1), when β > 0, holds under the weaker assumption

that u ∈ Cloc(O ∪ ∂βO) ∩W 2,2
loc (O). Similarly, the stochastic representation (1.28) of solutions

to problem (1.2) with Dirichlet boundary condition (1.4) along Γ1, when 0 < β < 1, holds un-

der the weaker assumption that u ∈ Cloc(O ∪ Γ1) ∩ C1,1
s,loc(O ∪ Γ0) ∪W 2,2

loc (O). In each case, we

would replace the application of the classical Itô lemma (Theorem B.1) with [5, Identity (8.62)
in Theorem 2.8.5], or we could apply an approximation argument involving C2(O) functions.

5. Parabolic terminal/boundary value problem

This section contains the proofs of Theorems 1.13 and 1.16 and an existence result in Theorem
5.4. Because the Heston process satisfies the strong Markov property, it suffices to prove the
stochastic representation of solutions to the terminal value problem for T as small as we like. In
particular, without loss of generality, we can choose T such that

Hypothesis 5.1. There is a constant p0 > 1 such that

(1) Condition (2.20) in Lemma 2.14 is satisfied for p := p0M2, where M2 ∈ [0, 1] is the
constant appearing in (1.29);

(2) One has p0M1 ≤ µ, where M1 ∈ [0, µ) in (1.29).

As in §3, we first prove uniqueness of solutions to the parabolic boundary value problems (1.7)
with different possible Dirichlet boundary conditions depending on the parameter β. The proofs
are similar those of Theorems 1.3 and 1.6.

The existence and uniqueness of solutions to problem (1.7) with boundary condition (1.9),
when β ≥ 1, and with boundary condition (1.12), when 0 < β < 1, are similar in nature. By
analogy with our treatment of problem (3.2), we define

ðβQ :=

{
ð1Q if β ≥ 1,

ðQ if 0 < β < 1,
(5.1)

where we recall that Q := (0, T )× O. The preceding problems can then be formulated as

−ut +Au = f on Q, (5.2)

u = g on ðβQ. (5.3)

We now have the

Proof of Theorem 1.13. We choose T > 0 small enough and p0 > 1 as in Hypothesis 5.1. The
pattern of the proof is the same as that of Theorem 1.3. For completeness, we outline the main
steps of the argument.

We need to show that if u ∈ Cloc(Q∪ðβQ)∩C2(Q) is a solution to problem (5.2), satisfying the
growth bound (1.29), then it admits the stochastic representation (1.30). We choose a collection
of increasing subdomains, {Ok : k ∈ N}, as in the proof of Theorem 1.3. By applying Itô’s lemma
(Theorem B.1), we obtain, for all t > 0 and k ∈ N,

Et,z
Q

[
e−r(τOk

∧T−t)u(τOk
∧ T,Z(τOk

∧ T ))
]

= u(t, z)− Et,z
Q

[∫ τOk
∧T

t
e−r(s−t)f(s, Z(s))ds

]
.

(5.4)
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We now take limit as k tends to ∞ in the preceding identity. Using (1.29) and Lemma 2.11, we
obtain

Et,z
Q

[∫ τOk
∧T

t
e−r(s−t)f(s, Z(s))ds

]
→ Et,z

Q

[∫ τO∧T

t
e−r(s−t)f(s, Z(s))ds

]
, as k → ∞. (5.5)

From the continuity of u and of the sample paths of Z, we obtain the a.s. convergence as k tends
to ∞,

e−r(τOk
∧T−t)u(τOk

∧ T,Z(τOk
∧ T )) → e−r(τO∧T )g(τO ∧ T,Z(τO ∧ T )).

In order to prove that, as k tends to ∞,

Et,z
Q

[
e−r(τOk

∧T−t)u(τOk
∧ T,Z(τOk

∧ T ))
]
→ Et,z

Q

[
e−r(τO∧T )g(τO ∧ T,Z(τO ∧ T ))

]
, (5.6)

using [6, Theorem 16.13], it is enough to show that the collection of random variables,
{
e−r(τOk

∧T−t)u(τOk
∧ T,Z(τOk

∧ T )) : k ∈ N
}

(5.7)

is uniformly integrable. For p0 > 1 as in Hypothesis 5.1, it is enough to show that their p0-th
order moments are uniformly bounded ([6, Observation following Equation (16.23)]), that is

sup
k∈N

Et,z
Q

[∣∣∣e−rτOku(τOk
, Z(τOk

))1{τOk
<T}

∣∣∣
p0]

< +∞. (5.8)

From (1.29), we have, for some constant C,

Et,z
Q

[∣∣∣e−r(τOk
∧T−t)u(τOk

∧ T,Z(τOk
∧ T ))

∣∣∣
p0]

≤ C
(
1 + Et,z

Q

[
ep0M1Y (τOk

∧T )
]
+ Et,z

Q

[
ep0M2X(τOk

∧T )
])
.

Now, the uniform bound in (5.8) follows by applying the supermartingale property (2.14) with
c := p0M1 to the first expectation in the preceding inequality, and by applying (2.21) with
p := p0M2 to the second expectation above. Therefore, by taking the limit as k tends to ∞ in
(5.4), with the aid of (5.5) and (5.6), we obtain the stochastic representation (1.30) of solutions
to problem (5.2). �

Proof of Theorem 1.16. The need is to show that if 0 < β < 1 and u ∈ Cloc(Q ∪ ð1Q) ∩C2(Q) ∩
C1,1
s,loc((0, T ) × (O ∪ Γ0)) is a solution to problem (1.7) with boundary condition (1.9), satisfying

the growth bound (1.29), then it admits the stochastic representation (1.33).
Let ε > 0 and {Uk : k ∈ N} be the collection of increasing subdomains as in (3.5). By applying

Itô’s lemma, we obtain

Et,z
Q

[
e−r(T∧νUk

)u(T ∧ νUk
, Zε(T ∧ νUk

))
]
= u(t, z) − Et,z

Q

[∫ T∧νUk

t
e−rsAεu(s, Zε(s))ds

]
,

where νUk
is given by (1.22), Zε by (3.6) and Aε is defined by (3.8). The proof now follows the

same path as that of Theorem 1.6, with the only modification being that we now take the limit
as k tends to ∞ in the preceding identity in order to obtain (1.33). �

Analogous to Lemma 2.12, we have the following auxiliary result.

