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Abstract

We use a set of four theoretical navigability indices for street maps to investigate the shape of

the resulting street networks, if they are grown by optimizing these indices. The indices compare

the performance of simulated navigators (having a partial information about the surroundings,

like humans in many real situations) to the performance of optimally navigating individuals. We

show that our simple greedy shortcut construction strategy generates the emerging structures

that are different from real road network, but not inconceivable. The resulting city plans, for

all navigation indices, share common qualitative properties such as the tendency for triangular

blocks to appear, while the more quantitative features, such as degree distributions and clustering,

are characteristically different depending on the type of metrics and routing strategies. We show

that it is the type of metrics used which determines the overall shapes characterized by structural

heterogeneity, but the routing schemes contribute to more subtle details of locality, which is more

emphasized in case of unrestricted connections when the edge crossing is allowed.
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I. INTRODUCTION

Making cities easy to navigate without maps or electronic devices is a desirable objective

(although certainly not the only one) for urban planning. Based on models of how humans

find their way in a partially unknown environment, one can evaluate street maps and choose

where to put new streets to optimize them for better navigability. The setup for such a

simulation is to assume every pair of start and finish points for a navigator with partial

information and measure the ratio between the shortest path length and the actual path

length. In the previous work of ours, an index defined by the ratio is within the range (0, 1]

with 0 representing a worst and 1 a perfect navigability of given spatial graph layouts [1].

In this work, we instead focus on designing optimal transport systems for such concept

of navigability under limited resources, which is an important engineering problem and,

mathematically, a typical example of the constraint optimization problem [2] where it is

well-known that finding the exact optimum of such systems is hard. The problem gets even

more complicated if the measure or object function to be optimized is not exactly given.

Constructing transport networks on which real navigators move precisely correspond to this

situation, due to the fact that the navigability considering real navigators’ behavior is not

given as a simple mathematical description [1, 3–7].

Our idea of modeling real navigators’ behavior is essentially exploiting the spatial informa-

tion on a local level, and thus it can be modeled as a simple greedy routing strategy [1, 5, 6].

In this respect, our main idea on this work is to use the performance of a simple greedy

routing scheme called greedy spatial navigation (GSN) based on the directional information

(“taking the road with the direction closest to the direction to the target” introduced in

Ref. [1]), along with the real shortest path navigation (SPN) for comparison, to optimize

the interconnected structures for a given distribution of vertices on two-dimensional (2D)

space under limited resources, i.e., the total length of edges [8–12]. Instead of solving the

mathematically cumbersome nondeterministic polynomial time (NP)-complete problem of

finding the exactly optimal configurations, we focus on the realistic approach of constructing

shortcuts greedily from a spanning tree structure as the skeleton [13].

Based on the simulation results from a simple shortcut construction scheme starting with

randomly distributed vertices to be connected, we first find that the type of metric (hopping

vs. Euclidean distance) is crucial to determine the final structures. In addition, the type of
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navigability (shortest vs. GSN path length) also plays an important role, which is reflected

by the different degree of inefficiency caused by greedy navigators between those cases. The

difference between the two navigability measures is quite prominent if we allow the crossing

among edges, which leads to the unrealistic edge condensation for the shortest path length

but only the fat-tailed degree distribution for the GSN path length.

II. SHORTCUT CONSTRUCTION

The aim of the model is to construct navigability-friendly structures under the constraint

of resources given by the total length of the edges. This fully deterministic model only

depends on the initial configuration of vertices without any free parameter involved. First,

assume that we have a set of vertices in a 2D space with their coordinates given, without any

prescribed edges. To guarantee the connectivity and minimum initial resource, the minimum

spanning tree (MST) T , which is the connected subtree minimizing the total length of edges,

is generated with Kruskal’s algorithm [14]. This T is the initial state of the evolving graph

