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QUANTUM ERGODIC RESTRICTION FOR CAUCHY DATA:

INTERIOR QUE AND RESTRICTED QUE

HANS CHRISTIANSON, JOHN A. TOTH, AND STEVE ZELDITCH

Abstract. We prove a quantum ergodic restriction theorem for the Cauchy
data of a sequence of quantum ergodic eigenfunctions on a hypersurface H

of a Riemannian manifold (M, g). The technique of proof is to use a Rellich
type identity to relate quantum ergodicity of Cauchy data on H to quantum
ergodicity of eigenfunctions on the global manifold M . This has the interesting
consequence that if the eigenfunctions are quantum unique ergodic on the
global manifold M , then the Cauchy data is automatically quantum unique
ergodic on H with respect to operators whose symbols vanish to order one on
the glancing set of unit tangential directions to H.

1. Introduction

This article is concerned with the QER (quantum ergodic restriction) problem for
hypersurfaces in compact Riemannian manifolds (M, g). We consider the eigenvalue
problem on M







−∆gϕj = λ2
jϕj , 〈ϕj , ϕk〉 = δjk

Bϕj = 0 on ∂M
,

where 〈f, g〉 =
∫

M
f ḡdV (dV is the volume form of the metric) and where B is the

boundary operator, e.g. Bϕ = ϕ|∂M in the Dirichlet case or Bϕ = ∂νϕ|∂M in the
Neumann case. We also allow ∂M = ∅. We work with the semiclassical calculus as
in the references [Bu, DZ, HaZe, TZ1], to which we refer for background. We set
the Planck constant equal to hj = λ−1

j ; for notational simplicity we often drop the
subscript j. We then let ϕh be a corresponding orthonormal basis of eigenfunctions
with eigenvalue h−2, so that the eigenvalue problem takes the semi-classical form,

(1.1)







(−h2∆g − 1)ϕh = 0,

Bϕh = 0 on ∂M
,

where B = I or B = hDν in the Dirichlet or Neumann cases respectively.
Let H ⊂ M be a smooth hypersurface which does not meet ∂M if ∂M 6= ∅. The

main result (Theorem 1) is that the full semiclassical Cauchy data

(1.2) CD(ϕh) := {(ϕh|H , hDνϕh|H)}

of eigenfunctions is always quantum ergodic along any hypersurface H ⊂ M if
the eigenfunctions are quantum ergodic on the global manifold M . The proof is a
generalization of the boundary case where H = ∂M , which was proved in [HaZe]
and in [Bu]. Our proof is modeled on that of [Bu], developing ideas of [GL] (see
also [CTZ2] for an abstract microlocal approach). This automatic QER property
of Cauchy data stands in contrast to the conditional nature of the QER property

1

http://arxiv.org/abs/1205.0286v1


2 HANS CHRISTIANSON, JOHN A. TOTH, AND STEVE ZELDITCH

for the Dirichlet data alone, which requires an “asymmetry” condition on H with
respect to geodesics [TZ1, TZ2, DZ]. Note that in the boundary case H = ∂M ,
the Dirichlet resp. Neumann boundary condition kills one of the two components
of the Cauchy data, so that the Cauchy data QER theorem appears the same as
the QER theorem for Neumann data (resp. Dirichlet data) alone.

The automatic QER property of Cauchy data has an interesting and possibly
surprising consequence for QUE (quantum unique ergodicity). An orthonormal ba-
sis {ϕh} of −h2∆g-eigenfunctions is called QUE on M if 〈Aϕh, ϕh〉 → ω(A) for all
pseudodifferential operators A ∈ Ψ0(M). Here, ω(A) =

∫

S∗M
σAdµL where dµL is

normalized Liouville measure, Ψ0(M) is the space of 0-order semiclassical pseudo-
differential operators on M , and σA is the principal symbol of A in Ψ0(M). Then
QUE on (M, g) implies a certain QUER (quantum uniquely ergodic restriction)
property of the Cauchy data on an embedded orientable separating hypersurface
H . In Corollary 1.1 it is proved that QUE on (M, g) implies QUER with respect
to the subalgebra of semiclassical pseudodifferential operators on H whose symbols
vanish to order 1 along S∗H . This happens because the passage from QUE in the
ambient manifold to QUER on the hypersurface involves multiplying the symbols
by a certain factor which vanishes to order one on S∗H , i.e. the unit directions
(co-)tangent to H . Therefore, QUE in the ambient manifold does not imply QUER
for all pseudodifferential operators on H , and indeed the test operators damp out
the possible modes which concentrate microlocally on H . We nevertheless refer to
it as a QUER property because it holds for the entire sequence of eigenfunctions;
there is no need to remove a subsequence of density zero for the subalgebra limits.

