【信息与计算机】

基于第二代 Curvelet 变换的多聚焦图像融合^{*}

宋英姿

(解放军理工大学 气象学院,南京 211101)

摘要:将第二代 Curvelet 变换引入图像融合领域。选取目前有代表性的融合规则进行大量实验,并用峰值信噪比 (PSNR)和均方误差(MSE)进行定量分析与比较。实验表明,采用适合的 Curvelet 变换融合算法具有更强的细节 获取能力,融合效果优于采用各种融合规则的小波分解融合算法。特别是采用基于边缘的融合规则时 Curvelet 变换的融合改进效果更好。

关键词:第二代 Curvelet;多聚焦图像;图像融合

中图分类号:TP391;TN911.73

文献标识码:A

图像融合是 20 世纪 70 年代后期提出的新概念,是图 像处理领的一个重要方面。由于小波变换在图像处理领 域的广泛应用,众多学者对基于小波的像素级图像融合算 法展开了广泛研究。与小波变换一脉相承的 Curvelet 变换 由于其优秀的边缘表达能力,有助于改善小波变换融合图 像的视觉清晰度,并有效地提高其空间分辨率。1999 年,E J. Candes 和 D L. Donoho 提出 Curvelet 变换理论,也就是第 一代 Curvelet^[1]。Curvelet 作为一种新的多尺度分析方法 比小波更加适合分析二维图像中的曲线或直线状边缘特 征,而且具有更高的逼近精度和更好的稀疏表达能力。第 一代 Curvelet 的数字实现比较复杂。因此 E J. Candes 等又 提出了实现更简单、更便于理解的快速 Curvelet 变换算法, 即第二代 Curvelet^[2-3]。将 Curvelet 变换引入图像融合,能 够更好地提取原始图像的特征,为融合图像提供更多 信息。

1 Curvelet 变换

1.1 离散第二代 Curvelet 变换

定义1 定义笛卡尔坐标系下的局部窗为

$$\widetilde{U}_{j}(\omega) := \widetilde{W}_{j}(\omega)V_{j}(\omega)$$
 (1)
其中, $\begin{cases} \widetilde{W}_{j} = \sqrt{\varphi_{j+1}^{2}(\omega) - \varphi_{j}^{2}(\omega)} \\ V_{j}(\omega) = V(2^{|j/2|}\omega_{2}/\omega_{1}) \end{cases}$, $j \ge 0$;
 $V_{j}(\omega) = V(2^{|j/2|}\omega_{2}/\omega_{1})$
 Φ 被定义为一维低通窗口内积:
 $\Phi_{j}(\omega_{1}, \omega_{2}) = \Phi(2 - j\omega_{1}) \times \Phi(2 - j\omega_{2})$
引入相同的斜率 $\tan \theta_{l} = l \times 2^{-|j/2|}, l = -2^{|j/2|}, \cdots, 2^{|j/2|} - 1, 则$
 $\widetilde{U}_{j,l}(\omega) = W_{j}(\omega)V_{j}(S_{\theta l}\omega)$ (2)

文章编号:1006-0707(2010)03-0115-04

其中:剪切矩阵 $S_{\theta} = \begin{bmatrix} 1 & 0 \\ -\tan\theta & 1 \end{bmatrix}$;角度 θ_l 不是均匀分布的,但它的斜率是均匀分布的。

则离散 curvelet 定义为

$$\widetilde{\varphi}_{j,l,k}(x) = 2^{3j/4} \widetilde{\varphi}_j(S^T_{\theta_l}(x - S^{-T}_{\theta_l}b))$$

$$b \operatorname{\mathsf{W}B} h (k_1 \times 2 - j, k_2 \times 2 - j/2)$$

$$(3)$$

离散 curvelet 变换定义为

$$c(i,j,k) = \int \widehat{f}(\omega) \widetilde{U}_{j}(S_{\theta_{l}}^{-1}\omega) e^{i(S_{\overline{\theta}_{l}}^{-1}b,\omega)} d\omega \qquad (4)$$

为了使用快速傅里叶算法,将式(4)重新写为

$$c(i,i,k) = \int \hat{f}(\omega) \tilde{U}_i(S_a^{-1}\omega) e^{i(b,S_{\theta_i}^{-1}\omega)} d\omega =$$

$$\int f(S_{\theta_l}\omega) \widetilde{U}_j(\omega) e^{i(b,\omega)} d\omega \qquad (5)$$

