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Abstract

This article deals with invariant manifolds for infinite dimensional ran-
dom dynamical systems with different time scales. Such a random system
is generated by a coupled system of fast-slow stochastic evolutionary equa-
tions. Under suitable conditions, it is proved that an exponentially tracking
random invariant manifold exists, eliminating the fast motion for this cou-
pled system. It is further shown that if the scaling parameter tends to zero,
the invariant manifold tends to a slow manifold which captures long time
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dynamics. As examples the results are applied to a few systems of cou-
pled parabolic-hyperbolic partial differential equations, coupled parabolic
partial differential-ordinary differential equations, and coupled hyperbolic-
hyperbolic partial differential equations.

Key Words: Stochastic partial differential equations (SPDEs); random
dynamical systems; multiscale systems; random invariant manifolds; slow
manifolds; exponential tracking property
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1 Introduction

The theory of invariant manifolds serves as a tool for analyzing dynamical behav-
iors of deterministic systems. It was first introduced by Hadamard [20], then by
Lyapunov [24] and Perron [29] for deterministic systems. It has been further de-
veloped by many authors for infinite dimensional deterministic systems; see, e.g.,
[30, 2, 9, 12, 21]. More recently, invariant manifolds have been investigated for
infinite dimensional stochastic systems; see [17, 18, 23, 25, 3, 6, 15, 14] among
others.

Some systems evolve on fast and slow time scales, and may thus be modeled by
coupled singularly perturbed stochastic ordinary or partial differential equations
(SDEs or SPDEs). For SDEs with two time scales, Schmalfuß and Schneider [32]
have recently investigated random inertial manifolds that eliminate the fast vari-
ables, by a fixed point technique based on a random graph transformation. They
show that the inertial manifold tends to another so-called slow manifold as the
scaling parameter goes to zero. Qualitative analysis for the behavior of the slow
manifold for slow-fast SDEs on the long time scales can be found in Wang and
Roberts [34].

In the present paper, we consider invariant manifolds for stochastic fast-slow
systems in infinite dimension. Namely we investigate the following system of fast-
slow stochastic evolutionary equations, which could be coupled SPDEs, or coupled
SPDEs-SDEs,

ẋǫ =
1

ǫ
Axǫ +

1

ǫ
f(xǫ, yǫ) +

σ√
ǫ
ẇ, in H1,

ẏǫ = Byǫ + g(xǫ, yǫ), in H2,

where A and B are generators of C0−semigroups, the interaction functions f and

g are continuous. The noise process w =
m∑
j=1

hjwj, where {wj}mj=1 are two-sided

Wiener processes (or Brownian motions) taking values in R and hj (1 ≤ j ≤ m)
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are given elements in H1. The small parameter ǫ > 0 representing the ratio of the
two time scales. The precise conditions on these quantities will be given in Section
3, which allow our framework to deal with multiscale coupled parabolic-hyperbolic
systems and coupled hyperbolic-hyperbolic systems.

It is worthy mentioning that in the situation we consider here, the noise pertur-
bation of the fast motion equation is additive type. The reason is that the problem
for existence of random dynamical systems generated by stochastic partial differen-
tial equations with general multiplicative noise is still unsolved (for details see [17]).
The main goal in this paper is to establish, for ǫ > 0 small enough, the existence
of a random invariant manifold M ǫ with an exponential tracking property for the
above stochastic system. Thus as a consequence, this system can be reduced to an
evolutionary equation with a modified nonlinear term, which is useful for describ-
ing the long time behavior of the original coupled stochastic system. There are
usually two approaches to construction of invariant manifolds: Hadamard graph
transform method (see [31, 17]) and Lyapunov-Perron method (see [11, 18, 6]). We
achieve our results by the latter which is different from the method of random graph
transformation in [32]. In this approach one key assumption is that the Lipschitz
constant of the nonlinear term in fast component is small enough comparing with
the decay rate of the linear operator A. In particular, under suitable conditions
it is further shown that this manifold M ǫ can be asymptotically approximated for
ǫ sufficiently small by a slow manifold M0 for a reduced stochastic system. We
note that, in the case of Lyapunov-Perron method applied to a coupled stochastic
systems, the existence of an random invariant manifold for the coupled stochastic
parabolic-hyperbolic equations, that do not contain two widely separated char-
acteristic timescales, is obtained by Caraballo Chueshov and Langa in [6]. We
remark that, whereas the existence of slow manifold is not studied, in their paper
the just mentioned authors also verify that this random manifold converges to its
deterministic counterpart when the intensity of noise tends to zero.

This paper is organized as follows. In Section 2, some basic concepts in random
dynamical systems and random invariant manifolds are recalled. Our framework
is presented in Section 3. In Section 4, we establish the existence of a random
invariant manifold M ǫ possessing an exponential tracking property, and then in
Section 5 we show M ǫ converges to a slow manifold M0 with rate of order 1.
Section 6 is devoted to a few illustrative examples. Remarks on local manifolds for
systems with local Lipschitz nonlinearities are given in Section 7.

2 Preliminaries on random dynamical systems

We now recall basic concepts in random dynamical systems (RDS) and random
invariant manifolds (RIM). For more details, see [1, 17, 18].
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Definition 2.1. Let (Ω,F ,P) be a probability space and θ = {θt}t∈R be a flow on
Ω which is defined as a mapping

θ : R× Ω 7→ Ω

and satisfies
• θ0 = idΩ,
• θsθt = θs+t for all s, t ∈ R,
• the mapping (t, ω) 7→ θtω is (B(R)×F ,F )−measurable and θtP = P for all

t ∈ R. Then the quadruple (Ω,F ,P, θ) is called a driving dynamical system.

We will work on the driving dynamical system represented by Wiener process.
To be more precise, let Ω = C0(R,R

m) be the continuous paths ω(t) on R with
values Rm such that ω(0) = 0. This set is equipped with the compact-open topol-
ogy. Let F be the associated Borel σ−field and P be the Wiener measure. Then
we identify ω with

(
w1(t), w2(t), · · · , wm(t)

)
= ω(t), t ∈ R.

The operators θt forming the flow are given by the Wiener shift:

θtω(·) = ω(·+ t)− ω(t), ω ∈ Ω, t ∈ R.

Note that the measure P is invariant with respect to the above flow and then the
quadruple (Ω,F ,P, θ) is a driving dynamical system.

Definition 2.2. Let (H, dH) be a metric space with Borel σ−field B(H). A cocycle
is a mapping:

φ : R+ × Ω×H 7→ H,

which is (B(R+)× F × B(H),B(H))−measurable such that

φ(0, ω, x) = x,

φ(t+ s, ω, x) = φ(t, θsω, φ(s, ω, x)),

for t, s ∈ R
+, ω ∈ Ω, and x ∈ H. Then φ together with the driving system θ forms

a random dynamical system (RDS).