G so that G(t = 0) = T . We define the navigability as the path length averaged over all

the pairs of vertices as sources and targets. The navigability is first classified as the one

using GSN pathways and the other using the real shortest path (global optimum) in terms

of the graph topology and the Euclidean path length. Furthermore, we here distinguish

the metrics based on the hopping distance (the number of hops needed to reach the target)

and the Euclidean distance (the sum of Euclidean distance along the path). The former is

appropriate for the situation when the time spent on the pathway is relatively insensitive to

the length of each segment of pathways, or the waiting time for each junction (vertex in this

case) is significant, e.g., the airline network or express way network with significant delays in

the junctions due to the traffic light. On the other hand, the latter is more suitable for the

case when the junction does not play a significant role, e.g., the road network without severe

traffic and traffic light. Distinction between GSN and SPN representing whether navigators

only use the directional information or have the ability to fully access the real shortest path,

combined with those two different metrics, yields four different navigation strategies in total.

At each time step t, the “shortcut” among the vertex pair (not already connected by an

edge in G(t)), which maximizes the performance of one of the four navigation strategies:

Greedy Spatial Navigation with Hopping distance (GSNH) [1], Greedy Spatial Navigation
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FIG. 1: Original Boston road structure (a), MST (b), GSNH (c), GSNE (d), SPNH (e), and SPNE

(f). Red edges are the ones in MST (b), and black edges correspond to shortcut edges added during

the evolving process, for (c)-(f). Note that the edges of MST (b) in this case are chosen among the

original edges (a).

with Euclidean distance (GSNE), Shortest Path Navigation with Hopping distance (SPNH),

and Shortest Path Navigation with Euclidean distance (SPNE), is selected. The shortcut

is connected by a new edge, unless the candidate edge crosses one of the existing edges of

G(t) in the 2D space [15]. This shortcut construction process is repeated as long as the total

length l(t) of edges of G(t) does not exceed a length constraint lmax. Figure 1 illustrates

the shortcut construction model based on the set of vertices in the major thoroughfares of

Boston road structure [1, 16]. The constraint lmax, in this case, is given by the total length of

the original edges in Fig. 1(a), and the performance is summarized in Table I. From Fig. 1,

we observe that the type of metric [hopping distance for (c) and (e) vs. Euclidean distance

for (d) and (f)] greatly affects the final structure of the network.
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TABLE I: Total edge lengths and routing performances for the Boston road example depicted in

Fig. 1. The total edge lengths and the GSN/SP distances are shown in an arbitrary unit.

network length routing performance

original [Fig. 1(a)] 1.038 × 105 6.820 (GSN steps)

4.619 × 103 (GSN distance)

5.716 (SP steps)

4.259 × 103 (SP distance)

MST [Fig. 1(b)] 3.818 × 104 25.78 (GSN steps)

1.413 × 104 (GSN distance)

17.02 (SP steps)

8.173 × 103 (SP distance)

GSNH [Fig. 1(c)] 1.036 × 105 5.266 (GSN steps)

GSNE [Fig. 1(d)] 1.029 × 105 4.228 × 103 (GSN distance)

SPNH [Fig. 1(e)] 1.037 × 105 3.950 (SP steps)

SPNE [Fig. 1(f)] 1.029 × 105 4.103 × 103 (SP distance)

III. RESULTS

A. Topological properties of emerged network structures

For more systematic approach, we first generate N number of vertices on the square with

the unit length. Then, as described in Sect. II, the MST is constructed and serves as a

starting point of the shortcut construction. Examples of constructed networks from a vertex

configuration in the space are illustrated in Fig. 2. All the results reported here are from

graphs with N = 102 and averaged at least 20 independent graph generations. At the first

glance, the difference between GSN and SP [(a) vs. (c) and (b) vs. (d)] may not be notable

enough, but the fraction of Braess edges (defined as the edges whose removal enhances the

greedy navigability) [1] causing the inefficiency, shown in Table II, is much smaller for GSN,

from its construction purpose toward the optimized structure for the GSN pathways. The

comparative time series of performance and the total edge length shown in Figs. 3–6(a)

indicate that the GSNH tends to connect edges with shorter distance first.
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FIG. 2: Example structures of model networks for GSNH (a), GSNE (b), SPNH (c), and SPNE

(d), starting from the same randomly distributed vertices with N = 102 and lmax = 20.

