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Abstract

We present McGenus, an algorithm to predict RNA secondary structures with pseudoknots.

The method is based on a classification of RNA structures according to their topological genus.

McGenus can treat sequences of up to 1000 bases and performs an advanced stochastic search

of their minimum free energy structure allowing for non trivial pseudoknot topologies. Specifi-

cally, McGenus employs a multiple Markov chain scheme for minimizing a general scoring function

which includes not only free energy contributions for pair stacking, loop penalties, etc. but also

a phenomenological penalty for the genus of the pairing graph. The good performance of the

stochastic search strategy was successfully validated against TT2NE which uses the same free en-

ergy parametrization and performs exhaustive or partially exhaustive structure search, albeit for

much shorter sequences (up to 200 bases). Next, the method was applied to other RNA sets,

including an extensive tmRNA database, yielding results that are competitive with existing algo-

rithms. Finally, it is shown that McGenus highlights possible limitations in the free energy scoring

function. The algorithm is available as a web-server at http://ipht.cea.fr/rna/mcgenus.php.
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INTRODUCTION

In the past twenty years, there has been a tremendous increase of interest in RNA by the

biological community. This biopolymer, which was at first merely considered as a simple

information carrier, was gradually proven to be a major actor in the biology of the cell [1].

Since the RNA functionality is mostly determined by its three-dimensional conformation,

the accurate prediction of RNA folding from the nucleotide sequence is a central issue [2].

It is strongly believed that the biological activity of RNA (be it enzymatic or regulatory), is

implemented through the binding of some unpaired bases of the RNA with their ligand. It

is thus crucial to have a precise and reliable map of all the pairings taking place in RNA and

to correctly identify loops. The complete list of all Watson-Crick and Wobble base pairs in

RNA is called the secondary structure of RNA.

In this paper, we stick to the standard assumption that there is an effective free energy

which governs the formation of secondary structures, so that the optimal folding of an RNA

sequence is found as the minimum free energy structure (MFE for short). The problem of

finding the MFE structure given a certain sequence has been conceptually solved provided

the MFE is planar, i. e. the MFE structure contains no pair (i,j), (k,l) such that i < k <

j < l or k < i < l < j. In that case, polynomial algorithms which can treat long RNAs

assuming a mostly linear free energy model have been proposed [3–5]. Otherwise, the MFE

structure is said to contain pseudoknots and finding it has been shown to be an NP-complete

problem with respect to the sequence length [6].

In a previous paper [7], we proposed an algorithm, TT2NE, which consists in searching

for the exact MFE structure for a certain form of the energy function, where pseudoknots are

penalized according to a topological index, namely their genus. TT2NE relies on the “max-

imum weighted independent set” (WIS) formalism. In this formalism, an RNA structure is

viewed as an aggregate of stem-like structures (helices possibly comprising bulges of size 1

or internal loops of size 1× 1), called “helipoints” [7]. Given a certain sequence, the set of

all possible helipoints is computed and a weighted graph is built. The vertices of the graph

are the helipoints, with a weight given by minus their free energy of formation. Two vertices

are connected by an arc if and only if the corresponding helipoints are not compatible in

the same secondary structure. Indeed, two helipoints may be mutually exclusive in a graph:

this is for example the case if they share at least one base (since base triples are forbidden).
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Finding the MFE structure thus amounts to finding the maximum weighted independent set

of the graph, i. e. the set of pairwise compatible helipoints for which the overall free energy

is minimum.

Both McGenus and TT2NE utilize the same energy function, defined in terms of helipoints

and genus penalty as well as the same initial graph. The difference between the two lies

in the search algorithm for the MFE. While in TT2NE the secondary structure is built

by adding or removing helipoints in a deterministic order, in McGenus, they are added or

removed one at a time according to a stochastic Monte Carlo Metropolis scheme. As in

TT2NE, there is no restriction on the pseudoknots topologies that McGenus can generate.

A server implementation of McGenus can be found at http://ipht.cea.fr/rna/mcgenus.php.

In the following and in the numerical implementation of McGenus, we will restrict our-

selves to the energy function and genus penalty described in detail in [7]. While in TT2NE,

the energy form was dictated by the requirement to allow for a branch and bound procedure,

here in McGenus we insist that there is no such restriction on the form of the energy func-

tion. It can for instance include loop and pseudoknot entropies. Furthermore, the penalty

for pseudoknots needs not be proportional to the genus as in TT2NE, but may depend

also on the topology of each individual pseudoknot (see below).Therefore, by modifying the

energy function, it is possible to improve on the results that we will present below.