Lemma 5.2. Suppose f and g obey the growth assumption (1.29). Then there are positive
constants C̄, M1 ≤ µ and M2 ∈ [0, 1], such that for any stopping times θ1, θ2 ∈ Tt,T with values

in [t, T ], the function Jθ1,θ2
p given by (1.34) obeys the growth assumption (1.29).
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Proof. The proof follows as in Lemma 2.12 with the aid of Lemma 2.11. Notice that because the
stopping times θ1, θ2 ∈ Tt,T are bounded by T , we do not need the constant r to be positive, as
in Lemma 2.12. �

Next, we have the following existence results for solutions to the parabolic boundary value
problem (5.2), for all β > 0.

Remark 5.3. The function ψ in (1.34) plays the role of the obstacle function and is relevant
only for problem (1.8).

Theorem 5.4 (Existence of solutions to problem (5.2) with continuous Dirichlet boundary con-
dition). In addition to the hypotheses of Theorem 1.13, let O ⊂ H be a domain such that the
boundary Γ1 obeys an exterior sphere condition, and f ∈ Cα

loc(Q̄).

(1) If β ≥ 1 and g ∈ Cloc(ð1Q), then u∗ in (1.30) is a solution to problem (5.2). In particular,
u∗ ∈ Cloc(Q ∪ ð1Q) ∩ C2+α(Q) and obeys the growth assumption (1.29).

(2) If 0 < β < 1 and g ∈ Cloc(ðQ), then u∗ in (1.30) is a solution to problem (5.2). In
particular, u∗ ∈ Cloc(Q ∪ ðQ) ∩C2+α(Q) and satisfies the growth assumption (1.29).

Proof. We choose T > 0 small enough and p0 > 1 as in Hypothesis 5.1.
By hypothesis, we have g ∈ Cloc(ðβQ). Since ðβQ is closed, we may use [17, Theorem 3.1.2]

to extend g to a function on [0, T ]× R2, again called g, such that g ∈ Cloc([0, T ]× R2).
The proof follows the same pattern as that of Theorem 3.1. For completeness, we outline

the main steps. Let Ok be an increasing sequence of C2+α subdomains of O as in the proof of
Theorem 1.3, and let Qk := (0, T ) × Ok. We notice that on each cylindrical domain, Qk, the
operator A is uniformly elliptic, and its coefficients are C∞(Q̄k) functions. By hypothesis, there
is an α ∈ (0, 1) such that f ∈ Cα(Q̄k) and g ∈ C(Q̄k). Therefore, by [17, Theorem 3.4.9], the
terminal value problem

−ut +Au = f on Qk,

u = g on (0, T )× ∂Ok ∪ {T} × Ōk,

has a unique solution uk ∈ C(Q̄k) ∩ C2+α(Qk), and by Theorem C.11, it has the stochastic
representation

uk(t, z) = Et,z
Q

[
e−r(τOk

∧T−t)g(τOk
∧ T,Z(τOk

∧ T ))
]

+ Et,z
Q

[∫ τOk
∧T

t
e−r(s−t)f(s, Z(s)) ds

]
, ∀(t, z) ∈ Q̄k.

(5.9)

Because τOk
converges to τO a.s. as k → ∞, the integral term in (5.9) converges to the integral

term of u∗ in (1.30), by the same argument as that used in the proof of Theorem 1.13. By the
continuity of g and of the paths of the Heston process Z, we also know that

e−r(τOk
∧T )g(τOk

∧ T,Z(τOk
∧ T )) → e−r(τO∧T )g(τO ∧ T,Z(τO ∧ T )), as k → ∞.

In order to show that the preceding convergence takes place in expectation also, it is enough to
show that the collection of random variables,

{
e−r(τOk

∧T )g(τOk
∧ T,Z(τOk

∧ T )) : k ∈ N
}
,

is uniformly integrable, but this follows by the same argument as that used for the collections
(5.7) in the proof of Theorem 1.13, by bounding their p0-th order moments (p0 > 1). Therefore,
the sequence {uk : k ∈ N} converges to u∗ pointwise on Q. By interior Schauder estimates for
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parabolic equations [20, Theorem 3.3.5] and Lemma 5.2, there is a subsequence of {uk : k ∈ N}
which converges to u∗ in C2+α′

(Q), when 0 < α′ < α. Using the Arzelà-Ascoli Theorem, we
obtain u∗ ∈ C2+α(Q). The proof of continuity of u up to ðβQ follows by exactly the same
argument as that used in the proof of Step 2 in Theorem 3.1. Therefore, u∗ is a solution to (5.2).

From Theorem 1.13 and Lemma 5.2, we see that u∗ in (1.30) is the unique solution to the
parabolic terminal value problem (5.2), for all β > 0. �

For T $ ðQ a relatively open subset, we let C2+α
loc (Q∪T ) denote the subspace of C2+α(Q) such

that, for any precompact open set U ⋐ Q ∪ T , we have u ∈ C2+α(Ū).