TABLE II: Fraction of Braess edges PB with negative edge essentiality e values [1] for emerged

networks with different greedy shortcut addition schemes, for the model network with N = 102

and lmax = 20. The e values defined with the hopping (Euclidean) distance are used for GSNH

and SPNH (GSNE and SPNE), respectively.

GSNH GSNE SPNH SPNE

PB 12.12% 1.249% 21.70% 5.215%

The most noticeable feature distinguishing between using the hopping distance and the

Euclidean distance is the heterogeneity in the number of connections attached to each node,

or degree distribution shown in Figs. 3–6(b). Hubs, or the nodes with emergence of hubs for

hopping-distance-based scheme, as shown in much fatter tail from Figs. 3(b) and 4(b) than

Figs. 5(b) and 6(b). Looking more closely, it is also shown that even some large hubs located

relatively far from the centroid, showing the central governance (SPN) vs. decentralized

local governance (GSN) hub locality [Figs. 3–6(c)]. The different importance of geometric

distance for routing schemes is reflected in the average connection probability for vertex pairs

with a certain Euclidean distance, shown in Figs. 3–6(d), where the connection probability is

exponentially decreased for GSNE and SPNE, while the relatively long-range connections are

observed for GSNH and SPNH. The average clustering coefficient 〈C(k)〉 [17] as a function

6
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FIG. 3: The topological properties of emerged network structures for several different cutoff values

of lmax, in case of GSNH, where N = 102. Time series of performance and total edge length is

shown (a), where the black horizontal lines correspond to lmax values used in (b)–(f). The others

are degree distribution (b), position centrality of vertices as functions of degree (c), connection

probability of vertex pairs as functions of Euclidean distance (d), average clustering coefficient for

vertices with given degree (e), and average vertex navigator centrality for vertices with given degree

(f), depending on the change of lmax values.

of degrees seem to be increased with the degree [Figs. 3–6(e)], in contrast to topological

networks without geometric embedding. In addition, naturally, there is a strong correlation

between the vertex navigator centrality 〈n(k)〉 [1] and degrees [Figs. 3–6(f)].

B. Geometric properties: triangular block, angle and area distributions

One can observe lots of characteristic triangular blocks for the optimized structures for

all the cases, as shown in Figs. 1 and 2. Those triangular blocks are quantitatively counted

in comparison to the random counterparts, using the clustering coefficient of a whole net-

work [18]. Table III shows the results. Based on the ratio C△/Cr, obviously the Euclidean-

distance based strategy produces more triangular blocks, but for both metrics, it is also

notable that GSN induces more triangles than SPN. Therefore, along with the degree distri-

butions, the triangular block statistics also support the conclusion that GSN encapsulates
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FIG. 4: The topological properties of emerged network structures for several different cutoff values

of lmax, as in Fig. 3, in case of GSNE.
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FIG. 5: The topological properties of emerged network structures for several different cutoff values

of lmax, as in Fig. 3, in case of SPNH.

the refined local structures. In reality, of course, due to other factors such as packing the

buildings with square cross-sections into blocks, the square blocks rather than triangular

blocks prevail. However, it is important to note that such a simple objective function based

on navigability can generate the local block structures. Those triangular structures are in-
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FIG. 6: The topological properties of emerged network structures for several different cutoff values

of lmax, as in Fig. 3, in case of SPNE.