We introduce a hypersurface H , which we assume to be orientable, embedded,
and separating in the sense that

M\H = M+ ∪M−

where M± are domains with boundary in M . This is not a restrictive assumption
since we can arrange that any hypersurface is part of the boundary of a domain.

We define the microlocal lift of the Neumann data by
∫

B∗H

a dΦN
h := 〈OpH(a)hDνϕh|H , hDνϕh|H〉L2(H),

where OpH(a) is the semiclassical h-quantization of a ∈ S0(H), the space of zeroth-
order semiclassical symbols on H . We also define the renormalized microlocal lift
of the Dirichlet data by

∫

B∗H

a dΦRD
h := 〈OpH(a)(1 + h2∆H)ϕh|H , ϕh|H〉L2(H).

These distributions are asymptotically positive, but are not normalized to have
mass one and may tend to infinity. To be concrete, recall that in this note, −h2∆H

is the non-negative tangential Laplacian, so that the operator (1+h2∆H) is charac-
teristic precisely on the glancing set S∗H of H . In this sense, we have renormalized
the Dirichlet data by damping out the whispering gallery components.

For the full Cauchy data we define the microlocal lift dΦCD
h by

(1.3) dΦCD
h = dΦN

h + dΦRD
h .

Our first result is that the Cauchy data of a sequence of quantum ergodic eigen-
functions restricted to H is automatically QER for semiclassical pseudodifferential
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operators with symbols vanishing on the glancing set S∗H , i.e. that

dΦCD
h → ω,

where

ω(a) =
4

µ(S∗M)

∫

B∗H

a0(x
′, ξ′)(1 − |ξ′|2)1/2dσ

is the limit state of Theorem 1. Here, a0 is the principal symbol of the semi-
classical pseudodifferential operator aw quantizing the semiclassical symbol a. This
was proved in a different way in [TZ1] in the case of piecewise smooth Euclidean
domains. The assumption H ∩ ∂M = ∅ is for simplicity of exposition and because
the case H = ∂M is already known.

Theorem 1. Suppose H ⊂ M is a smooth, codimension 1 embedded orientable
separating hypersurface and assume H ∩ ∂M = ∅ if ∂M 6= ∅. Assume that {ϕh}
is a quantum ergodic sequence. Then the appropriately renormalized Cauchy data
dΦCD

h of ϕh is quantum ergodic in the sense that for any aw ∈ Ψ0(H),

〈awhDνϕh|H , hDνϕh|H〉L2(H) +
〈

aw(1 + h2∆H)ϕh|H , ϕh|H
〉

L2(H)

→h→0+
4

µ(S∗M)

∫

B∗H a0(x
′, ξ′)(1 − |ξ′|2)1/2dσ,

where a0(x
′, ξ′) is the principal symbol of aw, −h2∆H is the induced tangential

(semiclassical) Laplacian with principal symbol |ξ′|2, µ is the Liouville measure on
S∗M , and dσ is the standard symplectic volume form on B∗H.

The proof simply relates the interior and restricted microlocal lifts and reduces
the QER property along H to the QE property of the ambient manifold. If we
assume that QUE holds in the ambient manifold, we automatically get QUER,
which is our first Corollary:

Corollary 1.1. Suppose that {ϕh} is QUE on M . Then the distributions {dΦCD
h }

have a unique weak* limit

ω(a) :=
4

µ(S∗M)

∫

B∗H

a0(x
′, ξ′)(1 − |ξ′|2)1/2dσ.