A RDS is called continuous (differentiable) if x→ φ(t, ω, x) is continuous (dif-
ferentiable) for t ≥ 0 and ω ∈ Ω. A family of nonempty closed sets M = {M(ω)}
contained in a metric space (H, ‖ · ‖H) is called a random set if for every y ∈ H the
mapping

ω → inf
x∈M(ω)

‖x− y‖H

is a random variable. Now we introduce the random invariant manifold concept.
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Definition 2.3. A random set M(ω) is called a positively invariant set if

φ(t, ω,M(ω)) ⊂M(θtω), for t ≥ 0, ω ∈ Ω.

If M can be represented as a graph of a Lipschitz mapping

ψ(·, ω) : H1 → H2, H = H1 ×H2

such that
M(ω) = {(x1, ψ(x1, ω)) : x1 ∈ H1},

then M(ω) is called a Lipschitz random invariant manifold. If, in addition, for
every x ∈ H, there exists an x′ ∈M(ω) such that for all ω ∈ Ω,

‖φ(t, ω, x)− φ(t, ω, x′)‖H ≤ c1(x, x
′, ω)e−c2t‖x− x′‖H, t ≥ 0,

where c1 is a positive random variable depending on x and x′, while c2 is a positive
constant, then M(ω) is said to have an exponential tracking property.

3 Framework

Consider the following system of stochastic evolutionary equations with two time
scales

ẋǫ =
1

ǫ
Axǫ +

1

ǫ
f(xǫ, yǫ) +

σ√
ǫ
ẇ, in H1, (3.1)

ẏǫ = Byǫ + g(xǫ, yǫ), in H2, (3.2)

where A is a generator of a C0-semigroups on separable Hilbert space H1, and B
is a generator of a C0-groups on separable Hilbert H2. Nonlinearities f and g are
continuous functions,

f : H1 ×H2 7→ H1, g : H1 ×H2 7→ H2,

with f(0, 0) = g(0, 0) = 0. The noise process w =
m∑
j=1

hjwj, where {wj}mj=1 are two-

sided Wiener processes taking values in R and hj (1 ≤ j ≤ m) are given elements
in H1. Moreover, σ is a nonzero constant (noise intensity), and ǫ is a small positive
parameter representing the ratio of time scales in this fast-slow system. In this
setting, xǫ is referred as the “fast” component while yǫ is the “slow” component.

Denote by ‖ · ‖1 and ‖ · ‖2 the norms in H1 and H2, respectively. The norm in
H = H1 ×H2 is denoted as ‖ · ‖. For the linear operators A and B we assume the
following conditions.
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(A1) Let A be the generator of a C0−semigroup eAt on H1 satisfying

‖eAtx‖1 ≤ e−γ1t‖x‖1, t ≥ 0.

for all x ∈ H1, with a constant (i.e., decay rate) γ1 > 0. Moreover, B is the
generator of a C0−group eBt on H2 satisfying

‖eBty‖2 ≤ e−γ2t‖y‖2, t ≤ 0.

for all y ∈ H2, with a constant γ2 ≥ 0.
We also make the following two more assumptions.
(A2) Lipschitz condition: There exists a positive constant K such that for all

(xi, yi) ∈ H1 ×H2

‖f(x1, y1)− f(x2, y2)‖1 ≤ K(‖x1 − x2‖1 + ‖y1 − y2‖2),

and
‖g(x1, y1)− g(x2, y2)‖2 ≤ K(‖x1 − x2‖1 + ‖y1 − y2‖2).

(A3) Assume that the Lipschitz constant K of the nonlinear terms in system
(3.1)–(3.2) is smaller than the decay rate γ1 of A, that is,

K < γ1.

Remark 3.1. We note that the system (3.1)–(3.2) is an abstract model for vari-
ous complex systems under random influences, which can be a finite-dimensional,
stochastic slow-fast system analysed in [32, 34].

Now as in [17], we verify that the stochastic evolutionary system (3.1)–(3.2)
can be transformed into a random evolutionary system which generates a RDS. For
this purpose, let η

1
ǫ be a stationary solution of the linear stochastic evolutionary

equation

dη
1
ǫ (t) =

1

ǫ
Aη

1
ǫ (t)dt +

σ√
ǫ
dw(t). (3.3)

This means that the random variable η
1
ǫ with values inH1 is defined on a {θt}t∈R−invariant

set of full measure such that
t→ η

1
ǫ (θtω)

is a solution version for (3.3). Let ξ be the stationary solution of the linear stochas-
tic evolutionary equation

dξ(t) = Aξ(t) + σdw(t).

Then by the scale property of Wiener process, η
1
ǫ (θtω) has the same distribution

of ξ(θ t
ǫ
ω), see the Lemma 3.2 in [32]. For the existence of stationary solutions to

stochastic evolutionary equations see [5].
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Define Xǫ = xǫ − η
1
ǫ (θtω) and Y

ǫ = yǫ. Then the original evolutionary system
(3.1)–(3.2) is converted to the following random evolutionary system

dXǫ =
1

ǫ
AXǫdt+

1

ǫ
F (Xǫ, Y ǫ, θǫtω)dt, (3.4)

dY ǫ = BY ǫdt+G(Xǫ, Y ǫ, θǫtω)dt, (3.5)

where

F (Xǫ, Y ǫ, θǫtω) = f(Xǫ + η
1
ǫ (θtω), Y

ǫ),

G(Xǫ, Y ǫ, θǫtω) = g(Xǫ + η
1
ǫ (θtω), Y

ǫ).

Let Zǫ(t, ω, Z0) =
(
Xǫ(t, ω,X0, Y0), Y

ǫ(t, ω,X0, Y0)
)
be the solution of (3.4)–

(3.5) with initial data
(
Xǫ(0), Y ǫ(0)

)
= (X0, Y0) := Z0. Then the solution operator

of (3.4)–(3.5)

Φǫ
(
t, ω, (X0, Y0)

)
=

(
Xǫ(t, ω,X0, Y0), Y

ǫ(t, ω,X0, Y0)
)

defines a random dynamical system [17]. Furthermore

φǫ(t, ω) := Φǫ(t, ω) + (η
1
ǫ (θtω), 0), t ≥ 0, ω ∈ Ω

is the random dynamical system generated by the original system (3.1)–(3.2).
We introduce some notations. Let µ be a positive number satisfying

γ1 − µ > K. (3.6)

For any α ∈ R, define Banach spaces

C i,−
α =

{
ϕ : (−∞, 0] 7→ Hi is continuous and sup

t≤0
‖e−αtϕ(t)‖i <∞

}

with the norm ‖ϕ‖Ci,−
α

= sup
t≤0

‖e−αtϕ(t)‖i for i = 1, 2. Similarly, we define Banach

spaces

C i,+
α =

{
ϕ : [0,∞, ) 7→ Hi is continuous and sup

t≥0
‖e−αtϕ(t)‖i <∞

}

with the norm ‖ϕ‖Ci,+
α

= sup
t≥0

‖e−αtϕ(t)‖i for i = 1, 2. Let C±
α be the product

Banach spaces C±
α := C1,±

α × C2,±
α , with the norm

‖z‖C±
α
= ‖x‖C1,±

α
+ ‖y‖C2,±

α
, z = (x, y) ∈ C±

α .
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4 Exponentially tracking invariant manifolds

In this section, we prove the existence of a Lipschitz continuous invariant manifolds
M ǫ(ω), with an exponential tracking property, for the random evolutionary system
(3.4)–(3.5).

