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Abstract

During mammalian development the cerebral metabolic rate cor-
relates qualitatively with synaptogenesis, and both often exhibit bi-
modal temporal profiles. Despite these non-monotonic dependencies,
it is found based on empirical data for different mammals that regional
metabolic rate per synapse is approximately conserved from birth to
adulthood for a given species (with a slight deviation from this con-
stancy for human visual and temporal cortices during adolescence). A
typical synapse uses about (7±2) ·103 glucose molecules per second in
primate cerebral cortex, and about 5 times of that amount in cat and
rat visual cortices. A theoretical model for brain metabolic expendi-
ture is used to estimate synaptic signaling and neural spiking activity
during development. It is found that synaptic efficacy is generally in-
versely correlated with average firing rate, and additionally, synapses
consume a bulk of metabolic energy, roughly 50 − 90% during most
of the developmental process (except human temporal cortex < 50%).
Overall, these results suggest a tight regulation of brain electrical and
chemical activities during the formation and consolidation of neural
connections. This presumably reflects strong energetic constraints on
brain development.
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Introduction

The proper functioning of neural circuits depends on their proper wiring [1, 2, 3, 4,

5, 6, 7]. The right connectivity diagram is achieved during development that is both

genetically and activity driven [8, 9, 10], and which probably has been optimized in

the long evolutionary process [11, 12]. Despite the widespread application of recording,

imaging and molecular techniques [13, 14], along with modeling studies [2, 15, 16], it is

fair to say that our understanding of brain connectivity development is still very limited,

and mostly qualitative. Nevertheless, the formation of neural circuits is an important

problem in neuroscience, as its understanding may shed some light on structural memory

formation in the brain and various developmental disorders [17]. Moreover, synaptic

development like every physical process requires some energy. A natural question is how

much does it cost, and whether this cost changes during development. It is known that

information processing in the brain is metabolically expensive [18, 19, 20]. Specifically,

energy consumption in mammalian brains increases fast with brain size, far more than

in the rest of the body [21].

The process of synaptogenesis, i.e. formation of synaptic connections, can be region

specific and can have a complicated time-course, often bimodal with synaptic overpro-

duction early in the development [22, 23, 24, 25, 26, 27, 28, 29]. However, we do not

know whether and how this process correlates with the activities of participating neu-

rons. It is also unclear, to what extent the synaptogenesis is regulated metabolically,

although some qualitative correlation between the two has been noted based on their

temporal characteristics [29, 30].
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A couple of theoretical investigations estimated that synapses in the adult brain

consume a significant portion of the overall metabolic rate [31, 32]. However, in fact,

cerebral metabolic rate CMR (glucose consumption rate) depends both on neural elec-

tric discharges and on synaptic signaling, and their relative contribution is strongly

controlled by a neurotransmitter release probability and synaptic density [33]. For in-

stance, a high release probability can make synapses the major consumer of energy, and

conversely, a low probability can cause action potentials to be metabolically dominant.

Thus, simultaneous analysis of the cerebral metabolic rate and synaptic density during

development can provide a useful quantitative information about the relative impor-

tance of these two factors. Additionally, it can yield a relationship between synaptic

signaling and neural firing rates.

The main aim of this study is to address these questions in two steps. First, by col-

lecting and analyzing empirical data on brain metabolism and synaptic density during

development for different mammals. Second, by combining these data with a theoretical

model for brain metabolic rate [33], in order to obtain quantitative results on the rela-

tionship energy vs. synapses. In particular, we want to establish how common across

mammals are mechanisms that relate synaptogenesis with neural activities and cerebral

metabolism. A secondary goal is to test the analytic model of brain metabolism against

the data, which is a little extended here from its original formulation in [33]. In this

model, cerebral metabolic rate is expressed solely by neural and synaptic physiological

parameters that are either known or can be easily measured.

3



Results

Constancy of metabolic energy per synapse during development

Empirical data (Tables 1-3) were used to analyze the time course of synaptic den-

sity (ρs) and glucose cerebral metabolic rate (CMR) during development for different

mammals and brain regions (Fig. 1). For most regions both of these quantities depend

non-monotonically on time, initially increasing, then reaching a maximum, and finally

decreasing to adult values. In some cases, this temporal dependence is even more ir-

regular, with more than one maximum (e.g. rhesus monkey frontal cortex and human

temporal cortex for synaptic density). Overall, CMR and ρs can change several-fold

during development. The most extreme change is in the cat visual cortex, where ρs

and CMR can increase by a factor of ∼ 18 and ∼ 4, respectively (Table 1). However,

despite these complex dependencies and variability the amount of metabolic energy per

synapse, i.e. the ratio CMR/ρs, is nearly independent of the developmental time for a

given species and brain area (Fig. 2; Tables 1-3). In all examined mammals and cortical

regions, the quantity CMR/ρs correlates weakly with the developmental time, and the

linear slope in this dependence is close to zero. Moreover, these weak correlations are

not statistically significant (p value varies from 0.08 to 0.68; Fig. 2).

