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Abstract

Potential outcome counterfactuals represent variation in the outcome of

interest after a hypothetical treatment or intervention is performed. Causal

graphical models are a concise, intuitive way of representing causal assump-

tions, including independence constraints among such counterfactuals. Much

of modern causal inference is concerned with expressing cause effect relation-

ships of interest in counterfactual form, showing how the resulting counter-

factuals can be identified (that is expressed in terms of available data, using

domain-specific causal assumptions), and subsequently estimated using sta-

tistical methods. In this paper we will use causal graphical models to analyze

the identification problem of the so-called path-specific effects, that is effects

of treatment on outcome along certain specified causal paths. Such effects

arise in mediation analysis settings where it’s important to distinguish direct

and indirect effects of treatment. We review existing results on path-specific

effects in the fully observable, static treatment setting, and extend them to

settings with time-varying treatments, and latent variables.
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1 Introduction

Human understanding of the natural world is often phrased in terms of cause effect

relationships. Causal statements are a part of everyday speech, as well as legal,

scientific, and philosophical vocabulary. Human beings reach an intuitive consensus

on the meaning of many causal utterances, and there have been numerous attempts

to formalize causality in a way that is faithful to this consensus [25], [7], [23], [5],

[16], [12], [9].

The notion central to most of these formalizations is that of an intervention –

a kind of idealized randomized experiment imposed on a “set of units,” which can

represent patients in a medical trial, a culture of cells, and so on. Many scientific

questions can be phrased in terms of effects of such experiments. For instance, a

standard question of interest in medicine or public health is the causal effect of a

particular treatment, such as a drug, on patients. The gold standard for establishing

causal effects is the randomized control trial, where patients are randomly divided

into two groups, the control group which receives no treatment (or the placebo

treatment), and the test group, which receives the actual treatment.

Randomized control trials are often difficult and expensive to perform. Thus

trial data is often unavailable, or contains very small sample sizes. In many cases,

trials are also unethical, if the effect in question is from a harmful exposure such

as asbestos or smoking. An alternative approach which avoids the difficulties with

trials is to use observational data to establish causal effects. What makes such an

approach feasible is certain causal assumptions, which we will discuss in more detail

later, which create the link between natural exposure in the observational data, such

as data on habitual smokers who receive the harmful exposure voluntarily, and the

hypothetical interventional exposure where people were forced to smoke.

This link between actual observed outcomes and hypothetical interventions is in

fact an assumption expressed in a mathematical language of counterfactuals [7],[16]

which augments the standard probability notation with notation representing po-
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tential outcomes of interventions.

Aside from causal effects, sometimes called total effects, it is often of interest to

distinguish direct effects of treatment from indirect effects through variables known

as mediators. One such example, given by [9], is discrimination. Discrimination laws

in the United States generally do not permit hiring decisions to directly depend on

gender. However, it may easily happen that gender may influence certain secondary

characteristics which make a potential hire more suitable. It is permissible to base

hiring decisions on such characteristics, with a possible gender imbalance as a result.

The legal question in a discrimination case, then, is whether gender had a direct

effect on hiring or is all effect of gender mediated by secondary characteristics. 1

Mediation analysis has a long history in the psychology literature, starting with

Woodworth’s stimulus-organism-response (S-O-R) model [24]. The important dis-

tinction between mediator variables, which serve as an observable manifestation of

the causal mechanism through which the causal effect “flows,” and the moderator

variables, which serve to amplify or dampen the causal effect by (anti) synergisti-

cally interacting with the treatment has been made in [2]. Multiple examples of

mediation analysis studies in psychology, agriculture, epidemiology, and other fields

are given in [6].

Questions of this type can be phrased formally in the mathematical language of

counterfactuals as a special type of causal effect called the path-specific effect, which

operates only along certain “causal pathways.” An additional difficulty with such

effects is that they turn out to refer to multiple hypothetical worlds simultaneously,

which makes it impossible to conduct randomized trials to establish such effects

without additional assumptions. In this paper, we concentrate on identification of

these path-specific effects, that is characterizing causal assumptions necessary to

express such effects as a function of data obtainable from randomized trials.

The paper is organized as follows. In section 2, we will discuss the formal prelim-

inaries of causal inference based on counterfactuals. In particular, we will discuss

1Naturally, it is not possible to intervene on gender. However it is possible to change the gender

field on a job application, or use similar proxies for an actual intervention.
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the potential outcome counterfactual notation, and introduce graphical models as

a convenient tool for expressing causal assumptions in an intuitive form. We will

also discuss causal effects, path-specific effects, and formally pose the identification

problem. In section 3, we will give an overview of existing results on path-specific

effects. In section 4, we present new results on path-specific effects in the presence

of latent variables, and time-varying exposures. Section 5 will contain the discussion

and our conclusions.

2 Graphs, Causal Effects and Counterfactuals

In the remainder of the paper, we will discuss vertices of graphs and random vari-

ables. Our notation convention will be as follows. A vertex in a graph G will be

denoted by lower case letters: w. Sets of vertices will be denoted by upper case

letters: W . A random variable corresponding to a vertex w will be denoted Xw, or

sometimes subscripted: X1, . . . Xn. A set of random variables corresponding to a

set of vertices W will be denoted by XW . A value assignment to a random variable

Xw will be denoted by xw. A value assignment to a set of random variables XW

will be denoted by xW .

We will represent settings of interest by a set of random variables Xv1 , . . . , Xvn ,

with a joint probability distribution p(xv1 , . . . , xvn) over these variables. This dis-

tribution represents “observational ground truth.” In practice, we estimate this

distribution from data sets obtained from observational studies.

2.1 Statistical Graphs, Causal Graphs, and Interventions

A major difficulty with probabilistic reasoning in general is that the space require-

ments needed to store (and numbers of parameters that represent) a joint distribu-

tion p(xv1 , . . . , xvn) grows exponentially with n. This difficulty is sometimes called

the curse of dimensionality.

A popular approach to address the curse is to systematically exploit condi-
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tional independence constraints in the joint distribution. These constraints can be

exploited by utilizing statistical graphical models, sometimes known as Bayesian

networks [8].