Define
M ǫ(ω) ,

{
Z0 ∈ H : Zǫ(·, ω, Z0) ∈ C−

−
µ
ǫ

}
.

This is the set of all initial data through which solutions are bounded by e−
µ
ǫ
t. We

shall use Lyapunov-Perron method to prove that M ǫ(ω) is an invariant manifold
described by the graph of a Lipschitz function. For this we will need the following
properties of the random function Zǫ(·, ω, Z0) (see [18]).

Lemma 4.1. Suppose that Zǫ(·, ω) =
(
Xǫ(·, ω), Y ǫ(·, ω)

)
is in C−

−
µ
ǫ

. Then Zǫ(t, ω)

is the solutions of (3.4)–(3.5) with initial data Z0 = (X0, Y0) if and only if Zǫ(·, ω)
satisfies




Xǫ(t)

Y ǫ(t)


 =




1
ǫ

∫ t

−∞
e

A(t−s)
ǫ F (Xǫ(s), Y ǫ(s), θǫsω)ds

eBtY0 +
∫ t

0
eB(t−s)G(Xǫ(s), Y ǫ(s), θǫsω)ds


 .

Theorem 4.1. (Invariant manifolds)
Assume that (A1)–(A3) hold and that ǫ > 0 is sufficiently small. Then the random
dynamical system defined by (3.4)–(3.5) has a Lipschitz random invariant manifold
M ǫ(ω) represented as a graph

M ǫ(ω) =
{(
Hǫ(ω, Y0), Y0

)
: Y0 ∈ H2

}
,

where
Hǫ(·, ·) : Ω×H2 7→ H1

is the graph mapping with Lipschitz constant satisfying

LipHǫ(ω, ·) ≤ K

(γ1 − µ)
[
1−K

(
1

γ1−µ
+ ǫ

µ−ǫγ2

)] , ω ∈ Ω.

Proof. We adapt the method of Lyapunov-Perron to fast-slow random dynamical
systems. To construct an invariant manifold for system (3.4)–(3.5) we first consider
integral equations




Xǫ(t)

Y ǫ(t)


 =




1
ǫ

∫ t

−∞
e

A(t−s)
ǫ F (Xǫ(s), Y ǫ(s), θǫsω)ds

eBtY0 +
∫ t

0
eB(t−s)G(Xǫ(s), Y ǫ(s), θǫsω)ds


 , t ≤ 0. (4.1)
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A solution of (4.1) is denoted by Zǫ(t, ω, Z0) =
(
Xǫ(t, ω, Y0), Y

ǫ(t, ω, Y0)
)
. Intro-

duce the operators J ǫ
1 : C−

−
µ
ǫ

7→ C1,−
−

µ
ǫ

and J ǫ
2 : C−

−
µ
ǫ

7→ C2,−
−

µ
ǫ

by means of

J ǫ
1 (z(·))[t] =

1

ǫ

∫ t

−∞

e
A(t−s)

ǫ F (x(s), y(s), θǫsω)ds,

J ǫ
2 (z(·))[t] = eBtY0 +

∫ t

0

eB(t−s)G(x(s), y(s), θǫsω)ds,

for t ≤ 0 and define the mapping J ǫ by

J ǫ(z(·)) :=




J ǫ
1 (z(·))

J ǫ
2 (z(·))


 .

It can be verified that J ǫ maps C−

−
µ
ǫ

into itself. To this end, taking z = (x, y) ∈
C−

−
µ
ǫ

, we have that

‖J ǫ
1 (z)‖C1,−

−
µ
ǫ

≤ K

ǫ
sup
t≤0

{
e

µ
ǫ
t

∫ t

−∞

e
−γ1(t−s)

ǫ

(
‖x(s)‖1 + ‖y(s)‖2

)
ds

}

≤ K

ǫ
sup
t≤0

{∫ t

−∞

e(
−γ1
ǫ

+µ
ǫ
)(t−s)ds

}
‖z‖C−

−
µ
ǫ

=
K

γ1 − µ
‖z‖C

−
µ
ǫ

, (4.2)

and

‖J ǫ
2 (z)‖C2,−

−
µ
ǫ

≤ K sup
t≤0

{
e

µ
ǫ
t

∫ 0

t

e−γ2(t−s)e−
µ
ǫ
sds

}
‖z‖C−

−
µ
ǫ

≤ K sup
t≤0

{∫ 0

t

e(−γ2+
µ
ǫ
)(t−s)ds

}
‖z‖C−

−
µ
ǫ

=
ǫK

µ− ǫγ2
‖z‖C−

−
µ
ǫ

. (4.3)

Hence, by definition of J ǫ we obtain

‖J ǫ(z)‖C−

−
µ
ǫ

≤ κ(K, γ1, γ2, µ, ǫ)‖z‖C−

−
µ
ǫ

with

κ(K, γ1, γ2, µ, ǫ) =
K

γ1 − µ
+

ǫK

µ− ǫγ2
.

Thus, we conclude that J ǫ maps C−

−
µ
ǫ

into itself.
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Next we show that the mapping J ǫ is contractive. To this end, taking z =
(x, y), z̄ = (x̄, ȳ) ∈ C−

−
µ
ǫ

, we have that

‖J ǫ
1 (z)−J ǫ

1 (z̄)‖C1,−

−
µ
ǫ

≤ K

ǫ
sup
t≤0

{
e

µ
ǫ
t

∫ t

−∞

e
−γ1(t−s)

ǫ

(
‖x(s)− x̄(s)‖1

+‖y(s)− ȳ(s)‖2
)
ds

}

≤ K

ǫ
sup
t≤0

{∫ t

−∞

e(
−γ1
ǫ

+µ
ǫ
)(t−s)ds

}
‖z − z̄‖C−

−
µ
ǫ

=
K

γ1 − µ
‖z − z̄‖C

−
µ
ǫ

, (4.4)

and

‖J ǫ
2 (z)− J ǫ

2 (z̄)‖C2,−

−
µ
ǫ

≤ K sup
t≤0

{
e

µ
ǫ
t

∫ 0

t

e−γ2(t−s)e−
µ
ǫ
sds

}
‖z − z̄‖C−

−
µ
ǫ

≤ K sup
t≤0

{∫ 0

t

e(−γ2+
µ
ǫ
)(t−s)ds

}
‖z − z̄‖C−

−
µ
ǫ

=
ǫK

µ− ǫγ2
‖z − z̄‖C−

−
µ
ǫ

. (4.5)

Hence, by (4.4) and (4.5)

‖J ǫ(z)− J ǫ(z̄)‖C−

−
µ
ǫ

≤ κ(K, γ1, γ2, µ, ǫ)‖z − z̄‖C−

−
µ
ǫ

,

where

κ(K, γ1, γ2, µ, ǫ) =
K

γ1 − µ
+

ǫK

µ− ǫγ2
→ K

γ1 − µ

as ǫ→ 0. Taking into account of (3.6) there is a sufficiently small constant ǫ0 > 0
such that

κ(K, γ1, γ2, µ, ǫ) < 1, for ǫ ∈ (0, ǫ0].