Theorem 5.5 (Existence of solutions to problem (5.2) with Hölder continuous Dirichlet boundary
condition). In addition to the hypotheses of Theorem 1.13, let O ⊂ H be a domain such that

(1) If β ≥ 1, the boundary portion Γ1 is of class C2+α, and g ∈ C2+α
loc (Q ∪ ð1Q) obeys

− gt +Ag = f on {T} × Γ1. (5.10)

Then u∗ in (1.30) is a solution to problem (5.2). In particular, u∗ ∈ C2+α
loc (Q ∪ ð1Q) and

obeys the growth estimate (1.29).
(2) If 0 < β < 1, the boundary portion ∂O is of class C2+α, and g ∈ C2+α

loc (Q ∪ ðQ) obeys

− gt +Ag = f on {T} × ∂O. (5.11)

Then u∗ in (1.30) is a solution to problem (5.2). In particular, u∗ ∈ C2+α
loc (Q ∪ ðQ) and

obeys the growth estimate (1.29).

Proof. Just as in the proof of Theorem 5.4, we can easily adapt the proof of Theorem 3.3 for the
elliptic case to the present parabolic case. For this purpose, we only need to make use of the local
boundary Schauder estimate Lemma A.1 instead of [21, Corollary 6.7] for the elliptic case. �

Remark 5.6 (Zero and first-order compatibility conditions for parabolic equations). The condi-
tions (5.10) and (5.11) are the analogues of the first-order compatibility condition [30, Equation
(10.4.3)]. The analogue of the zero-order compatibility condition in [30, Equation (10.4.2)] au-
tomatically holds at {T} × Γ1 or {T} × ∂O, since we always choose h = g(T, ·) on Γ1 or ∂O,
respectively, in this article.

6. Parabolic obstacle problem

Problem (1.8) with boundary condition (1.12), when 0 < β < 1, and with boundary condition
(1.9), when β ≥ 1, can be formulated as

{
min {−ut +Au− f, u− ψ} = 0 on Q,

u = g on ðβQ,
(6.1)

where ðβQ is defined in (5.1). According to Theorem 1.20, the solution to problem (6.1) is given
in (1.36).

Proof of Theorem 1.20. We choose T̃ > 0 small enough so that it obeys Hypothesis 5.1. For such

T̃ > 0, the proof of Theorem 1.9 adapts to the present case in the same way that the proof
of Theorem 1.3 adapts to give a proof of Theorem 1.13. Therefore, it remains to show that
the corresponding stochastic representation (1.35) of the solution to problem (6.1) holds for T
arbitrarily large.

Let N := ⌊T/T̃ ⌋ (the greatest integer in T/T̃ ), and Ti := iT̃ , for i = 0, . . . , N−1, and TN := T .
Let k be an integer such that 1 ≤ k ≤ N−1, and assume that the stochastic representation formula



STOCHASTIC REPRESENTATION OF SOLUTIONS TO DIRICHLET VARIATIONAL INEQUALITIES 39

(1.35) holds for any t ∈ [Ti, T ], where i = k, . . . ,N − 1. We want to show that it holds also for

t ∈ [Tk−1, T ]. Notice that for k = N − 1, we have T − t ≤ T̃ , for all t ∈ [TN−1, T ], and so
we know that the stochastic representation (1.35) of the solution to problem (1.8) holds, by the
observation at the beginning of the present proof.

For any t ≤ v ≤ T , stopping time θ ∈ Tt,v with values in [t, v], and ϕ ∈ C(Ō), we denote

Fϕ(t, z, v, θ) :=

∫ τO∧θ

t
e−r(s−t)f(s, Z(s)) ds+ e−r(θ−t)ψ(θ, Z(θ))1{θ<τO∧v}

+ e−r(τO−t)g(τO , Z(τO))1{τO≤θ,τO<v} + e−r(v−t)ϕ(Z(v))1{τO∧v≤θ,τO≥v}.

(6.2)

Notice that by choosing ϕ = g(T, ·) and v = T in (6.2), we obtain, for any stopping time θ ∈ Tt,T ,

e−r(τO−t)g(τO , Z(τO))1{τO≤θ,τO<T} + e−r(T−t)ϕ(Z(T ))1{τO∧T≤θ,τO≥T}

= e−r(τO∧T−t)g(τO ∧ T,Z(τO ∧ T ))1{τO∧T≤θ}

and so,

F g(T,·)(t, z, T, θ) =
∫ τO∧θ

t
e−r(s−t)f(s, Z(s)) ds+ e−r(θ−t)ψ(θ, Z(θ))1{θ<τO∧T}

+ e−r(τO∧T−t)g(τO ∧ T,Z(τO ∧ T ))1{τO∧T≤θ}.

(6.3)

Because u solves problem (6.1) on the interval (Tk−1, Tk), and Tk − Tk−1 ≤ T̃ , we see that u has
the stochastic representation (1.35), for any t ∈ [Tk−1, Tk) and z ∈ O ∪ ∂βO,

u(t, z) = sup
θ∈Tt,Tk

Et,z
Q

[
F u∗(Tk,·)(t, z, Tk, θ)

]
. (6.4)

For any stopping time η ∈ Tt,Tk
, we set

F1(t, z, Tk, η) :=

∫ τO∧η

t
e−r(s−t)f(s, Z(s))ds

+ e−r(η−t)ψ(η, Z(η))1{η<τO∧Tk}

+ e−r(τO−t)g(τO , Z(τO))1{τO≤η,η<Tk},

(6.5)

and for any stopping time ξ ∈ TTk,T , we let

F2(t, z, T, ξ) :=

∫ τO∧ξ

Tk

e−r(s−Tk)f(s, Z(s))ds

+ e−r(ξ−Tk)ψ(ξ, Z(ξ))1{ξ<τO∧T}

+ e−r(τO∧T−Tk)g(τO ∧ T,Z(τO ∧ T ))1{τO∧T≤ξ}.

