
ar
X

iv
:1

20
5.

03
42

v1
  [

m
at

h.
A

P]
  2

 M
ay

 2
01

2

THE NONLINEAR SCHRÖDINGER EQUATION GROUND

STATES ON PRODUCT SPACES

SUSANNA TERRACINI, NIKOLAY TZVETKOV, AND NICOLA VISCIGLIA

Abstract. We study the nature of the Nonlinear Schrödinger equation ground
states on the product spaces Rn

× M
k, where M

k is a compact Riemannian
manifold. We prove that for small L2 masses the ground states coincide with
the corresponding Rn ground states. We also prove that above a critical mass
the ground states have nontrivial M

k dependence. Finally, we address the
Cauchy problem issue which transform the variational analysis to dynamical
stability results.

MSC: 35Q55, 37K45. Keywords: NLS, stability of solitons, rigidity.

1. Introduction

Our goal here is to study the nature of the Nonlinear Schrödinger equation
ground states when the problem is posed on the product spaces R

n ×Mk, where
Mk is a compact Riemannian manifold. We thus consider the following Cauchy
problems

(1.1)

{

i∂tu−∆x,yu− u|u|α = 0, (t, x, y) ∈ R× R
n
x ×Mk

y

u(0, x, y) = ϕ(x, y)

where

∆x,y =

n
∑

j=1

∂2xj
+∆y

and ∆y is the Laplace-Beltrami operator on Mk
y . Recall that the Laplace-Beltrami

operator is defined in local coordinates as follows:

1
√

det(gi,j(y))
∂yi

√

det(gi,j(y))g
i,j(y)∂yj

where gi,j(y) = (gi,j(y))
−1 and gi,j(y) is the metric tensor.

We assume that 0 < α < 4/(n+k) which corresponds to L2 subcritical nonlinearity.
In this paper, we shall study the following two questions:

• the existence and stability of solitary waves for (1.1);
• the global well posedness of the Cauchy problem associated to (1.1).

The equation (1.1) has two (at least formal) conservation laws, the energy

(1.2) En,Mk,α(u) =

∫

Mk
y

∫

Rd
x

(1

2
|∇x,yu|2 −

1

2 + α
|u|2+α

)

dxdvolMk
y

and the L2 mass,

(1.3) ‖u‖2L2(Rn×Mk) =

∫

Mk
y

∫

Rn
x

|u|2dxdvolMk
y

1
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Here we denote by dvolMk
y
the volume form on Mk. Recall that in local coordi-

nates it can be written as
√

det(gi,j(y))dy. Moreover the i-th component (in local
coordinates) of the gradient (∇yu(y)) is

gi,j(y)∂yju

One has the classical Gagliardo-Nirenberg inequality

(1.4) ‖u‖2+α
L2+α(Rn×Mk)

≤ C‖u‖θ(α)
H1(Rn×Mk)

‖u‖2+α−θ(α)

L2(Rn×Mk)

where θ(α) = (n+ k)α/2. Thus θ(α) < 2 under our assumption 0 < α < 4/(n+ k).
This implies that the conservation laws (1.2) and (1.3) imply a control on the H1

norm which excludes a L2 self-focusing blow-up and thus one expects that (1.1) has
a well-defined global dynamics. This problem seems quite delicate for a generalMk.
However if we replace Mk with R

k it is well-known (see [11], [4] and the references
therein) that (1.1) has a global strong solution for every L2(Rn+k) initial data.

Our argument to construct stable solutions to (1.1) follows the one proposed in
[5]. Hence we shall look at the following minimization problems:

(1.5) Kρ
n,Mk,α

= inf
u∈H1(Rn×Mk)
‖u‖

L2(Rn×Mk)
=ρ

En,Mk,α(u)

and En,Mk,α(u) is defined in (1.2). In the sequel we shall use the following notation:

(1.6) Mρ
n,Mk,α

= {v ∈ H1(Rn ×Mk)|
‖v‖L2(Rn×Mk) = ρ and En,Mk,α(v) = Kρ

n,Mk,α
}

The first result we state concerns the compactness of minimizing sequences to (1.5).