We note that dΦCD
h involves the renormalized microlocal lift dΦRD

h rather than
the microlocal lift of the Dirichlet data. However, in Theorem 2, we see that the
analogue of Theorem 1 holds for a density one subsequence if we use the further
renormalized distributions dΦD

h + dΦRN
h where the microlocal lift dΦD

h ∈ D′(B∗H)
of the Dirichlet data of ϕh is defined by

∫

B∗H

a dΦD
h := 〈OpH(a)ϕh|H , ϕh|H〉L2(H),

and
∫

B∗H

a dΦRN
h := 〈(1 + h2∆H + i0)−1OpH(a)hDνϕh|H , hDνϕh|H〉L2(H).

Theorem 2. Suppose H ⊂ M is a smooth, codimension 1 embedded orientable
separating hypersurface and assume H ∩ ∂M = ∅ if ∂M 6= ∅. Assume that {ϕh}
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is a quantum ergodic sequence. Then, there exists a sub-sequence of density one as
h → 0+ such that for all aw ∈ Ψ0(H),

〈

(1 + h2∆H + i0)−1awhDνϕh|H , hDνϕh|H
〉

L2(H)
+ 〈awϕh|H , ϕh|H〉L2(H)

→h→0+
4

µ(S∗M)

∫

B∗H
a0(x

′, ξ′)(1− |ξ′|2)−1/2dσ,

where a0(x
′, ξ′) is the principal symbol of aw.

The additional step in the proof is a pointwise local Weyl law as in [TZ1] section
8.4 showing that only a sparse set of eigenfunctions could scar on the glancing
set S∗H . This is precisely the step which is not allowed in the QUER problem.
Therefore, QUER for all OpH(a) might fail for this rescaled problem; to determine
whether it holds for all OpH(a) we would need a new idea. However, the following
is a direct consequence of Theorem 2

Corollary 1.2. Suppose that {ϕh} is QUE on M . Then the distributions {dΦD
h +

dΦRN
h } have a unique weak* limit

ω(a) :=
4

µ(S∗M)

∫

B∗H

a0(x
′, ξ′)(1− |ξ′|2)−1/2dσ

with respect to the subclass of symbols which vanish on S∗H.

We prove Theorem 1 by means of a Rellich identity adapted from [GL, Bu]. It
is also possible to prove the theorem using the layer potential approach in Step
2 (Proof of (7.4)) in section 7 of [HaZe]. To adapt this proof, one would need
to introduce a semi-classical Green’s function in place of the Euclidean Green’s
function, verify that it has the properties of the latter in section 4 of [HaZe], and
then go through the proof of Step 2. Despite the authors’ fondness for the layer
potential approach, this proof is much longer than the infinitesimal Rellich identity
approach and we have decided to omit the details.

Acknowledgements. The first version of this article was written at the same time
as [TZ1, TZ2] but its completion was post-poned while the authors proved the QER
phenomenon for Dirichlet data alone. We were further stimulated to complete the
article by a discussion with Peter Sarnak at the Spectral Geometry conference at
Dartmouth in July, 2010 in which we debated whether QUE in the ambient domain
implies QUER along H . We said ’yes’, Sarnak said ‘no’; Corollary 1.1 explains the
sense in which both answers are right.

The research of H.C. was partially supported by NSF grant # DMS-0900524; J.T.
was partially supported by NSERC grant # OGP0170280 and a William Dawson
Fellowship; S.Z. was partially supported by NSF grant # DMS-0904252.

2. Rellich approach: Proof of Theorem 1

We have assumed H is a separating hypersurface, so that H is the boundary of
a smooth open submanifold of M , H = ∂M+ ⊂ M . There is no loss of generality
in this assumption, since we may always use a cutoff to a subset of H . We then
use a Rellich type identity to write the integral of a commutator over M+ as a
sum of integrals over the boundary (of course the same argument would apply on
M− = M \M+). The argument is partially motivated by Burq’s proof of boundary
quantum ergodicity (ie. the case H = ∂M).
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Let x = (x′, xn) be normal coordinates in a small tubular neighbourhood H(ǫ)
of H defined near a point x0 ∈ H . In these coordinates we can locally write

H(ǫ) := {(x′, xn) ∈ U × R, |xn| < ǫ}.