此时就可以利用局部傅里叶基变换实现。

文献[3]中详细介绍了第二代 Curvelet 变换实现的 2 种方法:USFFT 算法和 Wrap 算法。USFFT 算法采用装配 技术,因此计算量要比 Warp 算法慢。所以实验中均采用 Wrap 算法。

1.2 Curvelet 系数在 C^2 奇异点上的表现

在图像中,绝大多数部分(95%)是光滑解析的,只有 少数地方(5%)是突变的。这些图像的突变特性在数学上 表现为函数(信号)的奇异性。奇异性在图像中非常典型, 同时在图像表示中也非常重要,因为奇异性中包含了丰富 的边缘特性。自然物体的光滑边界往往体现为沿光滑曲 线的奇异性,而并不仅仅是点奇异。

小波是采用"块基"(block base)来逼近(二次连续可 微)的奇异点,是各向同性的,并没有考虑奇异点的几何形 状。Curvelet 采用"楔形基"来逼近 C² 的奇异点,与小波最 大的差异就是具有任意角度的方向性。不像小波只具有

水平、垂直、45°角3个方向,而是各向异性的。

小波和 Curvelet 在逼近图像中奇异曲线的过程中的差 异如图 1 所示。图 1 b)所示为用 Curvelet 逼近像中奇异曲 线的过程,它的基的支撑区间表现为长条形,满足尺度关 系 width≈length²,将这个关系称为:"各向异性尺度关系" (anisotropy scaling relation)。将图 1 a)与 b)比较可以看 出,当尺度加细时,几个"长条形"的基的支撑区间就可以 覆盖整条奇异曲线,并且这种基还具有方向性,因而可以 对曲线奇异进行较小波更稀疏的表示。在二维情况下,当 图像具有奇异曲线并且曲线是二次可微时,Curvelet 可以 自适应地"跟踪"奇异曲线。

2 第二代 Curvelet 变换图像融合

2.1 融合规则

在图像融合过程中,融合规则的选择对最终融合图像 的质量至关重要。本文中查阅了大量的参考文献,对图像 的高频域和低频域的融合规则进行了总结归纳,下面阐述 几种较为常用的融合规则的算法思想。

2.1.1 高频融合规则

1)取系数绝对值较大法。适合高频成分较丰富,亮度、对比度较高的源图像。融合图像中基本保留源图像的特征,图像对比度与源图像基本相同。

2)局部显著性准则^[4]。在一幅图像的分解中,绝对 值较大的系数对应于图像中对比度变化较大的边缘等特 征,而人眼对这些特征比较敏感。所以,对于高频率域,基 于极大值的选择规则。

2.1.2 低频融合规则

1)加权平均法。权重系数可调,适用范围广。可消除 部分噪声,源图像信息损失较少,但会造成图像对比度的 下降。① 平均法, $C_N(Z,p) = 0.5 \times C_N(X,p) + 0.5 \times C_N$ (*Y*,*p*);② Burt 提出的选择与平均结合法^[5](局部能量显 著性)。

2)基于边缘准则^[4]。这种方案在多幅原图像中选择 最有可能是边缘的点加以保留,所以可以预测这种方法得 到的合成图像比较清晰,细节较为丰富。

3)活性测度准则(lis method)。将区域内像素的最大 绝对值作为该区域中心像素的活性测度,选择活性测度较 大的像素并进行一致性检测以得到融合图像的高频分量 (这和高频系数融合规则的局部显著性准则相同)。

4) 局部方差准则^[6]。设 A(x,y) 和 B(x,y)分别为 2 幅源图像 A 和 B 的高频子图像数据值, F(x,y)为相应的高 频子图像融合值。① 将 A(x,y) 和 B(x,y)分成若干个 M× N 子块图像;② 对每个子块图像进行数值分布统计, 计 算其方差;③ 确定 A 和 B 图像每个子块图像加权系数 K_1 和 K_2 如果 A 图像子块方差大于 B 图像子块方差, 则 $K_1 \ge$ K_2 否则 $K_1 < K_2$;④ 确定每个子块图像的数据融合数值为 $F(i,j) = K_1 \times A(i,j) + K_2 \times B(i,j)$;重复②,③,④,计算全 部子块图像融合值。

5)局部平均梯度准则^[6]。分别计算对 A 图像和 B 图 像分解后的高频子图像上每个像素的局部平均梯度,将像 素的局部平均梯度作为准则,确定融合后的高频子图像上 的像素值。具体做法同 4)。