Theorem 1.1. Let Mk be a compact manifold and 0 < α < 4/(n + k). Then we
have the following:

(1.7) Kρ
n,Mk,α

> −∞ and Mρ
n,Mk,α

6= ∅, ∀ρ > 0;

(1.8) ∀uj ∈ H1(Rn ×Mk) s.t. ‖uj‖L2(Rn×Mk) = ρ, lim
j→∞

En,Mk,α(uj) = Kρ
n,Mk,α

∃ a subsequence ujl and τl ∈ R
n
x s.t. ujl(x+ τl, y) converges in H1(Rn ×Mk).

The proof of Theorem 1.1 is based on the concentration compactness principle
and it will be given in the appendix. Also the following stability theorem follows
from a standard argument, hence its classical proof will be recalled in the appendix.

Theorem 1.2. Let ρ > 0 be fixed and n,Mk, α as in Theorem 1.1. Assume more-
over that

(1.9) the Cauchy problem (1.1) is globally well posed for any data ϕ ∈ U
where U is a H1(Rn ×Mk)-neighborhood of Mρ

n,Mk,α
.

Then the set Mρ
n,Mk,α

is orbitally stable, i.e.:

∀ǫ > 0 ∃δ = δ(ǫ) > 0 s.t.

ϕ ∈ U , inf
v∈Mρ

n,Mk,α

‖ϕ− v‖H1(Rn×Mk) < δ(ǫ)

implies sup
t∈R

(

inf
v∈Mρ

n,Mk,α

‖uϕ(t)− v‖H1(Rn×Mk)

)

< ǫ



THE NLS GROUND STATES ON PRODUCT SPACES 3

where uϕ(t, x, y) is the unique global solution to (1.1).

Let us emphasize that the stability result stated in Theorem 1.2 has two major
defaults: the first one is that we don’t have an explicit description of the minimizers
Mρ

n,Mk,α
; the second one is that it is subordinated to (1.9), i.e. the global well

posedness of the Cauchy problem (1.1). The main contributions of this paper
concern a partial understanding of the aforementioned questions.
Notice that (see [4]) a special family of solutions to (1.1) is given by

u(t, x, y) = e−iωtun,ω,α(x)

where ω > 0 and un,ω,α(x) is defined as the unique radial solution to:

(1.10) −∆xun,ω,α + ωun,ω,α = un,ω,α|un,ω,α|α

un,ω,α ∈ H1(Rn
x), un,ω,α(x) > 0, x ∈ R

n
x

Next, we set

(1.11) Nn,ω,α = {eiθun,ω,α(x+ τ)|τ ∈ R
n, θ ∈ R}

Notice that there is a natural embedding H1(Rn
x) ⊂ H1(Rn

x ×Mk
y ). In fact every

function inH1(Rn
x) can be extended in a trivial way w.r.t. the y variable on R

n
x×Mk

y

and this extension will belong to H1(Rn ×Mk). In particular since now on the
set Nn,ω,α defined in (1.11), will be considered without any further comment in a
twofold way: as a subset of H1(Rn

x) and H1(Rn
x ×Mk

y ). By a rescaling argument
one can prove that the function

(0,∞) ∋ ω → ‖un,ω,α‖2L2(Rn
x)

∈ (0,∞)

is strictly increasing for any 0 < α < 4
n and

lim
ω→∞

‖un,ω,α‖L2(Rn
x )

= ∞ and lim
ω→0

‖un,ω,α‖L2(Rn
x )

= 0

As a consequence for any fixed 0 < α < 4
n we have:

(1.12) ∀ρ > 0 ∃! ω(ρ) > 0 s.t. ‖un,ω(ρ),α‖L2(Rn
x )

= ρ

In next theorem the set Nn,ω,α is the one defined in (1.11) and Mρ
n,Mk,α

is defined

in (1.6).