Here U ⊂ R
n−1 is a coordinate chart containing x0 ∈ H and ǫ > 0 is arbitrarily

small but for the moment, fixed. We let χ ∈ C∞
0 (R) be a cutoff with χ(x) = 0 for

|x| ≥ 1 and χ(x) = 1 for |x| ≤ 1/2. In terms of the normal coordinates,

−h2∆g =
1

g(x)
hDxn

g(x)hDxn
+R(xn, x

′, hDx′)

where, R is a second-order h-differential operator along H with coefficients that
depend on xn, and R(0, x′, hDx′) = −h2∆H is the induced tangential semiclassical
Laplacian on H .

By Green’s formula and (1.1) we get the Rellich identity

i

h

∫

M+

(

[−h2∆g, A(x, hDx)]ϕh(x)
)

ϕh(x) dx(2.1)

=

∫

H

(hDν A(x
′, xn, hDx)ϕh|H)ϕh|H dσH

+

∫

H

(A(x′, xn, hDx)ϕh|H)hDνϕh|H dσH .

Here, Dxj
= 1

i
∂

∂xj
, Dν = 1

i ∂ν etc., where ∂ν is the interior unit normal to M+.

Also, A(x, hDx) is a semiclassical pseudodifferential operator on M .
We then chooe A(x, hDx) to be

A(x′, xn, hDx) = χ(
xn

ǫ
)hDxn

a(x′, hD′).

Since χ(0) = 1 it follows that the second term on the right side of (2.1) is just

(2.2) 〈a(x′, hD′)hDxn
ϕh|H , hDxn

ϕh|H〉 .

The first term on right hand side of (2.1) equals

∫

H

(hDn(χ(xn/ǫ)hDna(x
′, hD′)ϕh))|xn=0ϕh|xn=0 dσH

(2.3)

=

∫

H

(

χ(xn/ǫ)a(x
′, hD′)(hDn)

2ϕh +
h

iǫ
χ′(xn/ǫ)hDna(x

′, hD′)ϕh

)∣

∣

∣

xn=0
ϕh|xn=0dσH

=

∫

H

(χ(xn/ǫ)a(x
′, hD′)(1 −R(xn, x

′, hD′))ϕh)|xn=0ϕh|xn=0dσH ,

since χ′(0) = 0 and ((hDn)
2 +R)ϕh = ϕh in these coordinates.

It follows from (2.1)-(2.3) that

〈awhDνϕh|H , hDνϕh|H〉L2(H) +
〈

aw(1 + h2∆H)ϕh|H , ϕh|H
〉

L2(H)
(2.4)

=
〈

Oph

({

ξ2n +R(xn, x
′, ξ′), χ(

xn

ǫ
)ξna(x

′, ξ′)
})

ϕh, ϕh

〉

L2(M+)
+Oǫ(h).(2.5)

We now assume that ϕh is a sequence of quantum ergodic eigenfunctions, and
take the h → 0+ limit on both sides of (2.4). We apply interior quantum ergodicity
to the term on the right side of (2.4). We compute
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(2.6)

{

ξ2n +R(xn, x
′, ξ′), χ(xn

ǫ )ξna(x
′, ξ′)

}

= 2
ǫχ

′(xn

ǫ )ξ2na(x
′, ξ′)

+χ(xn

ǫ )R2(x
′, xn, ξ

′),

where R2 is a zero order symbol. Let χ2 ∈ C∞ satisfy χ2(t) = 0 for t ≤ −1/2,
χ2(t) = 1 for t ≥ 0, and χ′

2(t) > 0 for−1/2 < t < 0, and let ρ be a boundary defining
function for M+. Then χ2(ρ/δ) is 1 on M+ and 0 outside a δ/2 neighbourhood.
Now the assumptions that the sequence ϕh is quantum ergodic implies that the
matrix element of the second term on the right side of (2.6) is bounded by

∣

∣

∣
〈Oph(χ(xn/ǫ)R2(x, ξ

′))ϕh, ϕh〉L2(M+)

∣

∣

∣

≤ ‖χ2(ρ/δ)χ(xn/ǫ)ϕh‖L2(M)‖χ̃2(ρ/δ)χ̃(xn/ǫ)ϕh‖L2(M)

= Oδ(ǫ) + oδ,ǫ(1),

where χ̃ and χ̃2 are smooth, compactly supported functions which are one on the
support of χ and χ2 respectively. Here, the last line follows from interior quantum
ergodicity of the ϕh since the volume of the supports of χ(xn/ǫ) and χ̃(xn/ǫ) is
comparable to ǫ.