2.2 融合方法

以2幅图像的融合为例,基于 Curvelet 变换的融合基本步骤为:

 对2幅源图像分别进行 Curvelet 变换,得到不同分 辨率层次下的 Curvelet 系数,包括粗尺度和多层细尺度的 系数;

 根据融合应用目的的不同,对不同尺度层采用不同 的融合规则进行融合处理,最终得到融合后的各层 Curvelet 系数;

3) 对融合后的各层 Curvelet 系数进行 Curvelet 逆变 换,所得到的重构图像即为融合图像。

3 仿真实验

3.1 实验图像及客观评价标准

在本文的实验中,通过对 Woman 图像(512×512)进 行高斯滤波模糊化来模拟多聚焦图像的情况。分别模拟 相机对标准图像左、右半部分聚焦的情况。通过融合得到 清晰、含有更多信息量的图像。因为有标准参考图像,采 用峰值信噪比(PSNR)、均方误差(MSE)作为客观评价参 量。需要说明的是,本文中只研究图像融合的方法,采用 的实验图像都是经过配准的图像。对于融合前图像的配 准,同样是很有研究价值的课题,值得深入探讨。

3.2 不同分解层数比较

相同融合规则(高频采用系数绝对值较大法,低频采 用平均法),小波变换和 Curvelet 变换4 层分解时融合图像 对比如图2所示。其中,a)为小波融合结果;b)为 a)与标 准图像差值图;c)为 Curvelet 融合结果;d)为 c)与标准图 像差值图。

从两者与比标准的差值图可以看出,当分解层数为4时,基于小波变换的融合方法在一些边缘处出现了明显的 模糊现象。从两者融合结果与标准图像的差值图(图2b) 和d))可以看出,小波融合图像的边缘信息损失比较大。 而基于 Curvelet 变换的融合则能得到较为清晰的边缘。如 前所述,这正是由于小波是各向同性的,无法精确表达具 有方向的边缘特征所导致。

a) 小波融合结果

分解层数

2

3

4

5

6

7

c) Curvelet融合结果
 d) c)与标准图像的差值图
 图 2 相同融合规则下小波变换和 Curvelet 变换
 4 层分解融合图像对比

不同分解层数下,相同融合规则(高频采用系数绝对 值较大法,低频采用平均法), Curvelet 融合和"Coif5"小波 基融合的实验结果评价参数对比见表1。

小波

小波

小波

小波

可以看出,不同尺度层数的分解对小波和 Curvelet 融

35.373

36.268

36.398

36.397

合结果均有较大影响。当融合规则低频采用平均法,高频 采用系数绝对值较大法时,分解层数为6层或以上时,Curvelet 融合效果优于小波融合效果。但是分解层数的取值 也没有必要过大,因为随着分解层数的增加,图像粗尺度 下的概貌信息会发生一定程度的重叠,导致融合时可能会 引入失真,此外,带来的计算量也随之增加。因此,应该根 据具体的应用以及图像的像素尺寸大小选择合适的分解 层数。由于受图像像素大小限制,本实验最高分解到7层, 从表1的实验数据来看,6、7层分解的 Curvelet 融合效果大 致相当。

3.3 各种融合规则比较

Curvelet

Curvelet

Curvelet

Curvelet

把前文中提到的融合规则分别运用到小波和 Curvelet 中。采用"Coif5"小波基的融合效果评价参数见表 2。 Curvelet 融合效果评价参数见表 3。

可以看出,在小波融合中高频采用局部显著性准则, 低频采用局部方差准则效果较好。在 Curvelet 融合中高频 采用局部显著性准则,低频采用基于边缘准则的融合规则 效果较好。

对比表2和表3,合适的融合规则(高频:局部显著性 准则,低频:基于边缘准则)和 Curvelet 优秀的边缘表现力 相结合,Curvelet 融合只用4 层分解就能达到优于小波融合 6 层分解的水平,充分说明了 Curvelet 方法较之小波法更为 有效。