(6.6)

For the rest of the proof, we fix z ∈ O ∪ ∂βO and t ∈ [Tk−1, Tk).
Let η ∈ Tt,Tk

and ξ ∈ TTk ,T . It is straightforward to see that

θ :=

{
η if η < Tk,

ξ if η = Tk,

is a stopping time with values in [t, T ]. We denote by

St,T =
{
θ ∈ Tt,T : θ = η1{η<Tk} + ξ1{η=Tk}, where η ∈ Tt,Tk

and ξ ∈ TTk,T

}
. (6.7)
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For any stopping time θ ∈ Tt,T , we define the stopping times θ′ ∈ Tt,Tk
and θ′′ ∈ TTk,T ,

θ′ := 1{θ<Tk}θ + 1{θ≥Tk}Tk and θ′′ := 1{θ<Tk}Tk + 1{θ≥Tk}θ. (6.8)

Then, any stopping time θ ∈ Tt,T can be written as

θ = θ′1{θ<Tk} + θ′′1{θ≥Tk}

= θ′1{θ′<Tk} + θ′′1{θ′=Tk}

and so,
Tt,T = St,T .

The preceding identity and definitions (1.35) of u∗ and (6.2) of Fϕ give us

u∗(t, z) = sup
θ∈St,T

Et,z
Q

[
F g(T,·)(t, z, T, θ)

]
. (6.9)

We shall need the following identities

Claim 6.1. For any stopping time θ = η1{η<Tk} + ξ1{η=Tk}, where η ∈ Tt,Tk
and ξ ∈ TTk,T , we

have the following identities
∫ τO∧θ

t
e−r(s−t)f(s, Z(s))ds = 1{η<Tk}

∫ τO∧η

t
e−r(s−t)f(s, Z(s))ds

+ 1{η=Tk}

∫ τO∧ξ

Tk

e−r(s−t)f(s, Z(s))ds,

and

e−r(θ−t)ψ(θ, Z(θ))1{θ<τO∧T} = e−r(η−t)ψ(η, Z(η))1{η<τO∧Tk}1{η<Tk}

+ e−r(ξ−t)ψ(ξ, Z(ξ))1{ξ<τO∧T}1{η=Tk},

and

e−r(τO∧T−t)g(τO ∧ T,Z(τO ∧ T ))1{τO∧T≤θ}

= e−r(τO−t)g(τO , Z(τO))1{τO≤η,η<Tk}1{η<Tk}

+ e−r(τO∧T−t)g(τO ∧ T,Z(τO ∧ T ))1{τO∧T≤ξ}1{η=Tk}.

Proof. Notice that
{θ < Tk} = {η < Tk} and {θ ≥ Tk} = {η = Tk}. (6.10)

The first identity is obvious because, by (6.10), we see that

θ = η on {η < Tk} and θ = ξ on {η = Tk}. (6.11)

The second identity follows by the observation that

{θ < τO ∧ T} = {θ < τO ∧ T, θ < Tk} ∪ {θ < τO ∧ T, θ ≥ Tk},
and using (6.11) and (6.10), it follows

{θ < τO ∧ T} = {η < τO ∧ Tk, η < Tk} ∪ {ξ < τO ∧ T, η = Tk}.
For the last identity of the claim, we notice

{τO ∧ T ≤ θ} = {τO ∧ T ≤ θ, τO < T} ∪ {τO ∧ T ≤ θ, τO ≥ T}
= {τO ∧ T ≤ θ, τO < T, θ < Tk} ∪ {τO ∧ T ≤ θ, τO < T, θ ≥ Tk}
∪ {τO ∧ T ≤ θ, τO ≥ T}.
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By (6.11) and (6.10), we obtain

{τO ∧ T ≤ θ} = {τO ≤ η, τO < T, η < Tk} ∪ {τO ∧ T ≤ ξ, τO < T, η = Tk}
∪ {τO ∧ T ≤ ξ, τO ≥ T}

= {τO ≤ η, η < Tk} ∪ {τO ∧ T ≤ ξ, η = Tk},
which implies the last identity of the claim. �

We can write the expression for F g(T,·)(t, z, T, θ) as a sum,

F g(T,·)(t, z, T, θ) = 1{η<Tk}F1(t, z, Tk, η) + 1{η=Tk}e
−r(Tk−t)F2(t, z, T, ξ). (6.12)

Because ξ ∈ TTk,T and F2(t, z, T, ξ) depends only on
(
Zt,z(s)

)
Tk≤s≤T

, and the Heston process

has the (strong) Markov property [13, Theorem 1.15 (c)], we have a.s. that

Et,z
Q [F2(t, z, T, ξ)|FTk

] = ETk,Z
t,z(Tk)

Q

[
F2(Tk, Z

t,z(Tk), T, ξ)
]

= ETk,Z
t,z(Tk)

Q

[
F g(T,·)(Tk, Z

t,z(Tk), T, ξ)
]
,

by applying definitions (6.3) and (6.6). Thus,

Et,z
Q

[
1{η=Tk}e

−r(Tk−t)F2(t, z, T, ξ)|FTk

]

= Et,z
Q

[
Et,z
Q

[
1{η=Tk}e

−r(Tk−t)F2(t, z, T, ξ)|FTk

]]

= Et,z
Q

[
1{η=Tk}e

−r(Tk−t)Et,z
Q [F2(t, z, T, ξ)|FTk

]
]

= Et,z
Q

[
1{η=Tk}e

−r(Tk−t)ETk,Z(Tk)
Q

[
F g(T,·)(Tk, Z(Tk), T, ξ)

]]
.