As stated in the introduction, the initial graph is generated in the same way as in [7].

MATERIALS AND METHODS

In the present framework, the folded structure of a given RNA sequence is given by

the set of helipoints which minimizes the free energy. For definiteness of notation, in the

following we shall denote by {h1, ..., hN} the set of all helipoints that can possibly arise from

the pairings of nucleotides in the given sequence (their total number, N , is clearly sequence

dependent). A given structure S is accordingly fully specified by the associated subset of n

helipoints {hi1 , hi2 , ..., hin} and its free energy is formally given by:

F =
n∑

j=1

e(hij) + µ g(S) . (1)

The first term is the additive contribution of the pairing and stacking energy e of indi-

vidual helipoints, and is parametrized as in [7]. The second term weights the topological
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complexity of the structure, measured by its genus g [8, 9]. Unlike the first term which is

local, the genus, which is a non-negative integer, depends globally on all the helipoints. The

parameter µ ≥ 0 is used to penalize structures with excessively large values of the genus, in

agreement with the phenomenological observation that the genus of most naturally-occurring

RNA structures of size up to 600 bases, is smaller than 4. Based on previous studies [7], the

default value of the genus penalty µ is set equal to 1.5 Kcal/mol.

It is implicitly assumed that the free energy of incompatible sets of helipoints (e.g. when

at least one base takes part to more than one helix) is infinite.

Advanced Monte Carlo search of MFE structures

The minimization of the free energy (1) is carried out by a Monte Carlo (MC) exploration

of structure space, that is over sets of distinct helipoints {hi1 , hi2 , ..., hin}, picked from the

full ensemble of helipoints {h1, ..., hN}. To illustrate the search algorithm, it is convenient

to view the structures as described by sets of integer {σ1, ..., σN}, where each σi is equal to

1 if the helipoint i is active, i.e. present in the structure, and 0 otherwise. Starting from a

structure consisting of only one active helix, at each Monte Carlo step one of the following

two “moves” is tried:

• (i) helix addition, consisting of the activation of one inactive helix, σ = 0→ σ = 1,

• (ii) helix removal, consisting of the inactivation of one active helix, σ = 1→ σ = 0.

The helipoint whose state is changed by the MC move is picked with a biased probability

favoring the activation of helipoints with low pairing/stacking energy e and the inactivation

of helipoints with high values of e. The biasing is inspired by the heat-bath MC algorithm.

Specifically, the helipoint h̄ activated in case (i) is picked among the inactive ones with

probability w defined by

w = exp[−e(h̄)/κBT ]/ZS̄ (2)

with ZS̄ =
∑

h inactive in S

exp[−e(h)/κBT ] (3)
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where κB is the Boltzmann constant and T is the Monte Carlo temperature. In case (ii),

the inactivated helix h̄ is instead picked with probability

w = exp[+e(h̄)/κBT ]/ZS (4)

with ZS =
∑

h active in S

exp[+e(h)/κBT ] (5)

A generalized Metropolis criterion (which takes into account the biased choice of the

activated/inactivated helices) is finally used to accept or reject the new structure and ensure

that, in the long run, the generated structures are sampled with probability given by the

canonical weight exp[−e/κBT ].

The stochastic generation of structures is carried out within a multiple Markov chain

scheme where several simulations are run in parallel at different temperatures T . The

temperatures are chosen so as to cover a range of thermal energies, κBT , going from about

one tenth of the smallest helipoint energy up to the largest helipoint energy. At regular

time intervals, swaps are proposed between structures at neighboring temperatures and are

accepted with the generalized Metropolis criterion described in ref. [10]. The Markov replicas

at the lowest temperature progressively populate structures of low free-energy, and a record

is kept of the lowest energy structures which are finally provided as output.

Finally, we point out that the Monte Carlo optimization can be performed not only

within the whole space of secondary structures (unconstrained search) but is straightfor-

wardly restricted to topologically-constrained subspaces. In particular, by introducing ad

hoc “infinite” energy penalties in eq. 1, the search can be restricted to structures whose

genus, topology or extent of pseudoknots satisfy some preassigned constraints. The web-

server interface allows the user to set such thresholds, e.g. to account for knowledge based

constraints.