34.093

35.712

36.436

36.542

MSE

30.961

30.934

25.338

17.453

14.773

14.418

√R∕dB
. 223
. 226

18.871

15.357

14.903

14.907

表1 不同分解层数小波与 Curvelet 融合结果评价参数对比

表2 采用不同融合规则的小波融合6 层分解结果评价参数

高频系数融合规则	低频系数融合规则	PSNR/dB	MSE
取系数绝对值较大法	平均法	36.398	14.903
取系数绝对值较大法	选择与平均结合法	36.398	14.903
取系数绝对值较大法	局部方差准则	36.418	14.833
取系数绝对值较大法	活性测度准则	36.384	14.951
取系数绝对值较大法	基于边缘准则	36.388	14.938
局部显著性准则	平均法	36.693	13.924
局部显著性准则	选择与平均结合法	36.693	13.924
局部显著性准则	局部方差准则	36.740	13.774
局部显著性准则	活性测度准则	36.696	13.915
局部显著性准则	基于边缘准则	36.717	13.848

四川兵工学报

表3 采用不同融合规则的 Curvelet 融合结果评价参数

分解层数	高频系数融合规则	低频系数融合规则	PSNR/dB	MSE
4	取系数绝对值较大法	平均法	34.093	25.338
4	取系数绝对值较大法	选择与平均结合法	34.076	25.435
4	取系数绝对值较大法	局部方差准则	35.931	16.596
4	取系数绝对值较大法	活性测度准则	36.272	15.342
4	取系数绝对值较大法	基于边缘准则	36.619	14.163
4	局部显著性准则	平均法	34.196	24.746
4	局部显著性准则	选择与平均结合法	34.179	24.843
4	局部显著性准则	局部方差准则	36.091	15.996
4	局部显著性准则	活性测度准则	36.449	14.73
4	局部显著性准则	基于边缘准则	36.807	13.563
5	取系数绝对值较大法	平均法	35.712	17.453
5	取系数绝对值较大法	选择与平均结合法	35.713	17.449
5	取系数绝对值较大法	局部方差准则	36.486	14.604
5	取系数绝对值较大法	活性测度准则	36.654	14.051
5	取系数绝对值较大法	基于边缘准则	36.662	14.025
5	局部显著性准则	平均法	35.818	17.033
5	局部显著性准则	选择与平均结合法	35.819	17.028
5	局部显著性准则	局部方差准则	36.642	14.089
5	局部显著性准则	活性测度准则	36.819	13.526
5	局部显著性准则	基于边缘准则	36.827	13.502
6	取系数绝对值较大法	平均法	36.436	14.773
6	取系数绝对值较大法	选择与平均结合法	36.436	14.772
6	取系数绝对值较大法	局部方差准则	36.523	14.482
6	取系数绝对值较大法	活性测度准则	36.613	14.185
6	取系数绝对值较大法	基于边缘准则	36.625	14.143
6	局部显著性准则	平均法	36.576	14.304
6	局部显著性准则	选择与平均结合法	36.576	14.304
6	局部显著性准则	局部方差准则	36.676	13.978
6	局部显著性准则	活性测度准则	36.773	13.671
6	局部显著性准则	基于边缘准则	36.784	13.637

当采用 Curvelet 进行 5 层分解时,采用相同融合规则 的 Curvelet 变换的融合算法更优于采用小波变换 6 层分解 的融合算法。特别是合适的融合规则(高频:局部显著性 准则,低频:基于边缘准则)Curvelet 变换的融合效果更好。 说明了基于边缘特性的融合规则更加适合于使用 Curvelet 变换的融合算法。

当采用 Curvelet 进行 6 层分解时,对比小波融合,Curvelet 变换的融合效果依然表现出色。但对比 Curvelet 进行 5 层分解时的融合结果,性能指标有了一定程度的下降,这 是由于层数越多引起失真越大。因此基于 Curvelet 分解的 层数不宜过高。

4 结束语

建立了基于第二代 Curvelet 变换的图像融合方法,给

出了几种融合规则中的低频和高频选择方案,大量实验对 比表明,在 Curvelet 融合中高频采用局部显著性准则,低频 采用基于边缘准则时效果更好,可以用比小波融合更少的 分解层数得到更好的融合效果。

总之,将 Curvelet 变换引入图像融合,可以更好地提取 原始图像的特征,为融合提供更多的信息。实验结果表明 第二代 Curvelet 变换作为一种新的图像多尺度几何分析工 具,在图像融合领域有着潜在的应用前景。

参考文献:

[1] Candes E J, Donoho D L. Curvelet-A surprisingly effective nonadaptive respresentation for objects with edges
 [Z]. [S.1.]:Vanderbilt University Press, 2000:105 - 120.
 (下转第 129 页)