To discuss Bayesian networks, we need to introduce some graph theoretic ter-

minology. A directed graph is a graph containing vertices (or nodes) and directed

arrows connecting pairs of vertices. If vertices w, y in a graph G are connected by

a directed edge w → y, we say w is a parent of y and y is a child of w. A sequence

of nodes such that every kth and k+1th node in the sequence are connected by an

edge, and no node occurs more than once in a sequence is called a path. If vertices

w, y are connected by a path of the form w → . . . → y, then we say w is an ancestor

of y and y is a descendant of w. A directed graph is acyclic if no node is its own an-

cestor. We abbreviate directed acyclic graphs as DAGs. For a given node w in G, we

denote its sets of parents, children, ancestors and descendants as PaG(w), ChG(w),

AnG(w), DeG(w), respectively. The “genealogic relations” on sets of vertices are

defined by taking unions, for instance for a set W , AnG(W ) =
⋃

wi∈W AnG(wi).

A Bayesian network is a DAG G which contains n nodes, {v1, . . . vn} = V , and a

set of random variables Xv1 , . . .Xvn , one for each vertex in G, forming a joint prob-

ability distribution p(xv1 , . . . , xvn) with a certain property linking the distribution

and the graph. This property is called the Markov factorization property:

p(xv1 , . . . , xvn) =

n
∏

i=1

p(xvi | xPaG(vi))

This factorization is equivalent to the local Markov property which states that

eachXvi is independent ofXV \(DeG(vi)∪PaG(vi)) conditional onXPaG(vi), and in turn

equivalent to the global Markov property defined by d-separation [8], which states,

for any disjoint sets of vertices W,Y, Z in G, that if all paths of a certain type from

nodes in W to nodes in Y are “blocked” by nodes in Z in G, then XW is independent

of XY given XZ in p(xv1 , . . . , xvn). A Bayesian network is thus a statistical model

in that its Markov properties define a set of probability distributions.
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A statistical graph model can further be considered a causal model if we can

meaningfully talk about interventions on variables. An intervention on A, denoted

by do(XA = xA) (which we will shorten to do(xA)), is an operation that sets the

variables XA to values xA, regardless of the usual behavior of XA given by the

observable joint distribution p. Effects of such interventions on other variables in

the system will represent causal effects. A statistical model defined by a DAG G is

causal if for every such do(xA),

p(xV \A | do(xA)) =
∏

vi 6∈A

p(xvi | xPaG(vi))

Informally, this formula asserts that whenever we intervene on a set of variables

XA, we remove from the Markov factorization all terms p(xa | xPaG(a)), for all a ∈ A.

This is known as the truncation formula [20],[9], or the g-formula [15]. This formula

implies, in particular, that for any Xa, p(xa | do(xPaG(a))) = p(xa | xPaG(a)).

The intuition for the g-formula is that in a causal model the parents of every

variable are that variable’s direct causes. These direct causes determine with what

probability a variable assumes its values in the model. By intervening on a variable,

we force it to attain a particular value, independently of the usual influence of direct

causes. For this reason, we “drop out” the term which links the direct causes and

the variable from the Markov factorization.

2.2 Counterfactuals, and Path-specific Effects

It is often useful to have a notation for individual variables after a particular inter-

vention was performed. We denote a random variable Xy in a causal model after

do(xA) has been performed by the notation Xy(xA). Such a variable is called a

potential outcome, or a counterfactual variable.

An assumption very commonly made in causal inference is the so called consis-

tency assumption, which states that if we observed variables XA attain a value xA,

then for any XY , the variable sets XY and XY (xA) are the same. This assumption
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is crucial in that it allows us to link outcomes under hypothetical interventions

with outcomes seen in observational studies where no interventions were in fact

performed.

Often of interest is the causal effect of do(xA) on a particular outcomeXY , which

we encode as an interventional distribution p(xY | do(xA)), which can be computed

in causal DAG models via the g-formula above. However, in many situations, it

is desirable to distinguish direct and indirect effects of a treatment variable Xa

on an outcome of interest Xy. Such effects can be encoded, independently of the

parametric form chosen for p(Xv1 , . . . , Xvn), using the so called pure or natural

effects [13], [10]. These effects are defined as follows. First, we choose for the

treatment variable Xa two value levels, the reference value x∗
a, and the treatment

value xa. Then, we consider the distribution of the outcome Xy given that Xa was

intervened on xa while the variables XPaG(y)\{a} were intervened to take whatever

value they would have attained had Xa been intervened to the reference value x∗
a.

A short hand notation for this counterfactual is Xy(xa, XZ(x
∗
a)), where Z =

PaG(y) \ {a}. This notation stands for the counterfactual distribution

∑

xZ

p(XY (xa, xZ), XZ(x
∗
a) = xZ)

Note that this is a marginal obtained from a joint spanning two conflicting hy-

pothetical worlds. In one of the worlds, Xa was intervened on to the value xa,

and in the other world, Xa was intervened on to the value x∗
a. Without additional

assumptions, there is no way to estimate this joint distribution even with random-

ized trials, since it is not usually possible to simultaneously administer two different

treatment levels to the same group of patients.

One common assumption is to assume independence of the counterfactual vari-

able Xy(xa, xZ) and a set of counterfactual variables XZ(x
∗
a). If this assumption

is true, then Xy(xa, XZ(x
∗
a)) =

∑

XZ=xZ
p(XY (xa, xZ))p(XZ(x

∗
a) = xZ). This for-

mula contains two terms, both of which can be obtained from running randomized
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trials. In addition, if running trials is not feasible, we can use the g-formula to es-

timate both of the interventional distributions involved namely p(xY | do(xa, xZ)),

and p(xZ | do(x∗
a)).

A common situation in estimating direct effects is shown in Fig. 1. Here we

are interested in the direct effect of Xa on Xy (along the path shown in green),

in the presence of some measured common causes of Xa, the mediator Xz and

the outcome Xy. Assuming Xy(xa, xz) is independent of Xz(x
∗
a) conditional on Xc,

and applying the g-formula to estimating Xy(xa, xz) and Xz(x
∗
a) yields

∑

xc,z
p(xy |

xz,c, xa)p(xz | x∗
a, xc)p(xc). If C is absent from the graph, the formula reduces to

∑

xz
p(xy | xa, xz)p(xz | x∗

a), known as the mediation formula [4].