Theorem 1.3. Let n,Mk, α as in Theorem 1.2. There exists ρ∗ ∈ (0,∞) such
that:

(1.13) Mρ
n,Mk,α

= N
n,ω(ρ/

√
vol(Mk)),α

, ∀ρ < ρ∗

and

(1.14) Mρ
n,Mk,α

∩ N
n,ω(ρ/

√
vol(Mk)),α

= ∅, ∀ρ > ρ∗

where ω(ρ/
√

vol(Mk)) is uniquely defined in (1.12). In particular for ρ > ρ∗ the
elements of Mρ

n,Mk,α
depend in a nontrivial way on the Mk variable.

By the approach of Weinstein [13] one may expect that Nn,ω,α is stable under
(1.1) for α < 4/n and ω small enough, see [9] for a recent related work. It should
however be pointed out that in such a stability result one would not get the vari-
ational description of Nn,ω,α as is the case in Theorem 1.3 (α < 4/(n + k)). We
underline that by combining Theorem 1.2 and Theorem 1.3 we get a stable set for
large values of the mass ρ, and in general it is independent of the solitary solitary
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waves associated to NLS in R
n.

Next we shall focus on the question of the global well-posedness of the Cauchy
problem associated to (1.1) in the particular case n ≥ 1, k = 1. For every n > 1 we
fix the numbers

p := p(n, α) =
4(2 + α)

nα
and q := q(n, α) = 2 + α

and for every T > 0 we define the localized norms:

(1.15) ‖u(t, x, y)‖XT ≡ ‖u(t, x, y)‖Lp((−T,T );Lq(Rn
x ;H

1(M1
y ))

and

(1.16) ‖u(t, x, y)‖YT ≡ ‖∇xu‖Lp((−T,T );Lq(Rn
x ;L

2(M1
y ))

Theorem 1.4. Let n ≥ 1 be fixed and α < 4/(n + 1), then for every initial data
ϕ ∈ H1(Rn ×M1), the Cauchy problem (1.1) has a unique global solution u(t, x, y)
satisfying :

u(t, x, y) ∈ C((−T, T );H1(Rn ×M1)) ∩XT ∩ YT , ∀T > 0

Remark 1.1. The main difficulty in the analysis of the Cauchy problem (1.1) (com-
pared with the Cauchy problem in the euclidean space) is related with the fact
that the propagator e−it∆x,y on R

n×M1
y does not satisfies the Strichartz estimates

which are available for the propagator e−it∆
Rn+k on the euclidean space R

n+k.

Let us now describe some other known cases when (1.1) is well-posed in H1(Rn×
Mk) under the assumption α < 4/(n + k). Using the analysis of [2, 3] one may
prove such a well-posedness result in the case R × M2, i.e. n = 1 and k = 2.
Moreover, using the analysis of the recent papers [6] and [7] one may also prove
such a well-posedness result in the cases R2 × T

2 and R× T
3 respectively.

Notation. Next we fix some notations. We denote by Lp
x and Hs

x respectively the
space Lp(Rn

x) and Hs(Rn
x). We also use the notation Lp

x,y = Lp(Rn
x ×Mk

y ) and

Lp
xL

q
y = Lp(Rn

x ;L
q(Mk

y )). If v(t) is a time dependent function defined on Rt and
valued in a Banach space X , then we define

‖v‖p
Lp

t (X)
=

∫

R

‖v(t)‖pXdt

For every p ∈ [1,∞] we denote by p′ ∈ [1,∞] its conjugate Hölder exponent. We
denote by e−it∆x,y the free propagator associated to the Schrödinger equation on
R

n
x ×Mk

y .

2. Some useful results on the euclidean space R
n
x with n ≥ 1

In this section we recall some well known facts (see [4]) related to the following
minimization problem on R

n
x :

(2.1) Iρn,α = inf
u∈H1

x

‖u‖L2
x
=ρ

En,α(u)

where for α < 4/n

(2.2) En,α(u) =
1

2

∫

Rn
x

|∇xu|2dx− 1

2 + α

∫

Rn
x

|u|2+αdx
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By an elementary rescaling argument we have