On average, rat brain consumes about 7 · 10−13 µmol of glucose per minute per

synapse in the parietal cortex, and (2− 3) · 10−12 µmol/min in the visual cortex (Table

1). The latter value is similar to the glucose use per synapse in the cat visual cortex

(Table 1). In rhesus monkey and human cerebral cortices, there are approximately the

same average baseline glucose consumptions per synapse, ∼ 7 · 10−13 µmol/min (Tables
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2 and 3). From these results it follows that glucose use per synapse is smaller in large

primate brains than it is in relatively small rodent of feline brains, and the difference

could be five- or six-fold.

The biggest deviations from a baseline value of CMR/ρs are for the human visual

and temporal cortices between postnatal ages 3.5 and 12-15 years, and can be 2-3 folds

above that baseline (Table 3). These numbers, however, do not seem to be relatively

large, considering that CMR in that period can increase by a factor of 4-9 in relation

to the minimal CMR. Nevertheless, the “energy per synapse” distinction for the (pre-

and) adolescent human brain is noticeable and could suggest a different distribution of

energy in the developing human neural circuits in that period in comparison to other

mammals.

Correlation between cerebral metabolic rate and synaptic density

Empirical data on CMR and ρs were used to find their mutual relationship (Fig.

3). This relationship is in general monotonic with high positive correlations, and can

be fitted by the formula, which was derived in the Materials and Methods:

CMR = a0 + [a1 + bρs]f(ρs), (1)

where a0 and a1 are numerical coefficients that depend on neurophysiological parameters

(they are known and determined in the Materials and Methods), b is the parameter

related to synaptic signaling, ρs is the amplitude of synaptic density, i.e. ρs = ρs10
11

[cm−3]. The function f(ρs) is the population average neural firing rate that changes
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during development with synaptic density as f(ρs) = f0ρ
c
s. Values of the parameters b,

f0, and c are determined by a fitting procedure to the data, and they are presented in

Table 4.

Generally, estimated average firing rates are rather small for all examined mammals,

and on average about 1 Hz (Table 4). The smallest values are for the monkey visual and

sensorimotor cortices, and the largest for the cat visual cortex. The character of the

relationship between population firing rate f and synaptic density ρs is not universal,

but depends on a particular species and cortical region (Table 4). For some regions,

the best fit is obtained for f independent of ρs (i.e. with c ≈ 0). For others, we find

an increase of f with increasing ρs, either sublinearly (c < 1) or approximately linearly

(c ≈ 1). The nature of this dependence has also its influence on the relationship CMR

vs. ρs. When c > 0, that is, when f increases with ρs, we find that CMR increases

with ρs in a non-linear manner (Fig 3B,C,D), whereas when c = 0, then CMR grows

linearly with ρs (Fig. 3A). Thus, we conclude that the dependence CMR on ρs is also

non-universal.

Synaptic contribution to the cerebral metabolic rate during development

Having determined the parameters b, f0, and c, we can find a fraction of metabolic

energy consumed by synaptic signaling during the development process. The fraction η

of the cerebral metabolic rate CMR taken by synapses is defined as η = bρsf(ρs)/CMR,

or equivalently

6



η =
bf

CMR/ρs
. (2)

The latter expression implies that η is inversely related to the metabolic energy per

synapse. Indeed, although η changes during the development much more than CMR/ρs

(Tables 1-3), both of these variables are negatively correlated (Table 5). The greater

variability of η than CMR/ρs can be explained by its additional dependence on firing

rate f(ρs), which in itself is proportional to a variable synaptic density.

In general, η is rather high, mostly in the range 0.5−0.9 (Tables 1-3; some η is a little

above unity, which is an artifact caused by systematic errors in the fitting procedure

that determines b, c, and f0). A significant exception is human temporal cortex in

which synapses use for the most time considerably less than 50% of cortical CMR. At

the top of the synaptogenesis, when synaptic density is maximal, η is usually very large

and often around 0.8-0.9, which is greater than for the adult, but the difference is mild.

From all examined mammals and cortical regions, synapses in the monkey visual and

sensorimotor cortices, as well as synapses in the rat parietal cortex seem to be the most

“energetic”, since they frequently use approximately 90% of the total cerebral glucose

rate.

Overall, these results strongly suggest that excitatory synaptic signaling uses a ma-

jority of metabolic energy allocated to neurons, even at adulthood. The spiking neural

activity and maintenance of negative membrane potential utilize generally far less en-

ergy, together approximately 10 − 40%, depending on the species, brain region, and
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developmental period.