Therefore, the mapping J ǫ is strictly contractive in C−

−
µ
ǫ

, and, consequently, the in-

tegral equation (4.1) has a unique solution Zǫ(t, ω, Y0) =
(
Xǫ(t, ω, Y0), Y

ǫ(t, ω, Y0)
)

in C−

−
µ
ǫ

. Furthermore one has the estimate

‖Zǫ(·, ω, Y1)− Zǫ(·, ω, Y2)‖C−

−
µ
ǫ

≤ 1

1− κ(K, γ1, γ2, µ, ǫ)
‖Y1 − Y2‖2 (4.6)

for all ω ∈ Ω, Y1, Y2 ∈ H2.
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Define

Hǫ(ω, Y0) =
1

ǫ

∫ 0

−∞

e−As/ǫF
(
Xǫ(s, ω, Y0), Y

ǫ(s, ω, Y0), θ
ǫ
sω

)
ds, (4.7)

we then get from (4.6)

‖Hǫ(ω, Y1)−Hǫ(ω, Y2)‖1 ≤
K(

γ1 − µ
) 1

[1− κ(K, γ1, γ2, µ, ǫ)]
‖Y1 − Y2‖2

for all Y1, Y2 ∈ H2, ω ∈ Ω. It then follows from Lemma 4.1 that

M ǫ(ω) =
{(
Hǫ(ω, Y0), Y0

)
: Y0 ∈ H2

}
.

In order to see that M ǫ(ω) is a random set we need to show that for any z =
(x, y) ∈ H = H1 ×H2,

ω → inf
z′∈H

‖(x, y)− (Hǫ(ω,Pz′),Pz′)‖ (4.8)

is measurable, see Castaing and Valadier [7], Theorem III.9. Let Hc be a countable
dense set of the separable space H. Then the right hand side of (4.8) is equal to

inf
z′∈Hc

‖(x, y)− (Hǫ(ω,Pz′),Pz′)‖ (4.9)

which follows immediately by the continuity of Hǫ(ω, ·). The measurability of any
expression under the infimum of (4.8) follows since ω → Hǫ(ω,Pz′) is measurable
for any z′ ∈ H.

It remains to show thatM ǫ(ω) is invariant, i.e., for each Z0 = (X0, Y0) ∈M ǫ(ω),
Zǫ(s, ω, Z0) ∈ M ǫ(θǫsω) for all s ≥ 0. We first note that for each fixed s ≥ 0,
Zǫ(t + s, ω, Z0) is a solution of

dXǫ =
1

ǫ
AXǫdt+

1

ǫ
F (Xǫ, Y ǫ, θǫt(θ

ǫ
sω))dt,

dY ǫ = BY ǫdt+G(Xǫ, Y ǫ, θǫt(θ
ǫ
sω))dt,

with initial datum Z(0) = (X(0), Y (0)) = Zǫ(s, ω, Z0). Thus, Z
ǫ(t + s, ω, Z0) =

Zǫ(t, θǫsω, Z
ǫ(s, ω, Z0)). Since Zǫ(·, ω, Z0) ∈ C−

−µ
ǫ

, Zǫ(t, θǫsω, Z
ǫ(s, ω, Z0)) ∈ C−

−µ
ǫ

.

Therefore, Zǫ(s, ω, Z0) ∈M ǫ(θǫsω). This completes the proof.

Remark 4.1. We remark that the key point in the proof of Theorem 4.1 is that

κ(K, γ1, γ2, µ, ǫ) =
K

γ1 − µ
+

ǫK

µ− ǫγ2
< 1.

In the particular case where ǫ = 1, one has κ = K
γ1−µ

+ K
µ−γ2

< 1, which is the usual
spectral gap condition. We note also that the proof is valid for sufficiently small
ǫ > 0 only in the case K

γ1−µ
< 1. This explains the assumption (A3). It is unclear

to us about how to relax this condition.
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In what follows we prove the exponential tracking property which means the
manifold M ǫ(ω) attracts exponentially all the orbits of Φǫ on condition that the
scaling parameter is sufficiently small.

Theorem 4.2. (Exponential tracking property)
Assume that the assumptions (A1)–(A3) hold. Then for sufficiently small ǫ > 0,
the Lipschitz invariant manifold for (3.4)–(3.5) obtained in Theorem 4.1 has the
exponential tracking property in the following sense: There exist constants C1 > 0
and C2 > 0 such that for any Z0 = (X0, Y0) ∈ H there is a Z̄0 = (X̄0, Ȳ0) ∈M ǫ(ω)
such that

‖Φǫ(t, ω, Z0)− Φǫ(t, ω, Z̄0)‖ ≤ C1e
−C2t‖Z0 − Z̄0‖, t ≥ 0,

where ‖ · ‖ denotes the norm in space H = H1 ×H2 defined by

‖z‖ = ‖x‖1 + ‖y‖2, z = (x, y).

Proof. Assume that Zǫ(t) = (Xǫ(t), Y ǫ(t)) and Z̄ǫ(t) = (X̄ǫ(t), Ȳ ǫ(t)) are two
solutions for (3.4)–(3.5), then Zǫ(t) = Z̄ǫ(t) − Zǫ(t) := (U ǫ(t), V ǫ(t)) satisfies the
equations

dU ǫ =
1

ǫ
AU ǫdt+

1

ǫ
F̃ (U ǫ, V ǫ, θǫtω)dt, (4.10)

dV ǫ = BV ǫdt+ G̃(U ǫ, V ǫ, θǫtω)dt, (4.11)

where
F̃ (U ǫ, V ǫ, θǫt) = F (U ǫ +Xǫ, V ǫ + Y ǫ, θǫtω)− F (Xǫ, Y ǫ, θǫtω),

and
G̃(U ǫ, V ǫ, θǫt) = G(U ǫ +Xǫ, V ǫ + Y ǫ, θǫtω)−G(Xǫ, Y ǫ, θǫtω).

First we claim that Zǫ(t) = (U ǫ(t), V ǫ(t)) is a solution of (4.10)–(4.11) in C+
−

µ
ǫ

if




U ǫ(t)

V ǫ(t)


 =




eAt/ǫU ǫ(0) + 1
ǫ

∫ t

0
eA(t−s)F̃ (U ǫ(s), V ǫ(s), θǫsω)ds

∫ t

∞
eB(t−s)G̃(U ǫ(s), V ǫ(s), θǫsω)ds


 . (4.12)

This can be verified by using the variation of constants formula. Next we are
going to prove that (4.12) has solutions (U ǫ, V ǫ) in C+

−
µ
ǫ

with (U ǫ(0), V ǫ(0)) =

(U(0), V (0)) and such that (X̄0, Ȳ0) = (U(0), V (0)) + (X0, Y0) ∈ M ǫ(ω). Recall
that