By the preceding identity, (6.7) and (6.12), the identity (6.9) yields

u∗(t, z) = sup
θ=η1{η<Tk}+ξ1{η=Tk}

θ∈St,T ,η∈Tt,Tk
,ξ∈TTk,T

{
Et,z
Q

[
1{η<Tk}F1(t, z, Tk, η)

+1{η=Tk}e
−r(Tk−t)ETk,Z(Tk)

Q

[
F g(T,·)(Tk, Z(Tk), T, ξ)

]]}

= sup
η∈Tt,Tk

{
Et,z
Q

[
1{η<Tk}F1(t, z, Tk, η)

+1{η=Tk}e
−r(Tk−t) sup

ξ∈TTk,T

ETk,Z(Tk)
Q

[
F g(T,·)(Tk, Z(Tk), T, ξ)

]]}
.

Using the definition (1.35) of u∗, we have

u∗(Tk, Z(Tk)) = sup
ξ∈TTk,T

ETk,Z(Tk)
Q

[
F g(T,·)(Tk, Z(Tk), T, ξ)

]
,

and so it follows that

u∗(t, z) = sup
η∈Tt,Tk

Et,z
Q

[
1{η<Tk}F1(t, z, Tk, η) + 1{η=Tk}e

−r(Tk−t)u∗(Tk, Z(Tk))
]
.

Notice that, by the definitions (6.2) of Fϕ and (6.5) of F1, we have

F u∗(T,·)(t, z, Tk, η) = 1{η<Tk}F1(t, z, Tk, η) + 1{η=Tk}e
−r(Tk−t)u∗(Tk, Z(Tk)).
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The preceding two identities yield

u∗(t, z) = sup
η∈Tt,Tk

Et,z
Q

[
F u∗(T,·)(t, z, Tk, η)

]

= u(t, z), (by (6.4)).

This concludes the proof of the theorem. �

Proof of Theorem 1.21. We omit the proof as it is very similar to the proofs of Theorems 1.20
and 1.10. �

Appendix A. Local a priori boundary estimates

To complete the proof of Theorem 5.5 we need the following local a priori boundary estimate
for parabolic boundary value problems.

Lemma A.1 (Local a priori boundary estimates). Let O j H be a domain such that the boundary
portion Γ1 is of class C2+α. For z0 ∈ Γ1 and R > 0, let

BR(z0) := {z ∈ O : |z − z0| < R} and QR,T (z0) := (0, T ) ×BR(z0).

Assume BR(z0) ∩ Γ0 = ∅ and let f ∈ Cα(Q̄2R,T (z0)) and g ∈ C2+α(Q̄2R,T (z0)). Then, there is a
positive constant C, depending only on z0, R and the coefficients of A, such that for any solution
u ∈ C2+α(Q̄2R,T (z0)) to

−ut +Au = f on Q2R,T (z0),

u = g on [0, T ]× (∂B2R(z0) ∩ Γ1) ∪ {T} ×B2R(z0),

we have

‖u‖C2+α(Q̄R,T (z0)) ≤ C
(
‖f‖Cα(Q̄2R,T (z0)) + ‖g‖C2+α([0,T ]×(∂B2R(z0)∩Γ1))

+‖g(T, ·)‖C2+α(B̄2R(z0)) + ‖u‖C(Q̄2R,T (z0))

)
.

Proof. The result follows by combining the global Schauder estimate [30, Theorem 10.4.1] and the
localization procedure of [30, Theorem 8.11.1], exactly as in the proof of [13, Theorem 3.8]. �

Remark A.2. The interior version of Lemma A.1 can be found in [30, Exercise 10.4.2].

Appendix B. The Itô formula

We recall the classical Itô formula, specialized to the case of the Heston process, with our sign
convention for its generator, −A, in (1.15).

Theorem B.1 (Itô formula). [26, Theorems 3.3.3 & 3.3.6] Let u ∈ C2
(
[0,∞)× R2

)
and let

Z be a solution to (1.17) with initial condition Z(0) on a filtered probability space (Ω,F ,Q),
{F (t)}t≥0. Then, for all t ≥ 0, we have,

u(t, Z(t)) = u(0, Z(0)) −
∫ t

0
(−us(s, Z(s)) +Au(s, Z(s))) ds

+

∫ t

0

√
Y (s) (ux(s, Z(s)) + ρσuy(s, Z(s))) dW1(s)

+

∫ t

0

√
Y (s)σ

√
1− ρ2uy(s, Z(s))dW2(s), a.s. Q.
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Appendix C. Regular points and continuity properties of stochastic
representations

For the purpose of this section, we let d be a non-negative integer, D ⊂ Rd a bounded domain
and t1 < t2. We denote by Q := (t1, t2)×D and recall that ðQ := (t1, t2)× ∂D ∪ {t2} × D̄. We
consider coefficients a, b and σ satisfying the following conditions.

Hypothesis C.1. Let

a : Q̄→ Rd×d and b : Q̄→ Rd,

be maps with component functions, aij , bi, belonging to C0,1(Q̄). Require that the matrix, a, be
symmetric and obey

d∑

i,j=1

aij(t, z)ξiξj ≥ δ|ξ|2, ∀ξ ∈ Rd, ∀(t, z) ∈ Q̄, (C.1)

where δ is a positive constant. �

Let σ be a square root of the matrix a such that σ ∈ C0,1(Q̄;Rd×d). Such a choice exists by
[20, Lemma 6.1.1]. We consider an extension of the coefficients b and σ from Q̄ to R × Rd, such
that these extensions are bounded and uniformly Lipschitz continuous, and condition (C.1) is
satisfied on R × Rd. Then, by [26, Theorems 5.2.5 & 5.2.9], for any (t, z) ∈ R × Rd, there is a
unique strong solution to

dZi(s) = bi(s, Z(s))dt+

d∑

j=1

σij(s, Z(s))dWj(s), ∀i = 1, . . . , d, s > t,

Z(t) = z,

(C.2)

where W is a Rd-valued Brownian motion.
We next review the notion of regular point.