The natural indirect effect is defined similarly, except now the reference value x∗
a

influences Xy along the direct path, while the treatment value influences Xy along

the indirect path. The resulting counterfactual is Xy(x
∗
a, XZ(xa)), which can also

be estimated via the formulas above, with some value relabeling.

In order to express natural direct and indirect effects in terms of interventional

distributions, it was necessary to assume independence of counterfactual variables

which lie in different hypothetical worlds. This is not a testable assumption, since no

possible experiment we could perform can falsify it. Nevertheless, there is one type

of causal model that implies such assumptions in a plausible way. This causal model

is the so called non-parametric structural equation model (NPSEM) [9]. An NPSEM

is a graphical model which consists of a distribution P (xv1 , . . . , xvn) that factorizes

according to a DAG G such that every intervention can be expressed in terms of

the g-formula, and the consistency assumption is true for every counterfactual. In

addition, we assume that every observable variable Xvi is causally determined from

its direct causes XPaG(vi) (plus possibly a single unobserved cause only of Xvi and

no other variable) via some unknown function or causal mechanism.

Because of these functions, an NPSEM can be viewed as a kind of “stochastic

circuit” with variables representing wires, and functions representing logic gates that

determine the voltage at a particular wire in terms of other wires in the circuit,
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Figure 1: (a) A common case for estimating direct effect of Xa on Xy (path of
interest shown in green). (b) The path of interest for the indirect effect of Xa on
Xy. (c) A possible path of interest (shown in green) for a path-specific effect of Xa

on Xy.

with a few specific wires are allowed to be randomized. On the one hand, the

NPSEMmay seem quite reasonable, since many data generating processes in Nature

can be naturally thought of as such circuits (at least on the level of Newtonian

physics). On the other hand, NPSEM implies that for every Xw, Xy, it is the

case that Xw(xPaG(w)) is independent of Xy(xPaG(y)), for any value assignments

xPaG(w),xPaG(y), even if PaG(w) and PaG(y) have nodes in common, and these

nodes are set to conflicting values by xPaG(w) and xPaG(y). For this reason, NPSEMs

are sometimes considered too strong [14]. In the remainder of this paper, we will

assume our graphs represent NPSEMs, with a warning that without assuming such

strong models directly, or at least certain cross-world independences such models

imply, none of the identification results presented in this paper are valid.

Natural direct and indirect effects can be generalized by considering the effect

of Xa on Xy along a specified subset of valid causal paths from a to y, rather than

just the direct path from a to y, as in the direct effect case, or all paths but the

direct path as in the indirect effect case. Effects along arbitrary specified causal

paths are known as path-specific effects [10], [1]. Just as with direct effects, we will

consider two values of the treatment variable Xa, the treatment value xa, and the

reference value x∗
a. We will show path-specific effects along a given set of paths π

from a to y by showing every arrow along some path in π in green, and all other

arrows as blue, for example see Fig. 1 (c). Note that a particular arrow may be
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a part of two separate paths, one in π and one not in π (such an arrow would be

green by our convention). For example, the arrow from z to y in Fig. 1 (c) is a

part of the path a → c → z → y which we are interested in, and a path a → z → y

which we are not interested in.

We can translate the path of interest in a particular path-specific effect into

counterfactual form. Assume we are interested in the path-specific effect of Xa on

Xy along the path π specified in green in Fig. 1 (c). The resulting path-specific effect

will be defined inductively, and will be denoted (with a slight abuse of notation) as

Xy(π(xa), x
∗
a). This path-specific effect can be thought of as the random variable

Xy under the regime whereXa assumes value xa for the purposes of the path bundle

π, and the value x∗
a otherwise.

Let V ∗ = AnG 6a
(y), where G6a is a subgraph of G containing all vertices other

than a, and all edges between these vertices which occur in G. We will divide all

nodes in V ∗ into three sets. All nodes v ∈ ChG(a), such that a, v are adjacent nodes

on some path in π (in other words, the arrow a → v exists and is drawn green), will

be denoted by the set Cπ,a,y. All nodes v ∈ ChG(a), such that a, v are not adjacent

nodes in any path in π (in other words, the arrow a → v exists and is drawn blue),

will be denoted by the set Dπ,a,y. Finally, all nodes v 6∈ ChG(a), will be denoted

by the set Eπ,a,y.

Fix a node s in V ∗, and let Pas = PaG(s). Let B be the set of nodes t ∈ Pas

such that the arrow t → s is green. For each such t, let Xt(π(xa), x
∗
a) be the

inductively defined path-specific effect of Xa on Xt along π. Then the path-specific

effect of Xa on Xs along π is defined as Xs(XB(π(xa), x
∗
a), XPas\(B∪{a})(x

∗
a), xa) if

s ∈ Cπ,a,y, Xs(XB(π(xa), x
∗
a), XPas\(B∪{a})(x

∗
a), x

∗
a) if s ∈ Dπ,a,y, and

Xs(XB(π(xa), x
∗
a), XPas\(B∪{a})(x

∗
a)) if s ∈ Eπ,a,y.

Applying this definition to the path shown in Fig. 1 (c), and “unrolling” the

result, yields the following
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Xy(π(xa), x
∗
a) =

∑

xc,x′
c,xz

p(Xy(xc, xz , xa), Xz(x
∗
a, x

′
c) = xz, Xc(xa) = xc, Xc(x

∗
a) = x′

c)

Just as with natural direct and indirect effects, the resulting joint distribution

refers to counterfactuals across multiple hypothetical worlds, which makes identi-

fying such distributions from randomized trials difficult. In subsequent sections,

we will characterize which NPSEMs imply the assumptions needed to identify such

distributions.

2.3 Latent Variables, Latent Projections, and the Effect Iden-

tification Problem

Graphical causal models discussed so far assumed full observability, namely that if

two variables of interest were observed, then any common causes of these variables

were also observed. In practice, this assumption is too restrictive. In particular, in

medical trials many common causes of treatments and outcomes are unrecorded.

It’s possible to apply DAG model machinery to the latent variable case directly

by simply labeling latent variables in a DAG model, and making parametric as-

sumptions about those variable for modeling and inference. The difficulty with

that approach is that multiple possible latent structures may lead to the same pat-

tern of observable constraints, and parametric assumptions on the latents may be

incorrect, leading to bias.