(X̄0, Ȳ0) ∈M ǫ(ω) ⇐⇒ X̄0 =
1

ǫ

∫ 0

−∞

eA(−s)F (Xǫ(s, Ȳ0), Y
ǫ(s, Ȳ0), θ

ǫ
sω)ds.
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It follows that
(X̄0, Ȳ0) = (U(0), V (0)) + (X0, Y0) ∈M ǫ(ω)

if and only if

U(0) = −X0 +
1

ǫ

∫ 0

−∞

eA(−s)F (Xǫ(s, V (0) + Y0), Y
ǫ(s, V (0) + Y0), θ

ǫ
sω)ds

= −X0 +Hǫ(ω, V (0) + Y0). (4.13)

For every Z = (U, V ) ∈ C+
−

µ
ǫ

define for t ≥ 0

Iǫ
1(Z(·))[t] := eAt/ǫU(0) +

1

ǫ

∫ t

0

eA(t−s)/ǫF̃ (U(s), V (s), θǫsω)ds,

and

Iǫ
2(Z(·))[t] :=

∫ t

∞

eB(t−s)/ǫG̃(U(s), V (s), θǫsω)ds,

where U(0) is given by (4.13). Define the operator Iǫ by

Iǫ(Z(·)) :=
(

Iǫ
1(Z(·))

Iǫ
2(Z(·))

)

It is easy to see that Iǫ is well-defined from C+
−

µ
ǫ

to itself. To this end, assume

that Z, Z̄ ∈ C+
−

µ
ǫ

, we obtain from (4.13) the estimate

‖eAt/ǫ(U(0)− Ū(0))‖1 ≤ e−γ1t/ǫLipHǫ‖V (0)− V̄ (0)‖2

≤ e−γ1t/ǫLipHǫ

∥∥∥∥
∫ 0

∞

eB(−s)
(
G̃(Z(s), θǫsω)− G̃(Z̄(s), θǫsω)

)
ds

∥∥∥∥
2

≤ e−γ1t/ǫLipHǫ ·K
∫ ∞

0

eγ2s‖Z(s)− Z̄(s)‖ds,

and so

‖Iǫ
1(Z − Z̄)‖C+,1

−
µ
ǫ

≤ LipHǫ ·K‖Z − Z̄‖C+

−
µ
ǫ

sup
t≥0

{
e−(−µ

ǫ
+

γ1
ǫ
)t

∫ ∞

0

e(γ2−
µ
ǫ )sds

}

+
K

ǫ
‖Z − Z̄‖C+

−
µ
ǫ

sup
t≥0

{
e

µ
ǫ
t

∫ t

0

e−γ1(t−s)/ǫe−
µ
ǫ
sds

}

≤
(
LipHǫ · ǫK
µ− ǫγ2

+
K

γ1 − µ

)
‖Z − Z̄‖C+

−
µ
ǫ

. (4.14)

For the operator Iǫ
2 we have

‖Iǫ
2(Z − Z̄)‖C+,2

−
µ
ǫ

≤ K‖Z − Z̄‖C+

−
µ
ǫ

sup
t≥0

{
e−(−µ

ǫ
+γ2)t

∫ ∞

t

e(−
µ
ǫ
+γ2)sds

}
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≤ ǫK

µ− γ2
‖Z − Z̄‖C+

−
µ
ǫ

. (4.15)

Recalling that

LipHǫ ≤ K

(γ1 − µ)
[
1−K

(
1

γ1−µ
+ ǫ

µ−ǫγ2

)]

and taking (4.14) and (4.15) into account, we obtain

‖Iǫ(Z − Z̄)‖C+

−
µ
ǫ

≤ ρ(K, γ1, γ2, µ, ǫ)‖Z − Z̄‖C+

−
µ
ǫ

with

ρ(K, γ1, γ2, µ, ǫ) =
K

γ1 − µ
+

ǫK

µ− ǫγ2

+
K2

(γ1 − µ)
(
µ
ǫ
− γ2

) [
1−K

(
1

γ1−µ
+ ǫ

µ−ǫγ2

)]

→ K

γ1 − µ

as ǫ → 0. By (3.6) there is a sufficiently small constant ǫ′0 > 0 such that
ρ(K, γ1, γ2, µ, ǫ) < 1 for all 0 < ǫ < ǫ′0. Therefore, the operator Iǫ is strictly
contractive and has a unique fixed point Z ∈ C+

−
µ
ǫ

which is the unique solution

for (4.12) and satisfies (X̄0, Ȳ0) = (U(0), V (0)) + (X0, Y0) ∈ M ǫ(ω). Moreover, we
have

‖Z‖C+

−
µ
ǫ

≤ 1

1−
(

K
γ1−µ

+ ǫK
µ−ǫγ2

)‖Z(0)‖

which means

‖Φǫ(t, ω, Z0)− Φǫ(t, ω, Z̄0)‖ ≤ e−
µ
ǫ
t

1−
(

K
γ1−µ

+ ǫK
µ−ǫγ2

)‖Z0 − Z̄0‖, t > 0.

Therefore, the exponential tracking property of M ǫ(ω) is obtained.

Remark 4.2. By the relationship between solutions of system (3.1)–(3.2) and
(3.4)–(3.5), the original fast-slow stochastic system also has a Lipschitz random
invariant manifold under the conditions of Theorem 4.1, which is represented as

Mǫ(ω) = M ǫ(ω) + (η
1
ǫ (ω), 0)

=
{
(hǫ(ω, Y0), Y0) : Y0 ∈ H2

}
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with
hǫ(ω, Y0) = Hǫ(ω, Y0) + η

1
ǫ (ω).

Hence, if system (3.4)–(3.5) has an exponential tracking manifold so has system
(3.1)–(3.2).

Remark 4.3. Theorem 4.2 implies that any orbit of the fast–slow system tends
exponentially to an orbit on the manifold M ǫ(ω) which is governed by an evolu-
tionary equation with usual time scale. To be more specific, i.e., for any solution
Zǫ = (Xǫ, Y ǫ) for (3.4)–(3.5), there is an orbit Z̃ǫ(t, ω) = (X̃ǫ(t, ω), Ỹ ǫ(t, ω)) on
the manifold M ǫ which satisfies the evolutionary equation

˙̃Y ǫ = BỸ ǫ +G
(
Hǫ(θǫtω, Ỹ

ǫ), Ỹ ǫ, θǫtω
)

such that

‖Zǫ(t, ω)− Z̃ǫ(t, ω)‖ ≤ e−
µ
ǫ
t

1−
(

K
γ1−µ

+ ǫK
µ−ǫγ2

)‖Z0 − Z̃0‖, t > 0,

where Z0 = (Xǫ(0), Y ǫ(0)) and Z̃0 = (X̃(0), Ỹ (0)).

Applying the ideas from the Remark 4.2 we have a reduction system which
describes the long-time behavior for system (3.1)–(3.2).