Definition C.2 (Regular point). [10, Definitions 2.4.1 & 6.2.3], [26, Definition 4.2.9], [34, Defi-
nition 9.2.8] A point (t, z) ∈ ∂Q is regular if for every s > t, we have

Qt,z ((u,Z(u)) ∈ Q,∀u ∈ (t, s)) = 0, (C.3)

where Qt,z denotes the law of the Heston process started at (t, z), as in Corollary 2.8.

Remark C.3. Notice that by choosing (t1, t2) = R, Definition C.2 is equivalent to [10, Definition
6.2.3].

We have the following characterization of regular points.

Theorem C.4 (Characterization of regular points). [10, Theorem 2.4.1 and the Remark following
Theorem 2.4.1] Assume Hypothesis C.1 holds. A point (t, z) ∈ ∂Q is regular if and only if, for
every t0 > t,

lim
Q∋(t′,z′)→(t,z)

Qt′,z′ (τQ > t0) = 0, (C.4)

where τ t
′,z′

Q is the first exit time from Q of the process Z(t′,z′) started at (t′, z′) ∈ Q.

Remark C.5. Notice that τ t
′,z′

Q = τ t
′,z′

D ∧ t2, where τ t
′,z′

D is defined in (1.21), for all (t′, z′) ∈ Q.

The following condition on the boundary of the cylinder Q is sufficient to ensure that a bound-
ary point is regular.
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Proposition C.6 (Exterior sphere condition). [10, Theorem 2.4.4], [26, Proposition 4.2.15 &
Theorem 4.2.19] Assume Hypothesis C.1 holds. Let (t, z) ∈ ∂Q. If Q satisfies the exterior sphere
condition at (t, z), then (t, z) is a regular point.

Proof. The conclusion follows from [10, Theorem 2.4.4] and the characterization of regular points
Theorem C.4. �

Remark C.7. Proposition C.6 implies that if z ∈ ∂D andD satisfies the exterior sphere condition
at z, then (t, z) is a regular point, for all t ∈ (t1, t2). Obviously, Q satisfies the exterior sphere
condition at all points (t2, z) ∈ {t2} × D̄, and so (t2, z) is a regular point, for all z ∈ D̄.

Theorem C.8 (Continuity of stochastic representations). [10, Theorem 2.4.2], [26, Theorem
4.2.12] Assume Hypothesis C.1 holds. If (t, z) ∈ ðQ is a regular point, and g is a Borel measurable,
bounded function on ðQ which is continuous at (t, z), then

lim
Q∋(t′,z′)→(t,z)

Et′,z′

Q [g(τQ, Z(τQ))] = g(t, z). (C.5)

We have the following consequence of Theorems C.8 and C.4.

Corollary C.9 (Continuity of stochastic representations with killing term). In addition to the
hypotheses of Theorem C.8, assume that

(1) the function c : Q̄→ [0,∞) is non-negative, bounded and Borel measurable,
(2) if there is T > 0, such that τQ ≤ T a.s., then the function c : Q̄→ R is bounded and Borel

measurable function.

Then

lim
Q∋(t′,z′)→(t,z)

Et′,z′

Q

[
exp

(
−
∫ τQ

t′
c(s, Z(s))ds

)
g(τQ, Z(τQ))

]
= g(t, z), (C.6)

for all regular points (t, z) ∈ ðQ.

Proof. We consider first the case when the stopping time τQ is not necessarily bounded by a
positive constant T . Then, we let c0 be a positive constant such that

0 ≤ c ≤ c0, a.e. on Q. (C.7)

Let (t, z) ∈ ðQ be a fixed regular point. We fix ε > 0 and consider t′ ∈ [t1, t2] such that

|t− t′| < ε/2. Then, using the fact that τ t
′,z′

Q ≥ t′ > t− ε/2, we see that
{
τ t

′,z′

Q < t− ε
}
⊆
{
t− ε/2 < t′ ≤ τ t

′,z′

Q < t− ε
}
= ∅,

and so, we obtain
{
|τ t′,z′Q − t| > ε

}
⊆
{
τ t

′,z′

Q > t+ ε
}
∪
{
τ t

′,z′

Q t < t− ε
}

⊆
{
τ t

′,z′

Q > t+ ε
}
.

Theorem C.4, with t0 := t+ ε, implies that

lim
Q∋(t′,z′)→(t,z)

Qt′,z′ (|τQ − t| > ε) ≤ lim
Q∋(t′,z′)→(t,z)

Qt′,z′ (τQ > t+ ε) = 0,

from where it follows that τ t
′,z′

Q converges in probability to 0. Similarly, we can argue that

exp


−

∫ τ t
′,z′

Q

t′
c(s, Z(t′,z′)(s))ds


 (C.8)
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converges in probability to 1, as (t′, z′) ∈ Q tends to (t, z). We again fix ε ∈ (0, 1) and consider
t′ such that |t′ − t| < −1/(2c0) log(1− ε). By inequality (C.7), we see that

Qt′,z′
(∣∣∣∣exp

(
−
∫ τQ

t′
c(s, Z(s))ds

)
− 1

∣∣∣∣ > ε

)

= Qt′,z′
(
exp

(
−
∫ τQ

t′
c(s, Z(s))ds

)
< 1− ε

)
, (as c ≥ 0),

≤ Qt′,z′
(
exp

(
−c0(τQ − t′)

)
< 1− ε

)
, (as 0 ≤ c ≤ c0),

= Qt′,z′
(
τQ > t′ − 1

c0
log(1− ε)

)

= Qt′,z′
(
τQ > t− 1

2c0
log(1− ε)

)
(because |t′ − t| < −1/(2c0) log(1− ε)).