An alternative approach is to represent sets of possible DAG models with latents

by a single graph called the latent projection. Such a graph contains two types of

arrows, a directed arrow and a bidirected arrow. Given a DAG G with vertex

set V , we attain a latent projection onto S ⊆ V , denoted G(S) as follows. G(S)

is graph with vertex set S. Further, we connect any two vertices w, y ∈ S by a

directed arrow if there exists a directed path from a corresponding vertex w in G to

a corresponding vertex y in G such that all intermediate nodes on the path are not
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Figure 2: (a) A DAG with latent nodes marked in gray. (b) A latent projection of
this DAG. Note that x8 does not create a new path. (c) A different DAG resulting
in the same latent projection.

in S (e.g. are latent). Similarly, we connect any two vertices w and y in G(S) by

a bidirected arrow if there is a path in G with a first arrow pointing to w, the last

arrow pointing to y, no intermediate node on the path with converging arrows, and

all intermediate nodes are not in S. The resulting latent projection obtained from

a DAG is an acyclic directed mixed graph (ADMG).

As an example, Fig. 2 (a) shows a DAG with latent nodes shaded in gray, and

Fig. 2 (b) shows the corresponding latent projection. Fig. 2 (c) shows a DAG

distinct from that shown in (a) but which results in the same latent projection.

Just as a particular DAG is associated with a set of distributions obeying

the global Markov property, a particular latent projection ADMG is associated

with a set of distributions obeying another global Markov property, defined by

m-separation [11]. This property has a nice feature that if a distribution p(xV ) sat-

isfies the global Markov property (defined by d-separation) with respect to a DAG

G with a vertex set V , and G(S) is a latent projection onto a set S ⊆ V , then the

marginal distribution of p(xS) satisfies the global Markov property (defined by m-

separation) with respect to G(S). In particular all conditional independences over

the variable set XS advertised by G are also advertised by G(S). In fact, certain

additional independence constraints are preserved by latent projections, although

the full treatment of this topic is beyond the scope of this paper.

Identification problems for causal effects and path-specific effects can be posed

in latent projections. Unlike the fully observable DAG case, where every causal
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a y

Figure 3: A latent projection where p(Xy | do(xa)) is not identifiable.

effect is identifiable by the g-formula, some causal effects are not identifiable in

latent projections. Fig. 3 shows the simplest graph where p(Xy | do(xa)) is not

identifiable.

The causal effects which are identifiable are characterized in [3], [18], [17]. The

algorithms for their identification were given in [22], [17], [21], [19]. The algorithm

works by a recursive application of the g-formula and marginalization operations.

In the subsequent sections, we will consider the problem of identification of path-

specific effects in latent projections.

3 Known Results on Path-Specific Effects

The identification of path-specific effects in DAG models was considered in [1]. In

this section we summarize the results in that paper. The problem is to express a

counterfactual distribution corresponding to the effect of Xa on Xy along a specified

set of causal paths π in terms of either observed or interventional distributions. We

will continue our convention that arrows on causal paths of interest are shown in

green, and other arrows are shown in blue.

The main result is stated in terms of the following graphical criterion:

Definition 1 (recanting witness) Let G be a DAG, a, y nodes in G, and π a

subset of directed paths from a to y in G. Then a node w in G is called a recanting

witness for the π-specific effect of Xa on Ya if there exists a directed path in π

containing w, and there exists a directed path from w to y which is not a subpath of

any path in π.

The presence of the recanting witness prevents identification of path-specific

effects in terms of interventional (and thus observational) data:

13



Theorem 2 Let G be a DAG, a, y nodes in G, and π a subset of directed paths

from a to y in G. Then the π-specific effect of Xa on Xy is identifiable if and only

if there does not exist a recanting witness for this effect.

Note that according to this criterion, the path-specific effect corresponding to

the paths shown in Fig. 1 (c) is not identifiable. If a path-specific effect of Xa on

Xy is identifiable, it can be expressed via the path-specific g-formula as follows:

∑

xV ∗\{y}

(

∏

v∈Cπ,a,y

p(Xv = xv | do(XMv
= xMv

, Xa = xa))
)

·

(

∏

v∈Dπ,a,y

p(Xv = xv | do(XMv
= xMv

, Xa = x∗
a))

)

·

(

∏

v∈Eπ,a,y

p(Xv = xv | do(XMv
= xMv

))
)

=

∑

xV ∗\{y}

(

∏

v∈Cπ,a,y

p(Xv = xv | XMv
= xMv

, Xa = xa)
)

·

(

∏

v∈Dπ,a,y

p(Xv = xv | XMv
= xMv

, Xa = x∗
a)
)

·

(

∏

v∈Eπ,a,y

p(Xv = xv | XMv
= xMv

)
)

where V ∗ = AnG 6a
(y), for every node v ∈ V ∗, Mv = PaG(v) \ {a}, and xV ∗\{y}

is consistent with
⋃

v∈V ∗(xMv
∪ xv) and ranges over all possible assignments in the

summation, and Cπ,a,y, Dπ,a,y and Eπ,a,y are defined as in the previous section. This

formula is a generalization of Pearl’s mediation formula to identifiable path specific

effects with a single treatment and single outcome in NPSEM models represented

by DAGs.

The recanting witness criterion prevents identification in many seemingly rea-

sonable cases. Consider the graph in Fig. 4. In this graph, we are interested in the

effect of Xa on Xy along green colored causal paths, that is all causal paths not

mediated by z. The reason this case is “seemingly reasonable” is that confounders
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a z

w

y

Figure 4: A graph where the natural direct effect of Xa on Xy (along the green
paths) is not identifiable due to the recanting witness criterion (w is the witness).

(observable or otherwise) between the mediator z and the outcome y such as w are

very common, and it is very common for such confounders to be affected by the

treatment. Unfortunately, due to the recanting witness criterion, the presence of

such confounders results in an effect that is not in general identifiable. This holds

even if all observable nodes are binary.

4 General Path-Specific Effects

In this section we consider a general path-specific effects with multiple treatments

and multiple outcomes in models represented by latent projection ADMGs.

We first generalize path-specific effects appropriately to the case of multiple

treatments {a1, . . . ak} = A and multiple outcomes {y1, . . . ym} = Y . Just as before,

we will consider two sets of values for A, the treatment values {xa1
, . . . xak

} = xA

and reference values {x∗
a1
, . . . x∗

ak
} = x∗

A. We will be interested in effect of the set

XA on the set XY along a set π of directed paths from nodes in A to nodes in Y .