Theorem 4.3. (Reduction system)
Assume that ǫ > 0 is sufficiently small and the assumption (A1)–(A3) hold. Then
for any solution zǫ(t) = (xǫ(t), yǫ(t)) with initial data zǫ(0) = (x0, y0) to system
(3.1)–(3.2), there exists a solution z̃ǫ(t) = (x̃ǫ(t), ỹǫ(t)) with z̃(0) = (x̃ǫ(0), ỹǫ(0)) =
(x̃0, ỹ0) to the reduced system

{
˙̃yǫ = Bỹǫ + g (x̃, ỹǫ) ,

x̃ = hǫ(θǫtω, ỹ
ǫ),

such that for any t ≥ 0 and almost sure ω ∈ Ω,

‖zǫ(t, ω)− z̃ǫ(t, ω)‖ ≤ e−
µ
ǫ
t

1−
(

K
γ1−µ

+ ǫK
µ−ǫγ2

)‖z0 − z̃0‖

≤ CK,γ1,µe
−µt
ǫ ‖z0 − z̃0‖

with −µ
ǫ
< 0 and CK,γ1,µ being a constant depending on K, γ1 and µ.
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5 Slow manifolds

Now we consider an asymptotic approximation for the invariant manifold M ǫ(ω),
as ǫ→ 0.

The scaling t→ ǫt in system (3.4)-(3.5) yields

dXǫ = AXǫdt+ F (Xǫ, Y ǫ, θǫǫtω)dt, (5.1)

dY ǫ = ǫBY ǫdt+ ǫG(Xǫ, Y ǫ, θǫǫtω)dt, (5.2)

where

F (Xǫ, Y ǫ, θǫǫtω) = f(Xǫ + η
1
ǫ (θǫtω), Y

ǫ),

G(Xǫ, Y ǫ, θǫǫtω) = g(Xǫ + η
1
ǫ (θǫtω), Y

ǫ).

We now replace η
1
ǫ (θǫtω) by ξ(θtω) that has the same distribution, then we have a

random evolutionary system, whose solution’s distribution coincides with that of
the system (5.1)-(5.2), in the form of

dX̆ǫ = AX̆ǫdt+ f(X̆ǫ + ξ(θtω), Y̆
ǫ)dt, (5.3)

dY̆ ǫ = ǫBY̆ ǫdt+ ǫg(X̆ǫ + ξ(θtω), Y̆
ǫ)dt. (5.4)

By proceeding as in the proof of Theorem 4.1, it can be shown that the system
(5.3)-(5.4) has a random invariant manifold represented as

M̆ ǫ(ω) =
{(
H̆ǫ(ω, Y0), Y0

)
: Y0 ∈ H2

}

with

H̆ǫ(ω, Y0) =

∫ 0

−∞

eAsf(X̆ǫ(s, ω, Y0) + ξ(θtω), Y̆
ǫ(s, ω, Y0))ds,

where

X̆ǫ(t, ω, Y0) =

∫ t

−∞

eA(t−s)f(X̆ǫ(s, ω, Y0) + ξ(θsω), Y̆
ǫ(s, ω, Y0))ds, t ≤ 0,

Y̆ ǫ(t, ω, Y0) = eBtǫY0 + ǫ

∫ t

0

eB(t−s)ǫg(X̆ǫ(s, ω, Y0) + ξ(θsω), Y̆
ǫ(s, ω, Y0))ds, t ≤ 0,

is the unique solution in C−
−µ for the above integral equations. With a change of

variables s/ǫ→ t in (4.7), we have

Hǫ(ω, Y0) =

∫ 0

−∞

e−Asf
(
Xǫ(sǫ, ω, Y0) + η

1
ǫ (θǫtω), Y

ǫ(sǫ, ω, Y0)
)
ds

=

∫ 0

−∞

e−Asf
(
Xǫ(sǫ, ω, Y0) + η

1
ǫ (θǫtω), Y

ǫ(sǫ, ω, Y0)
)
ds,
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⋍ H̆ǫ(ω, Y0),

where ⋍ denotes equivalence (coincidence) in distribution. Therefore, the invariant
manifold M̆ ǫ(ω) is a version in distribution for M ǫ(ω).

Next, we show that there exists a random invariant manifold M0(ω), which is
called a random slow manifold for system (5.3)-(5.4), will be the asymptotic limit
of the manifold M̆ ǫ(ω) as ǫ→ 0. To this end, we consider the following system

dX̄ = AX̄dt+ f(X̄ + ξ(θtω), Ȳ )dt, (5.5)

dȲ = 0. (5.6)

By the same discussion in Theorem 4.1, system (5.5)-(5.6) has a random invariant
manifold with representation

M̄0(ω) =
{(
H̄0(ω, Y0), Y0

)
: Y0 ∈ H2

}
, (5.7)

where

H̄0(ω, Y0) =

∫ 0

−∞

e−Asf
(
X̄(s, ω, Y0) + ξ(θsω), Y0

)
ds,

and X̄(t, ω, Y0) is the unique solution in C1,−
−µ for integral equation

X̄(t, ω, Y0) =

∫ t

−∞

eA(t−s)f
(
X̄(s, ω, Y0) + ξ(θsω), Y0

)
ds, t ≤ 0.

The main result of this section is the following theorem.

Theorem 5.1. (Slow manifolds)
Let the assumptions (A1)–(A3) hold and also assume that there exists a positive
number Cg such that sup

x∈H1,y∈H2

‖g(x, y)‖H2 = Cg. Then the invariant manifold

M̆ ǫ(ω) for the system (5.1)-(5.2) can be approximated by a slow manifold M̄0(ω)
defined in (5.7), in the sense that their respective graph mappings H̆ǫ and H̄ satisfy

‖H̆ǫ(ω, Y0)− H̄(ω, Y0)‖1 = O(ǫ),

or
H̆ǫ(ω, Y0) = H̄(ω, Y0) +O(ǫ),

for all Y0 ∈ D(B), a.s. ω ∈ Ω and as ǫ→ 0.

Proof. In this proof, the letter C with or without subscripts denotes positive con-
stants whose value may change in different occasions. We will write the depen-
dence of constant on parameters explicitly if it is essential. As is known [28], if
Y0 ∈ D(B), t ≤ 0,

‖eBtǫY0 − Y0‖2 = ‖
∫ 0

ǫt

eBτBY0dτ‖2
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≤ ‖BY0‖2
∫ 0

ǫt

e−γ2τdτ

= ‖BY0‖2
1

γ2
(e−γ2ǫt − 1). (5.8)

Then we have, for all t ≤ 0,

‖Y̆ ǫ(t, ω, Y0)− Y0‖2 ≤ ‖eBǫtY0 − Y0‖2

+ǫ‖
∫ 0

t

eBǫ(t−s)g
(
X̆ǫ(s, ω, Y0) + ξ(θtω), Y̆

ǫ(s, ω, Y0)
)
ds‖2

≤ ‖BY0‖2
1

γ2
(e−γ2ǫt − 1) + ǫCg

∫ 0

t

e−ǫγ2(t−s)ds

= C(e−γ2ǫt − 1). (5.9)