Choosing t0 := t − log(1 − ε)/(2c0) in Theorem C.4, we see that the last term in the preceding
sequence of inequalities converges to 0, and so the collection of random variables (C.8) converges in
probability to 1, as (t′, z′) ∈ Q tends to (t, z). The sequence is uniformly bounded by the constant
1, and so [16, Exercise 2.4.34 (b)] implies that the sequence converges to 1 in expectation also,
that is

lim
Q∋(t′,z′)→(t,z)

Et′,z′

Q

[∣∣∣∣exp
(
−
∫ τQ

t′
c(s, Z(s))ds

)
− 1

∣∣∣∣
]
= 0. (C.9)

From the sequence of inequalities,
∣∣∣∣E

t′,z′

Q

[
exp

(
−
∫ τQ

t′
c(s, Z(s))ds

)
g(τQ, Z(τQ))

]
− g(t, z)

∣∣∣∣

≤
∣∣∣Et′,z′

Q [g(τQ, Z(τQ))]− g(t, z)
∣∣∣ +
∣∣∣∣E

t′,z′

Q

[(
1− exp

(
−
∫ τQ

t′
c(s, Z(s))ds

))
g(τQ, Z(τQ))

]∣∣∣∣

≤
∣∣∣Et′,z′

Q [g(τQ, Z(τQ))]− g(t, z)
∣∣∣ + ‖g‖L∞(ðQ)E

t′,z′

Q

[∣∣∣∣1− exp

(
−
∫ τQ

t′
c(s, Z(s))ds

)∣∣∣∣
]
,

the conclusion (C.6) follows from (C.5) and (C.9).
We next consider the case when the stopping time τQ is bounded a.s. by a positive constant T .

We fix (t, z) ∈ ðQ. Without loss of generality, we may assume that t ∈ [0, T ] and Q ⊆ [0, T ]×Rd.
Because c is a bounded function on Q, we let c1, c2 be two positive constants such that

−c1 ≤ c ≤ c2 a.e. on Q,

and we set

c̃ := c+ c1 on Q,

and

g̃(t′, z′) := ec1(t
′−t)g(t′, z′), ∀(t′, z′) ∈ ðQ.

Notice that c̃ is a non-negative, bounded Borel measurable function on Q. Also, g̃ is a bounded,
Borel measurable function on ðQ, and it is continuous at (t, z) with

g̃(t, z) = g(t, z). (C.10)
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In addition, we have for all (t′, z′) ∈ Q,

exp

(
−
∫ τQ

t′
c(s, Zt′,z′(s))ds

)
g(τQ, Z

t′,z′(τQ))

= exp

(
−
∫ τQ

t′
c̃(s, Zt′,z′(s))ds

)
g̃(τQ, Z

t′,z′(τQ))

+
(
exp

(
c1(t− t′)

)
− 1
)
exp

(
−
∫ τQ

t′
c̃(s, Zt′,z′(s))ds

)
g̃(τQ, Z

t′,z′(τQ)).

(C.11)

The functions c̃ : Q̄→ [0,∞] and g̃ : ðQ→ R satisfy the requirements of the preceding case, and
so, we have that

lim
Q∋(t′,z′)→(t,z)

Et′,z′

Q

[
exp

(
−
∫ τQ

t′
c̃(s, Z(s))ds

)
g̃(τQ, Z(τQ))

]
= g(t, z),

using (C.10). By the boundedness of c̃ on Q, of g̃ on ðQ, and the fact that τQ ≤ T a.s., we also
have

lim
Q∋(t′,z′)→(t,z)

Et′,z′

Q

[(
exp

(
c1(t− t′)

)
− 1
)
exp

(
−
∫ τQ

t′
c̃(s, Z(s))ds

)
g̃(τQ, Z(τQ))

]
= 0.

Therefore, the conclusion of the corollary follows from the preceding two limits and identity
(C.11).

�

Next, we review classical results on stochastic representations of solutions to non-degenerate,
elliptic and parabolic partial differential equations. For this purpose, we denote by

Lv := −aijvxixj
− bivxi

+ cv,

where aij, bi and c depend on z ∈ Rd in the elliptic case, and on (t, z) ∈ [0,∞) × Rd in the
parabolic case, and v is a smooth function of z or (t, z), respectively.

Theorem C.10 (Stochastic representation of solutions to non-degenerate elliptic differential
equations on bounded domains). [20, Theorem 6.5.1], [26, Proposition 5.7.2], [34, Theorem 9.1.1
& Corollary 9.1.2] Assume Hypothesis C.1 holds. Let α ∈ (0, 1) and D ⊂ Rd be a bounded domain
with C2 boundary. Let f ∈ Cα(D̄) and g ∈ C(∂D) and require that c ∈ Cα(D̄) and c ≥ 0. Then
the unique solution u ∈ C(D̄) ∩ C2(D) to the Dirichlet problem,

{
Lu = f on D,

u = g on ∂D,

has the stochastic representation,

u(z) = Ez
[
e−

∫ τD
0

c(Z(s))dsg(Z(τD))
]
+ Ez

[∫ τD

0
e−

∫ t

0
c(Z(s))dsf(Z(s))ds

]
, ∀z ∈ D̄.

Next, we recall the analogue of Theorem C.10 for the parabolic case.

Theorem C.11 (Stochastic representation of solutions to non-degenerate parabolic differential
equations on bounded domains). [20, Theorem 6.5.2], [26, Theorem 5.7.6] Assume Hypothesis
C.1 holds. Let T > 0, α ∈ (0, 1), and D ⊂ Rd be a bounded domain with C2 boundary. Set



STOCHASTIC REPRESENTATION OF SOLUTIONS TO DIRICHLET VARIATIONAL INEQUALITIES 47

Q = (0, T ) ×D. Let f ∈ Cα(Q̄) and g ∈ Cloc(ðQ) and require that c ∈ Cα(Q̄). Then the unique
solution u ∈ C(Q̄) ∩ C2(Q) to the Dirichlet problem,

{
−ut + Lu = f on Q,

u = g on ðQ,

has the stochastic representation,

u(t, z) = Et,z
[
e−

∫ τD∧T

t c(s,Z(s))dsg(τD ∧ T,Z(τD ∧ T ))
]

+ Ez

[∫ τD∧T

t
e−

∫ s

t
c(v,Z(v))dvf(s, Z(s))ds

]
, ∀(t, z) ∈ Q̄.