As before, our convention will be that if an arrow is a part of some path in π, it is

shown in green, otherwise it is shown in blue.

We now show how to translate path-specific effects along a given set of paths

into counterfactual form. The resulting counterfactual, denoted by XY (π(xA), x
∗
A),

will be defined inductively.

Let V ∗ = An(Y )G 6A
, where G6A is a subgraph of G containing all vertices other

than A, and all edges between these vertices which occur in G. As before, we will

partition all nodes in V ∗ into three sets. All nodes v ∈ ChG(a) for any a ∈ A,
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such that a, v are adjacent nodes on some path in π (in other words, the arrow

a → v exists and is drawn green), will be denoted by the set Cπ,A,Y . All nodes

v ∈ ChG(a) for any a ∈ A, such that a, v are not adjacent nodes in any path in π

(in other words, the arrow a → v exists and is drawn blue), will be denoted by the

set Dπ,A,Y . Finally, all nodes v 6∈ ChG(A), will be denoted by the set Eπ,A,Y .

Fix a node s in V ∗, and let Pas = PaG(s). Let B be the set of nodes t ∈ Pas

such that the arrow t → s is green. For each such t, let Xt(π(xA), x
∗
A) be the

inductively defined path-specific effect of XA on Xt along π. Then the path-specific

effect of XA on Xs along π is defined as Xs(XB(π(xA), x
∗
A), XPas\(B∪A)(x

∗
A), xA)

if s ∈ Cπ,A,Y , Xs(XB(π(xA), x
∗
A), XPas\(B∪A)(x

∗
A), x

∗
A) if s ∈ Dπ,A,Y , and

Xs(XB(π(xA), x
∗
A), XPas\(B∪A)(x

∗
A)) if s ∈ Eπ,A,Y . The path-specific effectXY (π(xA), x

∗
A)

is defined to be the joint distribution over Xy1
(π(xA), x

∗
A), . . . , Xym

(π(xA), x
∗
A).

We first consider identification of such path-specific effects in the fully observable

case.

Definition 3 (generalized recanting witness) Let G be a DAG, A, Y sets of

nodes in G, and π a subset of directed paths which start with a node in A and end in

a node in Y in G. Then a node w in G is called a generalized recanting witness for

the π-specific effect of XA on XY if there exists a directed path in π containing w

that does not intersect A except at the original endpoint, and there exists a directed

path from w to an element in Y which is not a subpath of any path in π, and which

similarly does not intersect A.

The presence of the generalized recanting witness prevents identification of path-

specific effects with multiple treatments and multiple outcomes:

Theorem 4 Let G be a DAG, A, Y sets of nodes nodes in G, and π a subset of

directed paths which start with a node in A and end in a node in Y in G. Then the

π-specific effect of XA on XY is identifiable if and only if there does not exists a

generalized recanting witness for this effect.
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As before, if a path-specific effect ofXA onXY is identifiable, it can be expressed

via the path-specific g-formula:

∑

xV ∗\Y

(

∏

v∈Cπ,A,Y

p(Xv = xv | do(XMv
= xMv

, XAv
= xAv

))
)

·

(

∏

v∈Dπ,A,Y

p(Xv = xv | do(XMv
= xMv

, XAv
= x∗

Av
))
)

·

(

∏

v∈Eπ,A,Y

p(Xv = xv | do(XMv
= xMv

))
)

=

∑

xV ∗\{y}

(

∏

v∈Cπ,A,Y

p(Xv = xv | XMv
= xMv

, XAv
= xAv

)
)

·

(

∏

v∈Dπ,A,Y

p(Xv = xv | XMv
= xMv

, XAv
= x∗

Av
)
)

·

(

∏

v∈Eπ,A,Y

p(Xv = xv | XMv
= xMv

)
)

where V ∗ = AnG 6A
(y), for every node v ∈ V ∗, Mv = PaG(v) \ A and Av =

A ∩ PaG(v), and xV ∗\{y} is consistent with
⋃

v∈V ∗(xMv
∪ xv) and ranges over all

possible assignments in the summation.

We illustrate this criterion with the following example. Consider the sequential

treatment setting, where a patient visits a doctor periodically, let us say monthly,

and the doctor prescribes treatment based on patient vitals taken during the visit.

The situation is shown in Fig. 5 (a). For simplicity we consider a treatment regime

which lasts two months, but the example generalizes for treatments of arbitrary

length. In this example, the nodes zi represent patient vitals, the nodes ai represent

treatments administered every month, and the node y is the outcome. We assume

observational data, where doctors follow whatever policy they wish in administering

treatment, such that the policy on Xai
depends on all patient vitals at the same

month and previous months: Xz0 , . . . Xzi−1
. We are interested in the path-specific

effect of the treatment regime do(Xa0
= xa0

, . . . , Xak
= xak

) on Xy along all causal

paths not through zi. In our case of treatment that lasts two months, we wish to
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Figure 5: (a) A graph representing a sequential treatment regime. We are interested
in the path-specific effect of Xa1,a2

on Xy along all paths not through z1. (b) A
similar graph where the path-specific effect of Xa1,a2

on Xy along all paths not
through z1 is not identifiable.

exclude the path x1 → z1 → y. According to the generalized recanting witness

criterion, this path-specific effect is identifiable, and given by the path-specific g-

formula, specifically:

∑

xz1
,xz0

p(xy | xz1 , xa2
, xz0 , xa1

)p(xz1 | xa∗
1
, xz0)p(xz0)

Note that just as in the previous example, the presence of common causes of zi

and y which are influenced by treatments prevents identification, as shown in Fig.

5 (b).

We now extend our results to causal models with latent variables, represented

by latent projections. We first introduce some terminology. In an ADMG G a path

from a to y is called bidirected if every edge on this path is bidirected.

Definition 5 (district) Let G be an ADMG. Then for any node a, the set of nodes

in G reachable from a by bidirected paths is called the district of a, written DisG(a).

For an ADMG G with the vertex set V , we denote by GA a restriction of G to

A ⊆ V , that is GA is a graph which contains only vertices A, and only edges in G

which connect vertices in A.