Relationship between synaptic efficacy and average firing rate across mam-

mals

The parameter b in Eq. (1) is proportional to the excitatory synaptic efficacy (or

signaling; see Materials and Methods). For a given species, we can associate this pa-

rameter with the average firing rate f , both of which were determined by fitting the

theoretical model (Eq. 1) to the data (Table 4). We find that b and f are inversely

correlated across all examined cerebral regions and animals, and can be fitted quite well

by a universal curve of the form (R2 = 0.956; Fig. 4):

b = 0.03f−1.35, (3)

where b is expressed in µmol·sec/min. This relationship indicates that average synaptic

efficacy is dependent on network spiking activity, and the higher that activity the smaller

synaptic signaling. For example, for f = 0.1 Hz we have b ≈ 0.7, while for f = 1.3 Hz

we obtain b ≈ 0.03, i.e. more than twenty-fold reduced synaptic efficacy. This implies

that synaptic transmission is very sensitive on the average firing rate in the network,

which can have functional consequences (see Discussion).

Estimation of neurotransmitter release probability by combining data and

metabolic model

Experimental data show that the probability of neurotransmitter release is the least
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stable parameter among synaptic parameters, and can change during the development

by at least an order of magnitude [40, 41]. To test our metabolic model (see Materials

and Methods), the release probability is estimated below for adult rat and cat visual

cortices. In this respect, we equate the empirical value of the parameter b in Table 4 with

the analytical formula for b given by Eq. (15), which allows us to determine the release

probability q. We assume that gAMPA/gNMDA ≈ 2.5, in agreement with the empirical

data for adult primate brain [42]. We take the peak AMPA synaptic conductances and

their decay time constants as: gAMPA = 3.6 · 10−10 Ω−1 and τAMPA = 5 · 10−3 s for rat,

and gAMPA = 7.1 · 10−10 Ω−1 and τAMPA = 7.6 · 10−3 s for cat [43]. Additionally, the

NMDA synaptic conductance decay time constant τNMDA is taken as τNMDA = 0.1 s for

both species, as a standard NMDA decay time [44]. We find that the neurotransmitter

release probability q is 0.45 for adult rat visual cortex, and 0.31 for adult cat visual

cortex. These values are in the range of values reported experimentally [40, 45, 46],

and suggest that the metabolic model presented and used in this paper (Materials and

Methods) is reliable and has a predictive power.
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Discussion

This study shows that despite temporal changes in cerebral metabolic rate CMR and

synaptic density ρs during development, often exhibiting bimodal shape, the amount

of metabolic energy per synapse (CMR/ρs) is almost invariant in the process for a

given mammal and brain region (Fig. 2; Tables 1-3). This approximate constancy

is even more pronounced if we take into account that many other neuroanatomical

parameters, such as neuron number, dendritic tree length, and brain volume, all change

non-monotonically with an animal age [47, 48, 49]. In contrast to CMR/ρs, the fraction

of CMR consumed by synapses, i.e. η, is much more variable during the development

(Tables 1-3). Moreover, these two quantities are strongly negatively correlated (Table

5). For the most developmental time and cortical regions η is greater than 0.5, implying

that synapses use the majority of cortical metabolic energy, often close to 90% or more

(Tables 1-3).

The case with the human brain is more subtle, as its visual and temporal cortices

exhibit a noticeable deviation from the CMR/ρs constancy during early and middle

adolescence (by a factor of ∼ 2; Table 3). In addition, η for human temporal cortex

is considerably smaller than 0.5 for the most time. The increase in CMR/ρs for the

above regions during adolescence is associated with a simultaneous decrease in η, which

suggests that non-synaptic part of CMR dominates over the synaptic part in this period

(Table 3). It is interesting to note that the maxima of CMR/ρs for human visual and

temporal cortices between 3.5 and 12 years coincide with maxima observed in cortical

volume, thickness, and surface area during the same time [50, 51, 52]. This positive
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(negative) correlation between CMR/ρs (η) and structural cortical growth can be an

indication that the latter process requires an additional energy above some baseline,

which is partly generated by shunting it from the synapses.

On average, a synapse in the primate cerebral cortex consumes about (7± 2) · 10−13

µmol of glucose per minute. In rat and cat visual cortices corresponding numbers

are about 5 times larger, which qualitatively agrees with a previous rough estimate

that in larger brains energy per synapse should be smaller than in smaller brains [21].

These numbers translate into 5000 − 9000 of consumed glucose molecules and (1.6 −

2.8) · 105 of consumed ATP molecules, both per second and per synapse in the primate

cortex (using Avogadro number ≈ 6 · 1023 mol−1, and the fact that about 31 ATP

molecules are produces per one used glucose molecule [53]). Thus, the cost of creating

and maintaining one synapse in the human cortex during development is about 2.2 ·105

ATP molecules/second, which can increase during adolescence to 4 · 105 ATP/sec.