We use Theorems C.10 and C.11 in our proofs of Theorems 3.1 and 5.4 which provide existence
of solutions to the degenerate partial differential equations defined by the Heston operator.

Appendix D. Further comparisons with previous classical results for solutions
to boundary value or obstacle problems and their stochastic

representations

We provide a few more detailed comparisons between some of our main results and classical
results in the literature for boundary value or obstacle problems defined by an elliptic differential
operator, A.

D.1. Existence and uniqueness of solutions to elliptic boundary value problems. Exis-
tence and uniqueness of solutions to the elliptic boundary value problem (1.1) and (1.3), provided
Γ1 = ∂O, follow from Schauder methods when the coefficient matrix, (aij), of the second-order
derivatives in A is uniformly elliptic. For example, see [21, Theorem 6.13] for the case where
O is bounded and f and the coefficients of A are bounded and in Cα(O), α ∈ (0, 1), giving a
unique solution u ∈ C2+α(O) ∩ C(Ō), while [21, Theorem 6.14] gives u ∈ C2+α(Ō) when f and
the coefficients of A are in Cα(Ō). See [30, Corollary 7.4.4], together with [30, Corollary 7.4.9]
or [30, Theorem 7.6.4] or [30, Theorem 7.6.5 & Remark 7.6.6], for similar statements.

D.2. Stochastic representations for solutions to elliptic boundary value problems. We
may compare Theorems 1.3 and 1.6 with [34, Theorem 9.1.1] for a statement of uniqueness in
the case where O ⊂ Rn is a domain and

(a) u ∈ C2(O) ∩ Cb(O) solves
Au = f on O,

where

A := −
n∑

i,j=1

aij(z)
∂2

∂zi∂zj
+

n∑

i=1

bi(z)
∂

∂zi
;

(b) u = g on ∂O;

and the coefficients defining the boundary value problem obey

(i) (aij(z)) is symmetric and nonnegative definite on O;
(ii) (σij(z)) and b(z) = (bi(z)) have linear growth and are globally Lipschitz on O;
(iii) g ∈ Cb(∂O);
(iv) f ∈ C(O) obeys

EQ

[∫ τz

0
f(Zz(s)) ds

]
<∞, ∀z ∈ O.
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Condition (iv) holds, for example, when EQ[τz] <∞,∀z ∈ O, and f is bounded.
Here, (Zz(s))s≥0 is the solution to dZ(s) = b(Z(s)) ds+σ(Z(s)) dW (s), starting at z ∈ O, and

σ(z) = (σij(z)) obeys

1

2

n∑

k=1

σik(z)σjk(z) = aij(z),

while b(z) = (bi(z)).
See [34, Theorem 9.3.2] for a statement of uniqueness in the case where (iii) is replaced by (iii’)

g = 0, and (a), (b) are replaced by

(a’) u ∈ C2(O) and obeys, for some constant C > 0,

|u(z)| ≤ C

(
1 + EQ

[∫ τz

0
|f(Zz(s))| ds

])
, ∀z ∈ O;

(b’) limO∋z→z0 u(z) = 0 at regular points z0 ∈ ∂O.

Compare [5, Theorem 2.7.1 & Remarks 2.7.1, 2.7.2] for a statement of uniqueness in the case
where O is bounded, f, g, bi ∈ C(Ō), and aij ∈ C1(Ō) with (aij) strictly elliptic on Ō, while r is
replaced by a function c ∈ C(Ō), c ≥ 0. Compare [5, Theorem 2.7.2 & Remarks 2.7.3–5] for a
statement of uniqueness in the case where O = Rn, bi ∈ C1(Rn), aij ∈ C2

b (R
n), while r is replaced

by a function c ∈ C1
b (Ō), c ≥ c0 > 0, and f ∈ C1(Rn) obeys |f | + |Df | ≤ C(1 + |x|m, for some

m ∈ N.
We may compare Theorem 3.1 with [34, Theorem 9.2.14] for a statement of existence in the

case where, in addition to the hypotheses of [34, Theorem 9.1.1], (i) is replaced by (i’) (aij) is
symmetric and strictly elliptic on Ō; and (iii) is replaced by (iii’) g = 0. See [34, Theorem 9.3.1]
for a statement of existence in the case where (iii) is replaced by (iii’) g = 0. Finally, see [34,
Theorem 9.3.3 & Remark, p. 196] for a combined statement of uniqueness and existence, where
(iv) is replaced by (iv”) f ∈ Cα(O) for some α > 0 and obeys (iv); and (b) is replaced by (b”)
limO∋z→z0 u(z) = g(z) at regular points z0 ∈ ∂O.

Compare [20, Theorem 6.5.1] for a statement of existence and uniqueness in the case where O

is bounded and the coefficient matrix, (aij), is strictly elliptic on Ō , and [20, Theorems 13.1.1 &
13.3.1] in the case where (aij) is only assumed nonnegative definite on Ō.

D.3. Existence and uniqueness of solutions to parabolic terminal/boundary value
problems. Existence and uniqueness of solutions to the parabolic terminal/boundary value prob-
lem (1.7) and (1.9), again provided Γ1 = ∂O, follow from Schauder methods when the coefficient
matrix, (aij), of A is strictly elliptic on Ō . For example, see [31, Theorems 5.9 & 5.10] for
the case where f and the coefficients of A are bounded and in Cα(Q), giving a unique solution
u ∈ C2+α(Q) ∩ C(Q̄).
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