To handle the matrix element of the first term on the right side of (2.6), we note
that χ′(xn/ǫ)|M+

= χ̃′(xn/ǫ) for a smooth function χ̃ ∈ C∞(M) satisfying χ̃ = 1 in
a neighbourhood of M \ M+ and zero inside a neighbourhood of H . Then, again
by interior quantum ergodicity, we have

2

〈

Oph

(

1

ǫ
χ′(

xn

ǫ
) ξ2na(x

′, ξ′)

)

ϕh, ϕh

〉

L2(M+)

(2.7)

= 2

〈

Oph

(

1

ǫ
χ̃′(

xn

ǫ
) ξ2na(x

′, ξ′)

)

ϕh, ϕh

〉

L2(M)

=
2

µ(S∗M)

∫

S∗M

1

ǫ
χ̃′(

xn

ǫ
)(1−R(x′, xn, ξ

′))a(x′, ξ′) dµ+O(ǫ) + oǫ(1)

=
2

µ(S∗M)

∫

S∗M+

1

ǫ
χ′(

xn

ǫ
)(1 −R(x′, xn, ξ

′))a(x′, ξ′) dµ+O(ǫ) + oǫ(1),

since χ̃′ and χ′ are supported inside M+. Combining the above calculations yields

〈awhDνϕh|H , hDνϕh|H〉L2(H) +
〈

aw(1 + h2∆H)ϕh|H , ϕh|H
〉

L2(H)
(2.8)

=
2

µ(S∗M)

∫

S∗M+

1

ǫ
χ′(

xn

ǫ
)(1−R(x′, xn, ξ

′))a(x′, ξ′) dµ+Oδ(ǫ) + oδ,ǫ(1).

Finally, we take the h → 0+-limit in (2.8) followed by the ǫ → 0+-limit, and
finally the δ → 0+ limit. The result is that, since the left-hand side in (2.8) is
independent of ǫ and δ,

lim
h→0+

〈awhDνϕh|H , hDνϕh|H〉L2(H) +
〈

aw(1 + h2∆H)ϕh|H , ϕh|H
〉

L2(H)

=
2

µ(S∗M)

∫

S∗

H
M

(1 −R(x′, xn = 0, ξ′)) dσ̃

=
4

µ(S∗M)

∫

B∗H

(1 − |ξ′|2)1/2a(x′, ξ′)) dσ,(2.9)
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where dσ̃ is the symplectic volume form on S∗
HM , and dσ is the symplectic volume

form on B∗H .
�

3. Proof of Theorem 2

The proof follows as in Theorem 1 with a few modifications. For fixed ǫ1 > 0 we
choose the test operator

(3.1) A(x′, xn, hDx) = (I + h2∆H(x′, hD′) + iǫ1)
−1χ(

xn

ǫ
)hDxn

a(x′, hD′)

and since WF ′
h(ϕh|H) ⊂ B∗H (see [TZ2] section 11) it suffices to assume that

a ∈ C∞
0 (T ∗H) with

supp a ⊂ B∗
1+ǫ2

1
(H).