There is a growing evidence that a typical excitatory synapse can operate only

in a limited number of structurally different discrete states [54, 55]. Since the sizes

of synapses (lengths of postsynaptic densities) during postnatal development remain

roughly constant [23, 28], one can assume that the number of synaptic states is also

approximately invariant. Assuming that a synapse has on average between 10 and 100

states [55], we can estimate the amount of ATP utilization per 1 bit of stored synaptic

information. For human brain we obtain 2.2 · 105/ log2 10
n ∼ (3− 6) · 104 ATP/bit per

second, where n = 1 or 2. Thus, during a human lifetime (∼ 80 years) a typical synapse

uses (3± 1) · 1014 ATP molecules per stored 1 bit of information.
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Invariants in the brain design or dynamics are not too numerous, and their existence

clearly deserves more attention and thought. The current finding about the constant

energy per synapse during development (for a given brain region) expands a short list

of the discovered invariants, including adult synaptic density across mammals [56, 57],

volume-specific metabolic scaling exponent across gray matter (≈ −0.15) [21], energy

per neuron across mammals [58, 59], blood flow and capillary length per neuron [59],

or fraction of brain volume taken by glia across mammals [60, 61]. It seems that there

are some common principles underlying these invariants, which could be related to the

economy of brain wiring [3, 4, 5, 62, 63, 64, 65]. This in turn could be associated with

the evolutionary constraints coming from limited energetic resources [19, 20, 31], as the

brain is an energy-expensive organ [18, 21], and synapses were pointed out as one of

the important users of the cerebral metabolism [21, 31, 32, 33]. The fact that cerebral

metabolic rate CMR and synaptic density ρs are rather strongly positively correlated

(Table 4, Fig. 3) speaks in support of the last argument.

The results in this study indicate that synapses are even bigger energy users than

previously estimated. Calculations presented in Tables 1-3 show that at adulthood,

when synaptic density is generally lower than in adolescence, synapses can still consume

about 50 − 80% of the total glucose consumption rate. For example, for rat cortex η

is either 0.48 (visual) or 0.81 (parietal). The average of these values is about twice

the amount that was previously calculated for adult rat cortex [31]. The likely source

of the discrepancy is the probability of neurotransmitter release, which was calculated

here as 0.45 (for rat visual cortex), and assumed in [31] as 0.25. Generally, it should be
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kept in mind that the computed values of the release probability are only averages, as

this parameter is highly variable in time and additionally input specific, and could be

somewhere between 0.05 − 0.7 [40, 41, 45, 46]. Because the neurophysiological model

of the gray matter metabolism presented in this paper (see Materials and Methods)

yields reasonable numerical values of this highly uncertain parameter, it could play a

useful role in the future in determining other functional circuit parameters from glucose

metabolic data.

It is found that, as a rule, synaptic efficacy (signaling) is negatively correlated with

cortical average neural firing rate across all examined species (Fig. 4). Low firing rates

usually correspond to high synaptic efficacy, and vice versa (Fig. 4). The interesting

feature is that all data points coming from different mammals and cortical regions

collapse (with high correlations) into one universal curve given by Eq. (3). This clearly

suggests that synaptic regulatory mechanisms such as depression and potentiation are

coupled with global network activity and may have a universal cross-species character.

This kind of synaptic plasticity is reminiscent of the so-called synaptic scaling, which

was found in cortical circuits [66]. In this process, which is typically slow, synaptic

efficacy increases if network activity is too low, and it decreases if network activity

is too high. This synapse-network activity coupling serves as a tuning mechanism to

balance brain spiking activity, which may be important for preventing pathological

dynamic states [67].

The collected empirical data in combination with the theoretical metabolic model

allow us to determine average firing rates across mammals during development, from
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the birth to adulthood. These rates are rather low, generally in the range 0 − 2.3 Hz.

This probably implies that only a small fraction of cells is active concurrently, which is

compatible with an idea of sparse neural coding in cortical networks [19, 31]. Moreover,

our results show that larger brains tend to have a slightly lower spiking activities than

smaller brains (Table 4). This conclusion that was reached here for developing brains

is in line with a previous estimate made for several adult mammals, also using glucose

metabolic data [33]. The current interesting finding is that neural firing rate could

change during development in coordination with the changes in synaptic density (Table

4). Such dependence improves the goodness of fits for several brain regions significantly.

The semi-empirical results of this study can have some impact on modeling studies

related to the connectivity development in the brain. It has been known for a long

time that synaptic development is driven to some extent by global spiking activity of

neurons [14, 68]. This coupling has also been incorporated in several formal models

dealing with synaptogenesis [16, 69], but it often had abstract forms. It seems that the

semi-empirical formula derived here (Eq. 3), allows us for a more realistic approach.

Alternatively, this formula could be used as a one of the criterions for verification of

modeling studies. Similarly, the finding that there exist a (roughly) constant amount of

available energy per synapse during development (Fig. 2; Tables 1-3), has not been ex-

plored in computational models. Yet, it could have important theoretical implications.