Then, by using again (5.8), we have

‖X̆ǫ(t, ω, Y0)− X̄(t, ω, Y0)‖1 ≤ K

∫ t

−∞

e−γ1(t−s)‖X̆ǫ(s, ω, Y0)− X̄(s, ω, Y0)‖1ds

+KC

∫ t

−∞

e−γ1(t−s)(e−γ2ǫt − 1)ds

= K

∫ t

−∞

e−γ1(t−s)‖X̆ǫ(s, ω, Y0)− X̄(s, ω, Y0)‖1ds

+C(
1

γ1 − ǫγ2
e−ǫγ2t − 1

γ1
),

which implies

‖X̆ǫ(·, ω, Y0)− X̄(·, ω, Y0)‖C1,−
−µ

≤ K‖X̆ǫ(·, ω, Y0)− X̄(·, ω, Y0)‖C1,−
−µ

· sup
t≤0

∫ t

−∞

e−(γ1−µ)(t−s)ds

+C sup
t≤0

{
eµt(

1

γ1 − ǫγ2
e−ǫγ2t − 1

γ1
)
}

=
K

γ1 − µ
‖X̆ǫ(·, ω, Y0)− X̄(·, ω, Y0)‖C1,−

−µ
+ C sup

t≤0
S (t, ǫ),

(5.10)

where

S (t, ǫ) = eµt(
1

γ1 − ǫγ2
e−ǫγ2t − 1

γ1
), t ∈ (−∞, 0],

with

S (0, ǫ) =
1

γ1 − ǫγ2
− 1

γ1
. (5.11)
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Furthermore, for sufficiently small ǫ > 0,

dS (t, ǫ)

dt
= eµt

( µ− ǫγ2
γ1 − ǫγ2

e−ǫγ2t − µ

γ1

)

≤ eµt
( µ− ǫγ2
γ1 − ǫγ2

− µ

γ1

)

= eµt
−ǫγ2(γ1 − µ)

γ1(γ1 − ǫγ2)

< 0, t ∈ (−∞, 0). (5.12)

Now, according to (5.10), (5.11) and (5.12), we have

‖X̆ǫ(·, ω, Y0)− X̄(·, ω, Y0)‖C1,−
−µ

≤ K

γ1 − µ
‖X̆ǫ(·, ω, Y0)− X̄(·, ω, Y0)‖C1,−

−µ

+C(
1

γ1 − ǫγ2
− 1

γ1
).

By (3.6),

‖X̆ǫ(·, ω, Y0)− X̄(·, ω, Y0)‖C1,−
−µ

≤ C(
1

γ1 − ǫγ2
− 1

γ1
). (5.13)

Hence, thanks to (5.9) and (5.13), we deduce

‖H̆ǫ(ω, Y0)− H̄(ω, Y0)‖1 ≤ K

∫ 0

−∞

eγ1s‖X̆ǫ(s, ω, Y0)− X̄(s, ω, Y0)‖1ds

+K

∫ 0

−∞

eγ1s‖Y̆ ǫ(s, ω, Y0)− Y0‖2ds

≤ C(
1

γ1 − ǫγ2
− 1

γ1
)

∫ 0

−∞

e(γ1−µ)sds

+C

∫ 0

−∞

eγ1s(e−γ2ǫs − 1)ds

= C(
1

γ1 − ǫγ2
− 1

γ1
) = O(ǫ).

This completes the proof.

Remark 5.1. Consider the case that H2 is a finite dimensional space, the operator
B is a constant matrix and (5.3)–(5.4) is a coupled system of an evolutionary
equation and ordinary differential equations. This system arises from biology, such
as Hodgkin-Huxley systems (see Example 6.2). Then the above theorem implies
that for any bounded set E ⊂ H2,

sup
Y0∈E

‖H̆ǫ(ω, Y0)− H̄(ω, Y0)‖1 = O(ǫ), a.s. ω ∈ Ω as ǫ→ 0.
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6 Illustrative examples

Let us look at several examples to illustrate the results in the previous two sections.

Example 6.1. Let D ⊂ R
3 be a bounded domain with smooth boundary ∂D. Con-

sider a coupled system of stochastic parabolic-hyperbolic partial differential equa-
tions (see, e.g., [6] and [16] )

ut =
1

ǫ
(∆u− αu) +

1

ǫ
f(u, v, vt) +

1√
ǫ
ẇ(t), (6.1)

u = 0 on ∂D, (6.2)

vtt = ∆v − βv + g(u, v, vt), (6.3)

v = 0 on ∂D, (6.4)

where ∆ denotes the Laplace operator and the parameters α, β are positive. The
interaction functions

f : R3 7→ R and g : R3 7→ R

are assumed to be Lipschitz continuous with a Lipschitz constant K > 0. Thus
the assumption (A2) holds. Such a system may describe a thermoelastic wave
propagation in a random medium [10]. The wave profile v in an interacting random
thermoelastic medium is described by a hyperbolic partial differential equation. If
the wave is temperature dependent and the heat conductivity has faster evolution,
then the hyperbolic equation is coupled to a stochastic parabolic (heat) equation with
different characteristic timescales.

We introduce the usual Hilbert space L2(D) as well as the Sobolev spaces H2(D)
and H1

0 (D). Take H1 = L2(D). Let A = ∆−αIid with domain D(A) = H2∩H1
0 . By

the semigroup theory the operator A generates a contraction semigroup
{
eAt : t ≥

0
}
in H1 ([28]) which satisfies ‖eAt‖H1 ≤ e−γ1t, t ≥ 0 with γ1 = α. Let B = ∆−βIid

with domain D(B) = H2 ∩H1
0 . Define

z :=

(
v
v′

)
,B :=

(
0 Iid
B 0

)

and H2 = H1
0 (D)× L2(D) with the energy norm

‖z‖H2 =
{
‖v‖2H1

0
+ ‖v′‖2L2

} 1
2 ,

where ‖ · ‖H1
0
and ‖ · ‖L2 denote the norm in H1

0 and L2, respectively. Let D(B) =
D(B)×H1. It is known that B generates a unitary group ([33]) in H2 which satisfies
‖eBt‖H2 ≤ e−γ2t for t ∈ R with γ2 = 0. Then the system (6.1)–(6.4) can be rewritten
as

ut =
1

ǫ
Au+ f(u, z) +

1√
ǫ
ẇt,
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zt = Bz +G(u, z),

with
G(u, z) =

(
0, g(u, z)

)
,

which is in the standard form of (3.1)–(3.2). Thus under the condition

K < γ1

and the scaling parameter ǫ small enough the random dynamical system generated
by (6.1)–(6.4) has an invariant manifold Mǫ(ω) = {(hǫ(ω, Y0), Y0) Y0 ∈ H2}, pos-
sessing the exponential tracking property by Theorem 4.2. Moreover, by Theorem
4.3, the reduction system for long-time behavior to system (6.1)-(6.4) is

{
˙̃yǫ = Bỹǫ +G (x̃, ỹǫ) ,

x̃ = hǫ(θǫtω, ỹ
ǫ).

Note that a similar result for this example has also been obtained in [6].

Example 6.2. Let D ⊂ R
n be a bounded domain with smooth boundary ∂D.