Definition 6 (recanting district criterion) Let G be an ADMG, A, Y sets of

nodes in G, and π a subset of directed paths which start with a node in A and end

in a node in Y in G. Let V ∗ be the set of nodes not in A which are ancestral of
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Y via a directed path which does not intersect A. Then a district D in an ADMG

GV ∗ is called a recanting district for the π-specific effect of XA on XY if there

exist nodes zi, zj ∈ D (possibly zi = zj), ai ∈ A, and yi, yj ∈ Y (possibly yi = yj)

such that there is a directed path ai → zi → . . . → yi in π, and a directed path

ai → zj → . . . → yj not in π, such that neither of these paths intersect A except at

their origin vertex.

The existence of a recanting district prevents identification of path-specific ef-

fects with multiple treatments and multiple outcomes in models with latent vari-

ables, due to the following theorem.

Theorem 7 Let G be an ADMG, A, Y sets of nodes nodes in G, and π a subset

of directed paths which start with a node in A and end in a node in Y in G. Then

the π-specific effect of XA on XY is identifiable if and only if there does not exists

a recanting district for this effect.

This theorem, which clearly subsumes Theorem 4, is proven for NPSEMs in the

Appendix. If a path-specific effect of XA on XY is identifiable, it can be expressed

via a generalization of the path-specific g-formula for ADMGs.

To give this formula, we first define V ∗, as before, as equal to AnG 6A
(y). We

then partition D(GV ∗) into three sets: D ∈ Cπ,A,Y if A∩PaG(D) 6= ∅ and for every

a ∈ A, d ∈ D such that a ∈ ChG(d), there exists a path in π where a, d are adjacent

(in other words, a → d is green for every such a); D ∈ Dπ,A,Y if A ∩ PaG(D) 6= ∅

and for every a ∈ A, d ∈ D such that a ∈ ChG(d), there is no path in π where

a, d are adjacent (in other words, a → d is blue for every such a); D ∈ Eπ,A,Y if

A ∩ PaG(D) = ∅. Note that these three sets only form a partition of D(GV ∗) if the

effect of XA on XY along paths π is identifiable. The formula is then:
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∑

xV ∗\Y

(

∏

D∈Cπ,A,Y

p(XD = xD | do(XMD
= xMD

, xAD
= xAD

))
)

·

(

∏

D∈Dπ,A,Y

p(XD = xD | do(XMD
= xMD

, xAD
= x∗

AD
))
)

·

(

∏

D∈Eπ,A,Y

p(XD = xD | do(XMD
= xMD

))
)

where for every D ∈ D(GV ∗), MD = PaG(D) \ (D ∪A), AD = A∩PaG(D), and

and xV ∗\Y is consistent with
⋃

D∈D(GV ∗ )(xMD
∪ xD) and ranges over all possible

assignments in the summation.

Unlike the cases where we identified path-specific effects in DAGs, the identifying

formula is in terms of interventional rather than observational distributions. This

is because in DAG models, every interventional distribution is identifiable from the

observational distribution, whereas in ADMG model, some interventional distribu-

tions are not. However, in some cases it is possible to express every interventional

distribution in the above formula in terms of the observational distribution, as in

the example shown in Fig. 6 (c).

We now illustrate Theorem 7 with a number of examples, shown in Fig. 6.

For clarity, we will show bidirected arrows in red (this is merely to distinguish

these arrows from directed arrows). In the graph shown in Fig. 6 (a), the effect

of Xa on Xy1,y2
along the green path is identifiable, and equal to

∑

xw
p(Xy1,y2

|

do(xw , x
∗
a))p(Xw = xw | do(xa)).

On the other hand, the path-specific effect of Xa1,a2
on Xy in the graph shown

on Fig. 6 (b) is not identifiable. This graph is almost identical to one show in

Fig. 5 (a), except there is an additional bidirected arrow connecting z1 and y. This

single change is sufficient to prevent identification. This example illustrates that

unobserved confounders between mediators and outcome prevent identification.

Finally, in the graph shown in Fig. 6 (c), the effect of X2 on X6 along the green
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Figure 6: (a) The path-specific effect of Xa on Xy1,y2
is identifiable. (b) The path-

specific effect of Xa1,a2
on Xy is not identifiable. (c) The path-specific effect of X2

on X6 is identifiable.

arrow is identifiable, and equal to

∑

x3,x4,x5

p(x6, x4 | do(x5, x3, x2))p(x5 | do(x4, x
∗
2))p(x3 | do(x∗

2))

In fact, each of the interventional distributions are themselves identified in the

given graph in terms of observational data: p(x3 | do(x∗
2)) = p(x3 | x∗

2), p(x5 |

do(x4, x
∗
2)) = q1x∗

2
,x3

(x5 | x4), where q1x∗
2
,x3

(x5, x4) =
∑

x1
p(x5, x4 | x3, x

∗
2, x1)p(x1),

and finally p(x6, x4 | do(x5, x3, x2)) = q2x2,x3
(x6 | x5, x4)q

2
x2,x3

(x4), where

q2x2,x3
(x4, x5, x6) =

∑

x1
p(x6, x5, x4 | x3, x2, x1)p(x1).

5 Conclusion

In this paper, we have used the language of causal graphical models and potential

outcome counterfactuals to analyze the problem of identifying path-specific effects,

that is the effect of a set of hypothetical interventions on a set of outcomes of
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interest along certain causal pathways. To obtain our identification results, we

relied on a particular type of causal model, the non-parametric structural equation

model (NPSEM), which makes strong assumptions on causal mechanisms which

entail independences among cross-world counterfactuals.

We have generalized existing results on single treatment single outcome path-

specific effects [1] to the case of multiple treatments, multiple outcomes, and partial

observability. In particular, our results give a complete characterization of identi-

fication of path-specific effects in the time-varying treatment setting. Identifiable

path-specific effects are expressed in terms of the path-specific g-formula, which is

a generalization of the mediation formula [4]. The natural next step is to extend

existing statistical estimation techniques for the g-formula functionals arising from

identifying total effects to the path-specific g-formula.

6 Appendix

We now give a proof of Theorem 7. We denote by (XY ⊥⊥ XW | XZ)p a statement

that for sets of random variables XY , XW , XZ in the joint distribution p, XY is

independent of XW conditioned on XZ . Fix an ADMG G with vertices V , subsets

A, Y of V , and a set π of directed paths from nodes in A to nodes in Y .