Although, the empirical data in this paper are concerned with normal development,

they could also have some relevance for studies dealing with developmental disorders,

such as schizophrenia or autism. There are some strong experimental indications that
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these mental diseases are associated with altered synaptic connectivity [70, 71]. It

would be interesting to know whether in these disorders the amount of metabolic energy

per synapse during development is also conserved or not? If not, then how large are

deviations form a constancy, and whether this measure is somehow correlated with the

degree of mental disorder. This perhaps could have some practical applications.
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Materials and Methods

Developmental data

The ethics statement does not apply to this study. Experimental data for glucose

cerebral metabolic rate (CMR) and synaptic density (ρs) during development for rat,

cat, macaque monkey, and human are presented in Tables 1-3. These mammals have

adult brains that span 3 orders of magnitude in volume. The metabolic data were

collected from the following sources: for rat [34]; for cat [35]; for monkey [36, 37, 38];

for human [30, 39]. The synaptogenesis data were taken from: [22, 23] for rat; [24] for

cat; [25, 26, 27, 28] for monkey; and [29] for human.

Theoretical model of cerebral metabolic rate

In this section we derive an expression for the glucose cerebral metabolic rate CMR

in gray matter. This derivation follows closely a detailed analysis presented in [33], and

additionally extends it by including also NMDA synaptic currents. We assume that the

activities of Na+/K+ pumps are the major contributors to brain metabolism, which is

in agreement with empirical estimates [72, 73]. The main objective of these pumps is

to remove Na+ ions from neuron’s interior, in order to maintain a negative membrane

resting potential, which is critical for all neural functions.

During one cycle, the Na+/K+ pump extrudes 3 Na+ and intrudes 2 K+ ions, which

translates into a net removal of one elementary positive charge that comprises a pump

current Ip. Consequently, the pump current Ip constitutes of only 1/3 of the total sodium

current through the membrane. In terms of the metabolic cost, this pumping process
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uses 1 ATP molecule (per one cycle) to remove one positive charge. The metabolic

expenditure of this process in the long run depends on the level of intracellular sodium

concentration.

According to biochemical estimates [53], about 31 ATP molecules are made per

one oxidized glucose molecule during cellular respiration. Consequently, the glucose

metabolic rate CMR (the amount of moles of glucose per tissue volume and time) is

given by

CMR =
NIp
31UF

, (4)

where Ip is the average net pump current, N is the number of neurons contained in the

gray matter volume U , and F is the Faraday constant. The ratio Ip/F is the amount

of moles of ATP molecules consumed on average per neuron per time unit.

At the steady state, i.e. for constant firing rates and after averaging over long

times (hundred of seconds to several minutes), the average sodium concentration inside

neurons is relatively stable [33]. This corresponds to the situation when the pump

current Ip balances 3 different types of sodium currents through the membrane [33]:

3Ip = INa,0 + Iap + Is,0, (5)

where 3Ip is the amount of Na+ charge per second that is removed by the Na+/K+
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pump. The current INa,0 is Na
+ influx through sodium channels at rest (a small contri-

bution), Iap is Na
+ influx due to action potentials, and Is,0 is the sodium influx through

synapses during background dendritic synaptic activity. The explicit forms of the first

two currents are given by:

INa,0 = gNa,0S(VNa − V0), (6)

Iap = fCS(VNa − V0), (7)

where VNa is the reversal potential for Na+ ions, V0 is the resting membrane potential,

f is the average firing rate, gNa,0 is the resting Na+ conductance per unit area, C is

effective membrane capacitance per unit area, and S is the neuron’s membrane surface

area.

The synaptic contribution Is,0 to the sodium influx is proportional to a temporal

average over an interspike interval of the AMPA and NMDA synaptic currents, and

takes the form:

Is,0 = αMfq
∫

1/f

0

dt [gAMPA(t) +G(V )gNMDA(t)]V, (8)

where α is the proportionality factor between the total synaptic current and Na+ influx
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current and is given by α = VK(VNa − V0)/[V0(VK − VNa)], where VK is the reversal

potential for K+ ions. The latter dependence can be easily computed [33] and follows

from the fact that AMPA current is composed exclusively of Na+ and K+ ions, and

NMDA current is composed largely of these ions (the influence of Ca+2 is neglected here,

as it constitutes only of about 7-10% of the NMDA current [74]). The symbol M denotes

number of synapses per neuron, q is the neurotransmitter release probability, and V is

neuron’s membrane voltage. The functionG(V ) is a voltage-dependent factor associated

with NMDA receptors given by [44]: G(V ) = 1/[1 + 0.33 exp(−0.06V )], where V is in

mV. For voltage equal to the resting potential, i.e. V = V0 = −65 mV, we obtain G0 ≡

G(V0) = 0.06. The symbols gAMPA(t) and gNMDA(t) denote the time dependent single

synapse conductances, respectively AMPA and NMDA type. Below, we assume that

the rising phase of these conductances is much faster than their decaying phases. That

is, we take gAMPA = gAMPA exp(−t/τAMPA), and gNMDA = gNMDA exp(−t/τNMDA),

where gAMPA, gNMDA are the peak conductances, and τAMPA, τNMDA are corresponding

decay time constants. Also, since the duration of a single action potential is very short in

comparison to the average interspike interval 1/f , we can assume that for the most time