(2.3) Iρn,α = ρ(8+4α−2αn)/(4−αn)I1n,α

It is well–known that

(2.4) −∞ < Iρn,α < 0, ∀ρ > 0

and

(2.5) Mρ
n,α = Nn,ω(ρ),α

where Nn,ω,α is defined in (1.11),

(2.6) Mρ
n,α = {u ∈ H1

x|‖u‖L2
x
= ρ and En,α(u) = Iρn,α}

and ω(ρ) is defined uniquely (see (1.12)) by the relation

‖un,ω(ρ),α‖L2
x
= ρ

We also recall that the functions un,ω,α (defined as the unique radially symmetric
and positive solution to (1.10)) satisfy the following Pohozaev type identity (for a
proof of (2.7) see the proof of (3.21) in next section):

(2.7)

∫

Rn
x

|∇xun,ω,α|2dx =
αn

2(α+ 2)

∫

Rn
x

|un,ω,α|2+αdx

On the other hand if we multiply (1.10) by un,ω,α and we integrate by parts then
we get

∫

Rn
x

|∇xun,ω,α|2dx+ ω‖un,ω,α‖2L2
x
=

∫

Rn
x

|un,ω,α|2+αdx

that in conjunction with (2.7) gives

(2.8) ω‖un,ω,α‖22 =
2α+ 4− αn

αn

∫

Rn
x

|∇xun,ω,α|2dx

=
4α+ 8− 2αn

αn− 4

(1

2

∫

Rn
x

|∇xun,ω,α|2dx − 1

2 + α

∫

Rn
x

|un,ω,α|2+αdx
)

=
4α+ 8− 2αn

αn− 4
I
‖un,ω,α‖L2

x
n,α

(at the last step we have used the fact that due to (2.5) we have that un,ω,α is a
minimizer for En,α on its associated constrained).
Finally notice that by (2.7) we deduce

(2.9) I
‖un,ω,α‖L2

x
n,α = En,α(un,ω,α) =

αn− 4

2αn

∫

Rn
x

|∇xun,ω,α|2dx

3. An auxiliary problem

In this section we study the minimizers of the following minimization problems

(3.1) Jn,Mk,α,λ = inf
u∈H1(Rn×Mk)

‖u‖L2
x,y

=1

En,Mk,α,λ(u)

where

En,Mk,α,λ(u) =

∫

Mk
y

∫

Rn
x

(λ

2
|∇yu|2 +

1

2
|∇xu|2 −

1

2 + α
|u|2+α

)

dxdvolMk
y
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We also introduce the following sets:

Mn,Mk,α,λ = {w ∈ H1(Rn ×Mk)|‖w‖L2
x,y

= 1 and En,Mk,α,λ(w) = Jn,Mk,α,λ}

Theorem 3.1. Let n,Mk and 0 < α < 4
n+k be given. There exists λ∗ ∈ (0,∞)

such that:

(3.2) Mn,Mk,α,λ = Nn,ω̄,α, ∀λ > λ∗

and

(3.3) Mn,Mk,α,λ ∩ Nn,ω̄,α = ∅, ∀λ < λ∗

where ω̄ is defined by the condition

vol(Mk)‖un,ω̄,α‖2L2
x
= 1

We fix a sequence λj → ∞ and a corresponding sequence of functions uλj ∈
Mn,Mk,α,λj

. In the sequel we shall assume that

(3.4) uλj (x, y) ≥ 0, ∀(x, y) ∈ R
n
x ×Mk

y

Indeed it is well-known that if uλj is a minimizer, then also |uλj | is a minimizer.
In particular there exists at least one minimizer which satisfies (3.4).
Notice that the functions uλj depend in principle on the full set of variables (x, y).
Our aim is to prove that for j large and up to subsequence, the functions uλj will
not depend explicitly on the variable y.
First we prove some a priori bounds satisfied by uλj (x, y). Recall that the quantities
Iρn,α are defined in (2.1).

Lemma 3.1. Assume the same assumptions as in Theorem 3.1, then we have:

(3.5) lim
j→∞

Jn,Mk,α,λj
= vol(Mk)I

1/
√

vol(Mk)
n,α

and

(3.6) lim
j→∞

λj

∫

Mk
y

∫

Rn
x

|∇yuλj |2dxdvolMk
y
= 0

Proof. First notice that

(3.7) Jn,Mk,α,λj
≤ vol(Mk)I

1/
√

vol(Mk)
n,α

In fact let w(x) ∈ H1
x be such that ‖w‖L2

x
= 1√

vol(Mk)
and En,α(w) = I

1/
√

vol(Mk)
n,α .