Let χǫ1(x
′, ξ′) ∈ C∞

0 (B∗
1+ǫ2

1

\ B∗
1−2ǫ2

1

; [0, 1]) be a cutoff near the glancing set S∗H

with χǫ1(x
′, ξ′) = 1 when (x′, ξ′) ∈ B∗

1+ǫ2
1

\ B∗
1−ǫ2

1

. Then, with A(x, hDx) in (3.1),

the same Rellich commutator argument as in Theorem 1 gives
〈

(1 + h2∆H + iǫ1)
−1aw(1− χǫ1)

whDνϕh|H , hDνϕh|H
〉

L2(H)
(3.2)

+

〈

aw(1− χǫ1)
w

(

1− |ξ′|2

1− |ξ′|2 + iǫ1

)w

ϕh|H , ϕh|H

〉

L2(H)

→
4

µ(S∗M)

∫

B∗H

a0(x
′, ξ′)(1 − χǫ1(x

′, ξ′))

(

(1− |ξ′|2)1/2

1− |ξ′|2 + iǫ1

)

dσ.

It remains to determine the contribution of the glancing set S∗H . As in [Bu, DZ,
HaZe, TZ1] we use a local Weyl law to do this. Because of the additional normal
derivative term the argument is slightly different than in the cited articles and so
we give some details. For the rest of this proof, we need to recall that h ∈ {λ−1

j },
and we write hj for this sequence to emphasize that it is a discrete sequence of
values hj → 0. Since ‖aw(x′, hD′)‖L2→L2 = O(1), it follows that for h ∈ (0, h0(ǫ1)]
with h0(ǫ1) > 0 sufficiently small,

1

N(h)

∑

hj≥h

|〈awχw
ǫ1ϕhj

|H , ϕhj
|H〉L2(H)|(3.3)

≤ C
1

N(h)

∑

hj≥h

(

|〈χw
ǫ1ϕhj

|H , χw
2ǫ1ϕhj

|H〉L2(H)|+O(h∞
j )

)

≤
C

2

1

N(h)

∑

hj≥h

(

‖χw
ǫ1ϕhj

|H‖2L2(H) + ‖χw
2ǫ1ϕhj

|H‖2L2(H) +O(h∞
j )

)

= O(ǫ21).

By a Fourier Tauberian argument [TZ1] section 8.4, it follows that for h ∈
(0, h0(ǫ1)]

(3.4)
1

N(h)

∑

hj≥h

|χw
ǫ1,2ǫ1ϕhj

|H(x′)|2 = O(ǫ21)

uniformly for x′ ∈ H. The last estimate in (3.3) follows from (3.4) by integration
over H.
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To estimate the normal derivative terms, we first recall the standard resolvent
estimate

‖(1 + h2∆H + iǫ1)
−1u‖H2

h
(H) ≤ Cǫ−1

1 ‖u‖L2(H),

where H2
h is the semiclassical Sobolev space of order 2 (see [Zw] Lemma 13.6).

Applying the obvious embedding H2
h(H) ⊂ L2(H), we recover

‖(1 + h2∆H + iǫ1)
−1u‖L2(H) ≤ C‖(1 + h2∆H + iǫ1)

−1u‖H2
h
(H)

≤ Cǫ−1
1 ‖u‖L2(H)

to get that

1

N(h)

∑

hj≥h

|〈(1 + h2∆H + iǫ1)
−1awχw

ǫ1hjDxn
ϕhj

|H , hjDxn
ϕhj

|H〉L2(H)|(3.5)

≤ C′ǫ−1
1

1

N(h)

∑

hj≥h

‖χw
ǫ1hDxn

ϕhj
|H‖L2(H) ‖χ

w
2ǫ1hDxn

ϕhj
|H‖L2(H)

≤
C′ǫ−1

1

2

1

N(h)

∑

hj≥h

(

‖χw
ǫ1hDxn

ϕhj
|H‖2L2(H) + ‖χw

2ǫ1hDxn
ϕhj

|H‖2L2(H)

)

= O(ǫ−1
1 ǫ21)

= O(ǫ1).

The last estimate follows again from the Fourier Tauberian argument in [TZ1]
section 8.4, which gives

(3.6)
1

N(h)

∑

hj≥h

|χw
ǫ1,2ǫ1hjDxn

ϕhj
|H(x′)|2 = O(ǫ21)

uniformly for x′ ∈ H.
Since ǫ1 > 0 is arbitrary, Theorem 2 follows from (3.3) and (3.5) by letting

ǫ1 → 0+ in (3.2), followed h → 0+ and ǫ → 0+ last.
�
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