V ≈ V0 under the integral. With these assumptions we can carry out the integration in

Eq. (8), with the result

Is,0 =
qfMVK(VNa − V0)

(VK − VNa)
[gAMPAτAMPARAMPA(f) +G0gNMDAτNMDARNMDA(f)] , (9)

where the frequency dependent factor Ri(f) (i = AMPA,NMDA) has the form:
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Ri(f) = 1 − exp[−1/(fτi)]. This factor for the AMPA current is practically always

close to 1, as fτAMPA is significantly smaller than unity even for firing rates f as large

as 100 Hz (with τAMPA ∼ 5−6 msec). Generally, for the NMDA current RNMDA is less

than 1, and could be even ≪ 1 for very large f . However, for the empirical frequencies

found in this study (∼ 1 Hz), the factor RNMDA ≈ 1. Consequently, the values of

RAMPA and RNMDA are both taken as 1 further in the analysis.

Combination of Eqs. (4-7) and (9) yields an approximate glucose metabolic rate

CMR as follows:

CMR =
NS

U

(VNa − V0)

93F

[

gNa,0 + fC +
M

S

VKqf

(VK − VNa)
(gAMPAτAMPA +G0gNMDAτNMDA)

]

.(10)

Additionally, we assume that the geometry of axons and dendrites can be approximated

as cylindrical with equal volumes [56]. Thus, we can write the total membrane surface

area as NS = 4(1 − φ)U/d, where d is an effective fiber diameter (harmonic mean

of axonal and dendritic diameters), and (1 − φ) is the fraction of volume taken by

neural wiring [33]. Moreover, the surface density of synapses can be written as M/S =

ρsd/(4(1−φ)), where ρs is the synaptic density [33]. Substituting the above expressions

for NS/U and M/S into Eq. (10), we obtain CMR in a more convenient form:

CMR =
(VNa − V0)

93F

[

4(1− φ)

d

(

gNa,0 + fC
)

+
qfρsVK

(VK − VNa)
(gAMPAτAMPA +G0gNMDAτNMDA)

]

,(11)
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or equivalently with an explicit dependence of CMR on synaptic density and firing rate

as:

CMR = a0 + a1f + bρsf, (12)

where the coefficients a0, a1, and b are given by

a0 =
4(1− φ)gNa,0(VNa − V0)

93Fd
, (13)

a1 =
4(1− φ)C(VNa − V0)

93Fd
, (14)

and

b =
1011qVK(VNa − V0) [gAMPAτAMPA +G0gNMDAτNMDA]

93F (VK − VNa)
. (15)

In Eq. (12) the firing rate f is in Hz, and the symbol ρs denotes the synaptic den-

sity amplitude defined as ρs = ρs10
11, where ρs is expressed in cm−3. The coefficients

a0 and a1 are invariant or nearly invariant across species, and they do not seem to

change significantly during development after birth. This is because they depend on

the parameters, which themselves are developmentally or species independent. These
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are electrical voltages (VNa, VK , V0) due to their logarithmic dependencies on ionic

concentrations, membrane capacity C, and structural parameters: the fraction of vol-

ume taken by wiring (1 − φ) or fraction of neuropil [26, 27, 28], and the effective wire

thickness d [56]. Also the sodium conductance at neuron’s rest is very small, and bio-

physical models suggest that it is similar across species. The numerical values of these

parameters are: VNa = 0.050 V, VK = −0.100 V, V0 = −0.065 V (standard values),

(1 − φ) ≈ 0.65 [26, 27, 28, 56], gNa,0 = 3 · 10−7 (Ωcm2)−1 [33], C ≈ 3.2 · 10−6 F/cm2,

and d = 0.45 · 10−4 cm [33]. Based on these values, we obtain a0 = 0.013 µmol/(g·min),

and a1 = 0.14 µmol·s/(g·min). The parameter b is related to synaptic activities, and

its value is determined in the Results section for every species and brain region.

There are no data on in vivo firing rates during development. Therefore, we have

to assume some form of f . We consider two scenarios for this quantity. In the simplest

case, firing rate and synaptic density are independent of each other, and we take f to

be a constant. In a second case, we assume that firing rate and synaptic density are

correlated in such a way that f is an increasing function of ρs. This follows from a simple

expectation that higher synaptic density generally mean more excitatory synaptic input

to a typical neuron, as 85% of synapses in the cerebral cortex are excitatory [56, 57].

More excitatory input in a recurrent network translates into higher average firing rates.

This is in agreement with mean-field models of recurrent neural networks [75]. Thus,

the simplest expression for the firing that combines both scenarios is f = f0ρ
c
s, where

f0 and the exponent c are to be determined by a fitting procedure to the data. When

c = 0, then f is independent of synaptic density.
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Figure Captions

Fig. 1

Dependence of glucose cerebral metabolic rate CMR and synaptic density ρs on devel-

opmental time in visual cortex of various mammals. (A) Rat; (B) Cat; (C) Monkey;

(D) Human. Circles correspond to the synaptic density and triangles to CMR.