Then we get easily:

Jn,Mk,α,λj
≤ En,Mk,α,λj

(w(x))

= vol(Mk)
(1

2

∫

Rn
x

|∇xw|2dx− 1

2 + α

∫

Rn
x

|w|2+αdx
)

= vol(Mk)I
1/
√

vol(Mk)
n,α

and this concluded the proof of (3.7).
Next we claim that

(3.8) lim
j→∞

∫

Mk
y

∫

Rn
x

|∇yuλj |2dxdvolMk
y
= 0



THE NLS GROUND STATES ON PRODUCT SPACES 7

In order to prove this fact assume by the absurd that it is false then there exists a
subsequence of λj (that we still denote by λj) such that

lim
j→∞

λj = ∞ and

∫

Mk
y

∫

Rn
x

|∇yuλj |2dxdvolMk
y
≥ ǫ0 > 0

and in particular

(3.9) lim
j→∞

(λj − 1)

∫

Mk
y

∫

Rn
x

|∇yuλj |2dxdvolMk
y
= ∞

On the other hand by the classical Gagliardo Nirenberg inequality (see (1.4)) we
deduce the existence of 0 < µ < 2 such that:

1

2

∫

Mk
y

∫

Rn
x

(|∇yv|2 + |∇xv|2 + |v|2)dxdvolMk
y
− 1

2 + α

∫

Mk
y

∫

Rn
x

|v|2+αdxdvolMk
y

≥ 1

2

∫

Mk
y

∫

Rn
x

(|∇yv|2 + |∇xv|2 + |v|2)dxdvolMk
y

−C
[

∫

Mk
y

∫

Rn
x

(|∇yv|2 + |∇xv|2 + |v|2)dxdvolMk
y

]µ

≥ inf
t>0

(1/2t2 − Ctµ) = C(µ) > −∞

∀v ∈ H1(Rn ×Mk) s.t. ‖v‖L2
x,y

= 1

By the previous inequality we get

En,Mk,α,λj
(v)− 1

2
(λj − 1)

∫

Mk
y

∫

Rn
x

|∇yv|2 ≥ −1

2
+ C(µ)

∀v ∈ H1(Rn ×Mk) s.t. ‖v‖L2
x,y

= 1

In particular if we choose v = uλj then we get

Jn,Mk,α,λj
= En,Mk,α,λj

(uλj )

≥ 1

2
(λj − 1)

∫

Mk
y

∫

Rn
x

|∇yuλj |2dxdvolMk
y
− 1

2
+ C(µ)

By (3.9) this implies limn→∞ Jn,Mk,α,λj
= ∞ and this is in contradiction with (3.7).

Hence (3.8) is proved.

Next we introduce the functions

wj(y) = ‖uλj (x, y)‖2L2
x

Notice that

(3.10) ‖wj(y)‖L1
y
= 1

and moreover
∫

Mk
y

|∇ywj(y)|dvolMk
y
≤ C

∫

Mk
y

∫

Rn
x

|uλj (x, y)||∇yuλj (x, y)|dxdvolMk
y

≤ C‖uλj‖L2
x,y

‖∇yuλj‖L2
x,y

Hence due to (3.8) we get

(3.11) lim
j→∞

‖∇ywj‖L1
y
= 0



8 SUSANNA TERRACINI, NIKOLAY TZVETKOV, AND NICOLA VISCIGLIA

By combining (3.10) and (3.11) with the Rellich compactness theorem and with
the Sobolev embeddingW 1,1(M1) ⊂ L∞(M1) andW 1,1(M2) ⊂ L2(M2) we deduce
respectively in the case k = 1 and k = 2 that (up to a subsequence)

(3.12) lim
j→∞

‖wj(y)− 1/vol(M1)‖Lr
y
= 0, ∀1 ≤ r <∞

and

(3.13) lim
j→∞

‖wj(y)− 1/vol(M2)‖Lr
y
= 0, ∀1 ≤ r < 2

For k > 2 we use the Sobolev embedding H1(Mk) ⊂ L2k/(k−2)(Mk) and we get

sup
j

‖uλj‖L2
xL

2k/(k−2)
y

≤ C sup
j

‖uλj‖L2
xH

1(Mk
y ) <∞

(where at the last step we have used the fact supj
(

‖uλj‖L2
x,y

+‖∇yuλj‖L2
x,y

)

<∞).