6.1 The Soundness Proof

We first show soundness, namely that if a recanting district does not exist, then

the path-specific effect is identifiable from interventional distributions via a gener-

alization of the path-specific g-formula. To show this, we must express path-specific

effects in nested counterfactual form as this generalized formula.

Let {v1, . . . vm} = V ∗ = An(Y )G 6A
. Consider the counterfactual joint distribu-

tion p(Xy1
(π(xA), x

∗
A), . . . , Xym

(π(xA), x
∗
A)), representing the path-specific effect of

A on Y along paths in π.

“Unrolling” this counterfactual, we get the following formula:
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∑

xV ∗\Y

p(Xv1(xPaGV ∗ (v1)), . . . Xvm(xPaGV ∗ (vm))) (1)

where each value assignment xPaGV ∗ (vi) is consistent with xV ∗\Y , and the values

of XA given by the effect definition (that is if there is a green arrow from a ∈ A to

vi, then xPaGV ∗ (vi) assigns to Xa the treatment value xa rather than the reference

value x∗
a).

One of the assumptions that NPSEM DAG models make is that absence of a

directed arrow from a to y implies fixing all observable parents of Xy renders the

resulting counterfactual Xy(xPaG(y)) independent of any counterfactual Xa(.), and

that fixing Xa will not change Xy(xPaG(y)).

This in turn implies that in a marginal of a DAG NPSEM represented by an

ADMG G, for any two counterfactualsXz(xPaG(z)), Xw(xPaG(w)), if there is no bidi-

rected arrow from z to w in G, then p(Xz(xPaG(z)), Xw(xPaG(w))) = p(Xz(xPaG(z)))·

p(Xw(xPaG(w))). Further, NPSEMs obey a property called compositionality, which

states that for any sets of counterfactual variablesXA(xSA
),XY (xSY

),XZ(xSZ
),XW (xSW

)

if both (XA(xSA
) ⊥⊥ XY (xSY

) | XZ(xSZ
)) and (XW (xSW

) ⊥⊥ XY (xSY
) | XZ(xSZ

))

hold, then (XA(xSA
) ∪XW (xSW

) ⊥⊥ XY (xSY
) | XZ(xSZ

)) also holds.

These properties imply the that formula 1 is equivalent to the following formula

∑

xV ∗\Y

∏

v1,...,vk∈D∈D(GV ∗ )

p(Xv1(xPaGV ∗ (v1)), . . .Xvk(xPaGV ∗ (vk))) (2)

which is a decomposition of formula 1 into a set of terms, one for each district

in GV ∗ .

Finally, since all subscripts not involving value assignments to A are consistent

with v∗\x, we can use the consistency assumption to conclude formula 2 is equivalent

to formula 3.

∑

xV ∗\Y

∏

D∈D(GV ∗ )

p(XD = xD | do(xPaGV ∗ (D)\D)) (3)

23



where xPaGV ∗ (D)\D is a value assignment to Pa(D)GV ∗ \D consistent with v∗ and

assignments to X given by the effect. In particular, if D ∈ Cπ,A,Y , xPaGV ∗ (D)\D

assigns to XA∩(Pa(D)GV ∗ \D) the treatment values, if D ∈ Dπ,A,Y , xPaGV ∗ (D)\D

assigns to XA∩(Pa(D)GV ∗ \D) the reference values.

This establishes our result.

6.2 The Completeness Proof

Next, we show completeness, namely that if a recanting district exists, then the

path-specific effect given by a counterfactual distribution p(Xy1
(π(xA), x

∗
A), . . . , Xym

(π(xA), x
∗
A))

is not identifiable. The proof will proceed as follows.

We will first show if there exists a recanting district D (for a particular a ∈

A) then the following counterfactual γ1 is not identifiable from P∗ = {p(XV \W |

do(xw)) | W ⊆ V } in the graph GD∪{a}:

γ1 =
∑

xvi
:vi∈D\rh(D)GD∪{a}

p(Xv1(xPaGD∪{a}
(v1)), . . . Xvk(xPaGD∪{a}

(vk)) (4)

where {v1, . . . vk} = D, rh(D)GD∪{a}
= {vi ∈ D | Ch(D)GD∪{a}

∩ D = ∅}, and

xPaGD∪{a}
(vi) for every vi ∈ D, is a value assignment defined as follows.

It’s an assignment of values to Pa(vi)GD∪{a}
that are consistent with xvi (values

being summed) for nodes in Pa(vi)GD∪{a}
\{a}. If a ∈ PaGD∪{Xi}

(vi), the assignment

assigns to a the treatment value xa if the arrow from a to vi is green, and the

reference value x∗
a otherwise (note that by assumption there exists both a green

arrow from a to a node in D, and a blue arrow from a to a node in D).

After showing the non-identifiability of γ1, we show the non-identifiability of a

related counterfactual γ2, defined as follows.

Fix Y ′ ⊆ Y , such that for all nodes in rh(D)GD∪{a}
are ancestral of Y ′ in GV ∗ ,

and for no subset of Y ′ is this true. For every node r in rh(D)GD∪{a}
pick a node

yr ∈ Y ′ such that there is a directed path πr from r to yr. Let the set of nodes in
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every such path be equal to W ∗. Let G∗ be a subgraph of GV ∗ containing nodes in

D ∪W ∗. We will then show that:

γ2 =
∑

xvi
:vi∈(D∪W∗)\Y ′

p(Xv1(xPaG∗ (v1)), . . . , Xvl(xPaG∗ (vl)) (5)

where xPaG∗ (vi) is defined as before, is not identifiable from P∗ in G∗.

Having shown γ2 is not identifiable in G∗ from P∗, we then have two models

M1,M2 which agree on P∗ but disagree on γ∗. We then note that augmenting

M1,M2 with additional variables can result in models M ′
1,M

′
2 that induce G, and

such that γ2 is a marginal distribution of the counterfactual γ in these models. This

will imply γ is not identifiable from P∗ in G, which was what we wanted to show.

Lemma 8 The counterfactual γ1 given in equation 4 is not identifiable from P∗ in

GD∪{a}.

Proof: Pick two nodes in D, v1, v2 such that a has a green arrow to v1, and a blue

arrow to v2. Assume without loss of generality that a only affects those two nodes

in D. Assume, also without loss of generality, that every node in D has at most

one child (other arrows are vacuous).