Generalized Topological Penalties

As we have previously reported [11, 12], any RNA complex pseudoknot structure may

be built from of a set of building blocks, called primitive pseudoknots. A pseudoknots is

termed primitive if it is (i) irreducible, i.e. its standard diagrammatic representation cannot

be disconnected by cutting one backbone line and (ii) contains no nested pseudoknot, that

is it cannot be disconnected by cutting two backbone lines, see Fig. 1.
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FIG. 1: The only four primitive pseudoknots of genus 1 [11].

As was shown in [11], most complex high genus RNA structures are built from primitive

graphs of smaller genus . Therefore, it makes sense to assign different penalties to pseudo-

knots having same genus but with different primitive components. For example, all tmRNAs

have total genus 3 or 4 and contain no primitive pseudoknots of genus larger than 1. In the

present implementation, we propose only two options: i) we forbid primitive pseudoknots

of genus larger than 1 (by assigning them an infinite penalty) but the overall structure can

have any total genus or ii) we assign a global penalty proportional to the total genus and

don’t take into account the decomposition of the structure into primitive blocks.

RESULTS AND DISCUSSION

We have carried out an extensive comparison of McGenus predictions against those of

other methods. For this purpose we used hundreds of RNA sequences from various sets,

including: the dataset previously used for TT2NE [7], an extensive set of tmRNAs [13] and

the more limited set of RNA molecules for which the structural data is available in the

protein databank (PDB). Over such diverse datasets, the predictive performance is aptly

conveyed by the sensitivity of the method, that is the fraction of pairs in the reference

(native) structure that are correctly predicted by the method. Depending on the context

we shall also report on the positive predicted value (PPV). The PPV corresponds to the

fraction of predicted pairs that are found in the native structure, and hence measures the

incidence of false positives in the predicted contacts. We shall consider this measure for the
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PDB set, but not for the tmRNA set whose entries, often corresponding to putative native

structures derived from homology, are known to potentially lack several native contacts, as

in the paradigmatic case of Aste.yell. TRW-322098 1-426 [13].

From an overall point of view, the tests are aimed at elucidating two issues that are

central to any MFE-based method. The first issue, regards the algorithmic effectiveness of

the energy minimization, while the second regards the viability of the energy parametrization

within the considered space of secondary structures. The former is most clearly ascertained

by comparing algorithms employing the same energy parametrization. This step is crucial

for the second aspect too. In fact, the appropriateness or the limitations of a given energy

parametrization and/or of the considered secondary structure space, can be exposed in a

non-ambiguous way only if the minimization algorithm is well-performing.

Following the above-mentioned logical order, we started by comparing the predictions of

McGenus against TT2NE on a database of 47 short sequences (< 209 bases) used in [7].

Because McGenus and TT2NE rely on the same energy parametrization[14], the comparison

provides a stringent test of the effectiveness of the energy-minimization procedure. In fact,

we recall that TT2NE is based on an exhaustive, or nearly exhaustive search in sequence

space. Despite the stochastic, non-exhaustive and much faster McGenus searches, its per-

formance turned out to be optimal. Over the full data set, McGenus returned exactly the

same MFE structures as TT2NE, as well as all the suboptimal structures.

To extend the assessment of McGenus minimization performance for longer chains, that

cannot be addressed by TT2NE, we considered MFold [4], a MFE-based algorithm restricted

to secondary structures without pseudoknots. We used a version of MFold which employs the

same energy parametrization as McGenus.The comparison was carried out over the complete

set of 590 sequences of genus 3, 4 or 5 from the tmRNA database [13] with lengths in the

200-500 range. For each of the 590 sequences, McGenus returned structures with lower free

energy than MFold. On the average, the free energy of the McGenus predicted structures

was -125 kCal/mol, while that predicted by MFold was -103 kCal/mol.