Fig. 2

Approximate invariance of glucose cerebral metabolic rate per synapse during devel-

opment. The linear fits to the data points are given in the brackets below. (A) Rat

(circles - parietal cortex: y = −0.0006x + 0.092, R2 = 0.259, p = 0.381; squares -

visual cortex: y = 0.0025x + 0.187, R2 = 0.223, p = 0.345). (B) Cat visual cortex

(with the data point at 1 day: y = −0.0023x + 0.684, R2 = 0.118, p = 0.451; without

the data point at 1 day: y = 0.0005x + 0.322, R2 = 0.438, p = 0.152). (C) Mon-

key (circles - frontal cortex: y = 0.00003x + 0.063, R2 = 0.279, p = 0.363; squares

- visual cortex: y = 0.00009x + 0.052, R2 = 0.527, p = 0.102; triangles - sensori-

motor cortex: y = 0.0007x + 0.063, R2 = 0.075, p = 0.656). (D) Human (circles

- frontal cortex: y = −0.0001x + 0.116, R2 = 0.025, p = 0.684; squares - visual

cortex: y = 0.0002x + 0.071, R2 = 0.223, p = 0.282; triangles - temporal cortex:

y = 0.0003x+ 0.053, R2 = 0.375, p = 0.079). In the above fits y refers to CMR/ρs (in

10−11µmol/min) and x to the developmental time (either in days for rat and cat or in

months for monkey and human). Note that for all fits the linear coefficient is close to

zero.
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Fig. 3

Empirical dependence of cerebral metabolic rate CMR on synaptic density ρs together

with fits to the theoretical metabolic model. (A) Rat, parietal cortex. (B) Cat, visual

cortex. (C) Monkey, visual cortex. (D) Human, frontal cortex. Empirical data are

represented by diamonds, and theoretical fits by solid lines. The fitting parameters are

shown in Table 4.

Fig. 4

Inverse relationship between synaptic signaling and average firing rate across mammals.

Values of the synaptic efficacy b and firing rates f (arithmetic means) were found by

fitting experimental data to the theoretical model (Table 4). Note that all data points

(diamonds) coming from different species and cortical regions align into a universal

curve of the form: b = 0.03f−1.35 (R2 = 0.956, p < 0.001).
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Table 1: Synaptic and metabolic development for rat and cat cerebral cortex.

Species/region developmental ρs CMR CMR/ρs η

time [1011 cm−3] [ µmol
g·min

] [10−11 µmol
min

]

Rat:
parietal cortex 14 day 2.8 [22] 0.30 [34] 0.107 0.52

17 day 6.3 [22] 0.42 [34] 0.067 0.84
21 day 9.0 [22] 0.66 [34] 0.073 0.77
35 day 14.0 [22] 0.85 [34] 0.061 0.92
adult 13.5 [22] 0.94 [34] 0.070 0.81

Rat:
visual cortex 10 day 0.62 [23] 0.20 [34] 0.323 0.10

14 day 1.16 [23] 0.24 [34] 0.207 0.29
17 day 2.68 [23] 0.32 [34] 0.119 1.19
21 day 2.80 [23] 0.63 [34] 0.225 0.66
35 day 3.00 [23] 0.87 [34] 0.290 0.55
adult 2.95 [23] 0.97 [34] 0.329 0.48

Cat:
visual cortex 1 day 0.20 [24] 0.318 [35] 1.590 0.08

7 day 0.50 [24] 0.187 [35] 0.374 0.42
30 day (est) 2.50 [24] 0.696 [35] 0.278 0.89
40-45 day 3.10 [24] 0.987 [35] 0.318 0.83
60-70 day 3.70 [24] 1.406 [35] 0.380 0.73
110-120 day 3.10 [24] 1.201 [35] 0.387 0.68
adult 2.70 [24] 1.120 [35] 0.415 0.61

Developmental time refers to postnatal time. References in the brackets.

Synaptic contribution η to CMR is computed from Eq. (2).
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Table 2: Synaptic and metabolic development for monkey cerebral cortex.

Species/region developmental ρs CMR CMR/ρs η

time [1011 cm−3] [ µmol
g·min

] [10−11 µmol
min

]

Monkey:
frontal cortex 2-3 month 6.0 [26] 0.33 [36] 0.055 0.63

4-5 month 6.1 [26] 0.40 [36] 0.066 0.53
6-7 month 5.7 [26] 0.39 [36] 0.068 0.49
6 year 5.0 [26] 0.34 [38] 0.068 0.47
20 y (adult) 3.16 [26] 0.22 [38] 0.070 0.36