We now construct two NPSEM models, M1 and M2, which both agree on P∗,

both induce GD∪{a}, but which disagree on γ1 as defined. In these models, every

observable variable is binary. Every bidirected arc corresponds to an unobserved

binary variable with two children. In M1, for every observable node, its value is

determined by the bit parity function of its parents (both observed and unobserved).

ForM2, for every observable node, its value is determined by the bit parity function

of its parents, except the functions determining the values of v1, v2 do not take the

value of a into account. The distributions over unobserved nodes is the same in

both models, and is uniform.

We now show the two models have the desired properties. That both models

induce GD∪{a} is clear. Next, we show M1 and M2 agree on P∗.
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By construction, both models agree on p(xa). We next show both models agree

on p(xD | do(xa)). It’s not difficult to show (following the proof of Theorem 17

in [19]) that p(xD | do(xa)) = p(xD) is a uniform distribution in M2 over as-

signments xD such that xrh(D)GD∪{a}
has even bit parity. In fact, the same proof

shows the same for p(xD | do(a)) in M1. This implies that p(xD∪{a}) = p(xD |

do(xa))p(xa) is the same in M1 and M2. Furthermore, for any partition (Z1, Z2) of

Z = (D ∪ {a}), it is either the case that Z1 ⊂ D, or p(xZ1
| do(xZ2

)) = p(xZ1\{a} |

do(xZ2∪{a}))p(xa). In the former case we have two causal submodels derived from

M1,M2 which agree on functions and distributions of unobserved variables, and

which have the observed distribution p(xD | do(xa)). This implies M1 and M2

must agree on p(xZ1
| do(xZ2

)). In the latter case, the decomposition of the effect,

and the previous argument implies our conclusion.

Finally, we must show M1 and M2 disagree on γ1.

In M2, γ1 is a distribution over nodes in R = rh(D)GD∪{a}
. By assumption,

the values of the variables in set XR can be viewed as giving the bit parity of each

unobserved value, counted twice. This implies γ1 assigns probability 0 to any value

assignment to XR with odd bit parity, and a uniform distribution to even bit parity

assignments. What we must now show is that γ1 is a different distribution in M1.

Indeed, in M1 the values of the variables in set XR can be viewed as giving the

bit parity of each unobserved value, counted twice, plus 1 (because a has exactly

one directed path to R in GD∪{a} where a takes on value xa = 1, and exactly one

directed path to R in GD∪{a} where a takes on value xa = 0). This implies γ1

assigns probability 0 to any value assignment to XR with even bit parity, and a

uniform distribution to even bit parity assignments.

The constructed models M1,M2 induce non-positive probabilities p(xD∪{a}).

It is not difficult to augment these models to create a pair of new models M′
1,M

′
2

such that p(xD∪{a}) in the new models is positive, and the models agree on P ′
∗ (the

set of interventional distributions in these new models) and disagree on γ1.

We construct M′
1,M

′
2 by adding a new unobserved binary parent for every node
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in R, with a distribution {ǫ, 1 − ǫ}, where ǫ is a very small positive real number.

Clearly, M′
1,M

′
2 agree on any member of P ′

∗ involving nodes in (D ∪ {a}) \ R.

Note that any member P ′
j of P ′

∗ involving nodes R′ ⊆ R in M′
1,M

′
2 is a function

of some interventional distribution over parents of R′, the distribution P (xUR
) over

unobserved parents UR of R added toM′
1,M

′
2, the functions determining the values

of R in M′
1,M

′
2, and the distribution over original unobserved nodes in M′

1,M
′
2.

Since M′
1,M

′
2 agree on all these objects, they must agree on P ′

∗.

By construction, the probability of γ1 in M′
2 assigns low but non zero probabil-

ities to odd bit parity assignments to XR, while the probability of γ1 in M′
1 assigns

low but non zero probabilities to even parity assignments to XR. Since ǫ can be

made arbitrarily small, this implies M′
1,M

′
2 disagree on γ1.

This concludes our proof. �

Lemma 9 The counterfactual γ2 shown in equation 5 is not identifiable from P∗

in G∗.

Proof: Without loss of generality, assume every node in G∗ has at most one child.

Then we augment M′
1,M

′
2 constructed in the proof of Lemma 8 by adding a binary

node for every vertex in G∗, but not GD∪{a}. We let each such node obtain its value

from the bit parity of its parents in G∗ (without adding unobserved parents). Call

the resulting models M”1,M”2.

Every node added to M”1,M”2 forms its own district, and for every such node

w, the distribution p(xw | do(xPa(w)G∗ )) is the same in M”1 and M”2 by construc-

tion. This implies M”1,M”2 agree on P”∗. But by construction we also obtain

that M”1,M”2 disagree on γ2.

As before, the constructed models M”1,M”2 do not yield positive observable

distributions. We augment our models and create a new pair of models M∗
1,M

∗
2

which induce positive observable distributions, which agree on P∗ and disagree on

γ2. To do so, we add for every node in W ∗ \ rh(D)G∗ a new binary unobserved

parent with probabilities {ǫ, 1 − ǫ}, where ǫ is a very small positive real number.
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Since every node w in W ∗ \ rh(D)G∗ is its own district, by construction M∗
1,M

∗
2

agree on p(xw | do(xPaG∗ (w))), which implies M∗
1,M

∗
2 agree on P∗.

The probability of γ2 in M∗
2 then assigns a small but positive probability to

any even bit parity assignment to Y ′, while the probability of γ2 in M∗
1 assigns a

small but positive probability to any odd bit parity assignment to Y ′. Since ǫ can

be made arbitrarily small, this implies M∗
1,M

∗
2 disagree on γ2.

This establishes our result. �

Lemma 10 The counterfactual γ is not identifiable from P∗ in G.

Proof: This can be easily established by augmenting models M∗
1,M

∗
2 constructed

in the previous Lemma with enough extra nodes to enlarge G∗ to G. These extra

nodes will be fully jointly independent of each other and nodes in G∗. (That is, any

edge connecting to such nodes in G will be vacuous in our augmentation ofM∗
1,M

∗
2.

It’s clear from this construction that the resulting augmented models agree on P∗,

disagree on γ, and induce a positive observable distribution.

This establishes completeness of the criterion. �
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