Consider a system of coupled parabolic partial differential equations and ordinary
differential equations

ut =
1

ǫ
∆u+

1

ǫ
f(u, v) +

1√
ǫ
ẇt, (6.5)

u = 0 on ∂D, (6.6)

vt = g(u, v), (6.7)

where f : R1+m 7→ R, g : R1+m 7→ R
m are Lipschitz maps with a Lipschitz constant

K > 0:

|f(x1, y1)− f(x2, y2)| ≤ K(|x1 − x2|+ |y1 − y2|Rm),

|g(x1, y1)− g(x2, y2)|Rm ≤ K(|x1 − x2|+ |y1 − y2|Rm),

for all (x, y) ∈ R×R
m. Thus the assumption (A2) holds. This system may model

certain biological processes. For instance, the famous FitzHugh-Nagumo system
[19, 27], as a simplified version of the Hodgkin-Huxley model [13], which describes
mechanisms of a neural excitability and excitation for macro-receptors, belongs to
this class.

As in Example 6.1 the differential operator A = ∆ with domain D(A) = H2∩H1
0

generates a C0-semigroup {eAt : t ≥ 0} on H1 = L2(D) which satisfies ‖eAt‖H1 ≤
e−γ1t with γ1 = inf spec{A} > 0. Let B ≡ 0 in H2 = [L2(D)]m. It is clear that

21



eBt = Iid for all t ∈ R and ‖eBt‖H2 ≤ e−γ2t with γ2 = 0. Therefore, the system
(6.5)–(6.7) has a random invariant manifold Mǫ(ω) = {(hǫ(ω, Y0), Y0) Y0 ∈ H2}
with an exponential tracking property if K < γ1 and ǫ > 0 is small enough. We
also have the reduction system

{
˙̃yǫ = g (x̃, ỹǫ) ,

x̃ = hǫ(θǫtω, ỹ
ǫ),

for the long time behavior of the original system (6.5)-(6.7).

Example 6.3. Consider the following system of two coupled wave equations (i.e.,
hyperbolic partial differential equations) on a bounded spatial interval I = [0, π] :

utt =
1

ǫ
(∆u− νut) +

1

ǫ
f(u, v, vt) +

1√
ǫ
ẇ(t), (6.8)

u = 0 on ∂I, (6.9)

vtt = ∆v − βv + g(u, v, vt), (6.10)

v = 0 on ∂I, (6.11)

where ∆ denotes the Laplace operator and the parameters β, ν are positive. The
interaction functions

f : R3 7→ R and g : R3 7→ R

are Lipschitz continuous with a Lipschitz constant K > 0. Thus the assumption
(A2) holds. This system models, for example, vibrating strings connected in par-
allel with zero boundary conditions [26] and multi-component wave fields such as
electromagnetic waves in plasmas, elastic waves in solids, light waves in anisotropic
and inhomogeneous media [22].

Rewrite the equations (6.8)–(6.9) as

dU

dt
=

1

ǫ
AǫU +

1

ǫ
F (U, V ) +

1√
ǫ
Ẇ (t),

where

Aǫ =

(
0 ǫIid
∆ − ν

)
, F (U, V ) =

(
0

f(u, v, v′)

)
, Ẇ (t) =

(
0

ẇ(t)

)
,

and
U = (u, u′), V = (v, v′) ∈ H1

0 (0, π)× L2(0, π).

The linear operator Aǫ has the eigenvalues

λ±k =
ν ±

√
ν2 − 4k2ǫ

2
, k = 1, 2, ...
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with the corresponding eigenvectors

e±k =

(
sin kx

λ±k sin kx

)
.

It is clear that the operator Aǫ generates a C0−semigroup eA
ǫt on Hilbert space

H1 := H1
0 (0, π) × L2(0, π) equipped with energy norm introduced in Example 6.1,

and it satisfies
‖eAǫt‖H1 ≤ e−νt, t ≥ 0.

In the same way as in Example 6.1 the linear part of the equation (6.10)–(6.11)
generates a unitary C0−semigroup on Hilbert space H2 = H1

0 (0, π)×L2(0, π). Thus
under the condition that K < ν, the system (6.8)–(6.11) has an exponentially
tracking random invariant manifold Mǫ(ω) = {(hǫ(ω, Y0), Y0)Y0 ∈ H2} when ǫ > 0
is sufficiently small. In particular, by Theorem 4.3 the system (6.8)-(6.11) has a
reduction equation {

˙̃yǫ = Bỹǫ +G (x̃, ỹǫ) ,

x̃ = hǫ(θǫtω, ỹ
ǫ),

where B and G are defined as in Example 6.1.

7 Remarks on the case of local Lipschitz nonlin-

earity

We have limited ourselves to the case where the nonlinearities are globally Lips-
chitz continuous. We remark that when the nonlinearities in those three examples
in Section 6 are only locally Lipschitz (say, near the origin (0, 0)), the above dis-
cussions remain valid locally. To this end we state the definition of a local random
invariant manifold [4, 8].

Definition 7.1. We say that the random dynamical system φ(t, ω) has a local ran-
dom invariant manifold (LRIM) with radius R, if there is a random set MR(ω),
which is defined by the graph of a random continuous function ψ(ω, ·) : BR(0)

⋂
H2 →

H1, such that for all bounded sets B in BR(0) ⊂ H2 we have

φ(t, ω)[MR(ω)
⋂
B] ⊂ MR(θtω)

for all t ∈ (0, τ0(ω)) with

τ0(ω) = τ0(ω,B) = inf{t ≥ 0 : φ(t, ω)[MR(ω)
⋂
B] ⊂/BR(0)}.
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Let χ : H1 ×H2 → R be a bounded smooth function such that

χ(v1, v2) =

{
1, if ‖v1‖1 + ‖v2‖2 ≤ 1,

0, if ‖v1‖1 + ‖v2‖2 ≥ 2.

For any positive parameter R, we define χR(v1, v2) = χ(v1
R
, v2
R
) for all (v1, v2) ∈

H1 ×H2. Let f
(R)(x, y) := χR(x, y)f(x, y), g

(R)(x, y) := χR(x, y)g(x, y). For every
R > 0, there must exist a positive KR such that

‖f (R)(x1, y1)− f (R)(x2, y2)‖1 ≤ KR(‖x1 − x2‖1 + ‖y1 − y2‖2),

and
‖g(R)(x1, y1)− g(R)(x2, y2)‖2 ≤ KR(‖x1 − x2‖1 + ‖y1 − y2‖2).

Then the cut-off system of (3.4)-(3.5) is as follows:

dXǫ =
1

ǫ
AXǫdt+

1

ǫ
F (R)(Xǫ, Y ǫ, θǫtω)dt, (7.1)

dY ǫ = BY ǫdt+G(R)(Xǫ, Y ǫ, θǫtω)dt, (7.2)

where

F (R)(Xǫ, Y ǫ, θǫtω) = f (R)(Xǫ + η
1
ǫ (θtω), Y

ǫ),

G(R)(Xǫ, Y ǫ, θǫtω) = g(R)(Xǫ + η
1
ǫ (θtω), Y

ǫ).

The system (7.1)–(7.2) has a unique solution and thus the solution mapping gen-
erates a continuous random dynamical system Φǫ

R. If KR < γ1, then the cut-off
system (7.1)–(7.2) admits a globally invariant manifold Mǫ

R possessing exponen-
tially tracking property. Now as Φǫ and Φǫ

R agree on BR(0), we conclude that

M̃ǫ
R = Mǫ

R

⋂
BR(0) defines a local invariant manifold of the original system (3.4)-

(3.5).
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