Monkey:
visual cortex 0-2 month 5.5 [25] 0.21 [37] 0.038 1.08

2-6 month 9.0 [25] 0.50 [37] 0.056 0.94
8-9 month 8.0 [25] 0.46 [36] 0.058 0.86
12 month 6.0 [25] 0.33 [36] 0.055 0.78
6-7 year 6.0 [25] 0.40 [38] 0.067 0.65
20 y (adult) 3.8 [25] 0.27 [38] 0.071 0.49

Monkey:
sensorimotor crtx 0-2 month 4.78 [27, 28] 0.26 [37] 0.054 1.20

2-3 month 5.75 [27, 28] 0.34 [36] 0.059 1.11
4-5 month 5.44 [27, 28] 0.44 [36] 0.081 0.81
6-7 month 5.19 [27, 28] 0.38 [36] 0.073 0.89
12-13 month 5.78 [27, 28] 0.37 [36] 0.064 1.03

Developmental time refers to postnatal time. References in the brackets.

Synaptic densities for sensorimotor cortex are arithmetic means of values in

motor and somatosensory cortices.
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Table 3: Synaptic and metabolic development for human cerebral cortex.

Species/region developmental ρs CMR CMR/ρs η

time [1011 cm−3] [ µmol
g·min

] [10−11 µmol
min

]

Human:
frontal cortex - (10-8) wbb(*) 0.22 [29] 0.07 [39] 0.318 0.005

1 day 1.95 [29] 0.13 [39, 30] 0.067 0.33
40 day 1.12 [29] 0.08 [39] 0.071 0.16
80-83 day 3.10 [29] 0.15 [39] 0.048 0.81
1.17 year 3.79 [29] 0.26 [30] 0.069 0.74
3.5 year 5.24 [29] 0.56 [30] 0.107 0.70
12 year 4.69 [29] 0.44 [30] 0.093 0.70
15 year 4.00 [29] 0.41 [30] 0.103 0.53
adult 3.40 [29] 0.27 [30] 0.079 0.56

Human:
visual cortex - (10-8) wbb(*) 1.2 [29] 0.06 [39] 0.050 0.98

1 day 2.6 [29] 0.18 [30] 0.069 0.71
1 year 5.5 [29] 0.28 [30] 0.051 0.96
1.5 year 4.9 [29] 0.32 [30] 0.065 0.75
3.5 year 4.7 [29] 0.60 [30] 0.128 0.38
12 year 3.6 [29] 0.45 [30] 0.125 0.39
adult 3.1 [29] 0.27 [30] 0.087 0.56

Human:
temporal cortex - (10-8) wbb(*) 0.75 [29] 0.06 [39] 0.080 0.06

1 day 2.94 [29] 0.09 [39] 0.031 0.41
40 day 2.10 [29] 0.07 [39] 0.033 0.30
80-83 day 4.70 [29] 0.16 [39] 0.034 0.51
1.17 year 5.30 [29] 0.24 [30] 0.045 0.42
3.5 year 5.57 [29] 0.52 [30] 0.093 0.21
12 year 2.47 [29] 0.39 [30] 0.158 0.07
15 year 3.89 [29] 0.36 [30] 0.093 0.17
adult 2.90 [29] 0.24 [30] 0.083 0.15

(*) Negative value refers to the weeks before birth (wbb). Positive develop-

mental times refer to postnatal time. References in the brackets.
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Table 4: Best fits to the data for parameters in the relation CMR vs. ρs
across mammals.

Species/region b (µmol·s/min) c f0 (Hz) f (Hz) R2 SSE
Rat: parietal cortex 0.066 0.0 0.85 0.85 0.961 0.012
Rat: visual cortex 0.071 1.02 0.73 0.4-2.2 0.674 0.181
Cat: visual cortex 0.121 0.29 1.57 1.0-2.3 0.905 0.121
Monkey: frontal cortex 0.024 0.52 0.57 1.0-1.5 0.776 0.011
Monkey: visual cortex 0.228 0.48 0.08 0.15-0.23 0.908 0.005
Monkey: sensorimotor crtx 0.692 0.03 0.09 0.1 0.262 0.013
Human: frontal cortex 0.070 1.23 0.14 0.02-1.1 0.928 0.018
Human: visual cortex 0.038 0.0 1.29 1.3 0.105 0.127
Human: temporal cortex 0.010 0.69 0.60 0.5-2.0 0.347 0.142

Table 5: Correlation between metabolic energy per synapse (CMR/ρs) and
synaptic fraction of metabolism (η).

Species/region correlation significance
r p

Rat: parietal cortex -0.992 0.001
Rat: visual cortex -0.753 0.084
Cat: visual cortex -0.869 0.011
Monkey: frontal cortex -0.889 0.044
Monkey: visual cortex -0.927 0.008
Monkey: sensorimotor crtx -0.995 0.000
Human: frontal cortex -0.642 (0.049) 0.063 (0.908)
Human: visual cortex -0.968 (-0.968) 0.000 (0.002)
Human: temporal cortex -0.659 (-0.872) 0.054 (0.005)

Values in the brackets refer to r and p without the prenatal data points.
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