TABLE III: The clustering coefficient based on the number of triangles (C△), compared to the

random counterpart (Cr = 2M/N2, where N and M are the numbers of vertices and edges,

respectively).

method C△ Cr C△/Cr

GSNH 1.04× 10−1 3.20 × 10−2 3.26

GSNE 1.89× 10−1 3.66 × 10−2 5.15

SPNH 6.29× 10−2 2.98 × 10−2 2.11

SPNE 1.56× 10−1 3.44 × 10−2 4.53

deed observed in reality, such as Roman roads in Britain [19], the sheer scale of which is

not imposed with such restricting factors at the time of the construction. Such a difference

is shown to be even more prominent when we remove the no-crossing rule, which will be

discussed in Sect. III C.

Another geometric aspect of the optimized networks is seen by observing the distribu-

tions of area enclosed by edges and the angles by adjacent edges for vertices, i.e., the angles

between adjacent roads at the intersections. We observe that both the enclosed area distri-

bution and angle distribution are notably distinguishable depending on the metrics used as
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FIG. 7: The distributions of area enclosed by edges (a) and the angles for the intersections (vertices)

(b), in the optimized structure for each navigability (N = 102 and lmax = 20).

shown in Fig. 7. For hopping-distance based strategies, more heterogeneous enclosed area

distributions compared to the Euclidean-distance based strategies are observed (Fig. 7(a)).

In addition, very sharp angles (Fig. 7(b)) are abundant due to the existence of hubs (see

Fig. 2 as well for examples), and the tendency is slightly more significant in SPNH than

GSNH. On the other hand, the angles are distributed around ≃ 60◦, the characteristic an-

gle of the regular triangle for Euclidean-distance based GSNE and SPNE. Therefore, the

enclosed area and angle distributions also indicate the emergence of relatively more regular

triangular structures with uniform enclosed area for GSNE and SPNE.

C. Remarks on the no-crossing rule for edges

So far, we have not allowed the crossing between edges in the construction process since

we consider such a crossing as effectively generating a new junction or vertex. What if there

is no such rule? If we allow edge-crossing, star-graph-like structures are naturally emerged

for SPNH as shown in Fig. 8(c), which leads to the “condensation” in terms of degree, as

the bimodal distribution for lmax = 12, 16, and 20 shown in Fig. 9(b) [20]. Interestingly,

this severe condensation is not observed in case of GSNH, as shown in Figs. 8(a) and 9(a)

(power-law-like fat tailed distribution but no condensation). The no-crossing rule, therefore,

effectively prevents such a condensation for SPNH, while no such explicit rule is necessary for

GSNH, because the consideration of greedy navigators itself naturally avoid such condensed

situations and allows the local hubs.
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FIG. 8: Example structures of model networks for GSNH (a), GSNE (b), SPNH (c), and SPNE (d),

if edge-crossing is allowed, starting from the same randomly distributed 102 vertices (lmax = 20)

as in Fig. 2.
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FIG. 9: The degree distributions of emerged network structures for GSNH (a) and SPNH (b), for

several different cutoff values of lmax, where N = 102.

IV. SUMMARY AND DISCUSSIONS

With a simple greedy optimization under the limited sum of length, we have investigated

the various structural properties of optimized networks for different types of navigability.

Due to the complexity of finding the exact optimal configurations of transportation systems,

in practice, heuristic methods are usually adopted for real systems. Therefore, we believe

that even though our scheme is simple and idealistic, it has some degree of implications in

real transportation systems. The most essential findings of ours are the emergence of hubs in
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case of the consideration of the hopping distance, inherently geometric aspect of optimized

structures reflecting the types of metrics used, and the fact that the user-based routing

scheme (GSN) effectively induces the local hubs even without the explicit no-crossing rule.

The emergence of triangular blocks from the simple optimization procedure is also notable—

would city plans be optimized for pedestrian navigability rather than traffic planning and

building design, then we should probably see more triangular blocks.

More elaborated or realistic approaches, for instance, using the different types of back-

bones, stochastic edge additions (similar to the simulated annealing process); different ob-

jective functions such as the combination of navigability and length [8] or among different

metrics, etc. are good candidates for the future work. The reality check using human sub-

jects, of course, would be necessary for the application to the real systems.
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