These two tests prove the effectiveness of the energy-minimization scheme adopted by

McGenus and we accordingly turned our attention to the overall predictive performance of

the method (sensitivity). For this purpose we used again the 590 sequences of genus 3, 4 or

5 from the tmRNA database [13] and compared McGenus predictions against McQfold [15],

HotKnots [16], ProbKnots [17], PKnots [18], gfold [19] and Mfold [20] on this set. Besides
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McGenus, only McQfold and MFold could handle all the chains in the set, which were

too long to process for the other mentioned algorithms. We recall that MFold predictions

are restricted to secondary structures free of pseudoknots, while McQfold can output any

topology of pseudoknot. The genus of each of McGenus prediction was enforced not to

exceed the genus of the native structures of the dataset. As discussed in [7], the setting of

the corresponding parameter gmax can be decided by the user. In this report, for each test

sequence, we chose to set gmax to the appropriate, native, value to illustrate the performance

of McGenus performs when it is driven in the appropriate secondary structure search space.

The total number of base pairs to be predicted in the set is 56740. Mfold, McQfold, and

McGenus respectively predicted 37%, 42% and 42% of them. Therefore the performance

of McGenus is not inferior to that the few available structure prediction methods that can

handle sequences of comparable length.

The fact that the average sensitivity of the three methods is below 50% poses the question

of whether it can be improved by tweaking the energy parameters or by suitably further

constraining the space of secondary structures over which the minimization is performed.

We focus on the latter aspect as the first has been already discussed in [7]. The space of

secondary structures considered by prediction schemes based on abstract, graph-theoretical

representations, include structures that are unphysical, i.e. that cannot be realized in a

three-dimensional space because of chain connectivity constraints.

The impact of this major difficulty can be lessened by excluding from further consider-

ations those structures that present physically-unviable or atypical levels of entanglement.

To illustrate this point, we note that, in the mentioned dataset of 590 molecules, only H-

pseudoknots which span less than 70 bases are present. By enforcing such knowledge-based

constraint on the searched space, the sensitivity of McGenus is boosted from 42% to 52%.

Introducing the constraint in structure space clearly results in higher energies for the pre-

dicted structures. In fact the average free energy was -125 kCal/mol without the constraint

while it is -114 kCal/mol with the restriction of the pseudoknot length. Notwithstanding the

reduction of the searched space due to the pseudoknot-length constraint, the structures re-

turned by McGenus have an energy that is significantly lower than the reference, (putative)

native structures, which is about -73kCal/mol. The free energy difference appears too large

to be accounted for by the neglected contribution of loop entropy, missing chain-connectivity

constraints or imperfect parametrization of the potentials, which are well established. A
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more plausible source of discrepancy could the missing contacts in the homology-derived

native structure of the tmRNA database.

To check this last point, we have studied the unconstrained version McGenus on a set

of 4 sequences from the protein databank (PDB). Their PDB ids are: 1Y0Q (length=229),

3EOH (length=412), 2A64 (length=417) and 2H0W (length=151). The structures of these

entries is known unambiguously from X-ray scattering data and contain very few long and

non-hybridized RNA sequences (i.e. not bound to proteins, DNA or other molecules).

Accordingly, the McGenus performance on this set was higher than for the tmRNA set.

The sensitivity for 1Y0Q, 3EOH, 2A64 and 2H0W was equal to 87%, 39%, 50% and 72%,

respectively while the PPV was equal to 90%, 38%, 35% and 84%, respectively. Again,

the structures predicted by McGenus have a lower free energy than the native ones. This

indicates that, besides accounting for topological effects, further improvements of secondary

structure predictions would probably require a better parametrization of the free energy and

of its functional form. The generality and flexibility of the McGenus search algorithm ought

to allow for incorporating any such modifications in a transparent way.

CPU time

The CPU time required by McGenus to fold an RNA sequence depends on the total

number of Monte Carlo steps. For a tm-RNA of length 400, the typical number of helipoints

is 3500. For each sequence, we use 10 replicas, and overall 3000 × number of helipoint steps

to achieve these results. The result is typically returned in 15 minutes on a parallel quadcore

computer.

CONCLUSION

In this article, we presented McGenus, an efficient algorithm for RNA pseudoknot pre-

diction, which proves that classifying pseudoknots according to their genus is a relevant and

successful concept. We showed that on a set of RNA structures from the tm-RNA database

[13], McGenus allows to treat sequences of sizes up to 1000 in a few minutes, with a per-

formance that is comparable or better than the few methods that can treat sequences with

comparable length.
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In order to further improve the performance of McGenus, we see 3 main directions:

I) improvement on the computing techniques, in particular on the parallelization of the

algorithm. II) improvement of the functional form and parametrization of the energy model

(likely to impact also on pseudoknot-free methods such as Mfold). III) inclusion of steric

constraints.
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