By the Minkowski inequality the bound above implies supj ‖uλj‖L2k/(k−2)
y L2

x
which

is equivalent to the condition

(3.14) sup
j

‖wj(y)‖Lk/(k−2)
y

<∞ for k > 2

By combining (3.10) and (3.11) with the Rellich compactness theorem we deduce
that up to a subsequence

‖wj(y)− 1/vol(Mk)‖L1
y
= 0 for k > 2

and hence by interpolation with (3.14) we get

(3.15) ‖wj(y)− 1/vol(Mk)‖Lr
y
= 0 for k > 2, 1 ≤ r < k/(k − 2)

By the definition of Iρn,α (see (2.1)) and (2.3) we get

(3.16)
1

2

∫

Rn
x

|∇xuλj (x, y)|2dx− 1

2 + α

∫

Rn
x

|uλj (x, y)|2+αdx

≥ I
‖uλj

(·,y)‖L2
x

n,α = I1n,α‖uλj (·, y)‖(8+4α−2αn)/(4−αn)
L2

x
= I1n,αwj(y)

(4+2α−αn)/(4−αn)

∀y ∈Mk, ∀j ∈ N

Next notice that by definition

(3.17) Jn,Mk,α,λj
= En,Mk,α,λj

(uλj )

=
1

2

∫

Mk
y

∫

Rn
x

(λj |∇yuλj |2 + |∇xuλj |2)dxdy −
1

2 + α

∫

Mk
y

∫

Rn
x

|u|2+αdxdvolMk
y

and we can continue

(3.18) ... ≥
∫

Mk
y

(1

2

∫

Rn
x

|∇xuλj (x, y)|2dx− 1

2 + α

∫

Rn
x

|uλj (x, y)|2+αdx
)

dvolMk
y

≥ I1n,α

∫

Mk
y

wj(y)
(4+2α−αn)/(4−αn)dvolMk

y

= I1n,αvol(M
k)vol(Mk)−(4+2α−αn)/(4−αn) + o(1)

where o(1) → 0 as j → ∞ and at the last step we have combined (3.12), (3.13) and
(3.15) respectively for k = 1, k = 2 and k > 2 and we used our assumption on α.
By combining this fact with (2.3) we have

(3.19) lim inf
j→∞

Jn,Mk,α,λj
≥ vol(Mk)I

1/
√

vol(Mk)
n,α
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Hence (3.5) follows by combining (3.7) with (3.19).

Next we prove (3.6). For that purpose, it suffices to keep the term λj |∇yuλj |2
in the previous analysis. Namely, by combining (3.5) with (3.17) and (3.18) we get

(3.20) vol(Mk)I
1/
√

vol(Mk)
n,α + g(j) ≥ 1

2
λj

∫

Mk
y

∫

Rn
x

|∇yuλj |2dxdvolMk
y
+ h(j)

where

lim
j→∞

g(j) = 0

and

lim inf
j→∞

h(j) ≥ vol(Mk)I
1/
√

vol(Mk)
n,α

Hence (3.6) follows by (3.20).
�

Lemma 3.2. We have the following identity:

(3.21)

∫

Mk
y

∫

Rn
x

|∇xuλj |2dxdvolMk
y
=

αn

2(2 + α)

∫

Mk
y

∫

Rn
x

|uλj |2+αdxdvolMk
y

Moreover there exist J ∈ N such that

∀j > J ∃ω(λj) > 0 s.t.

(3.22) − λj∆yuλj −∆xuλj + ω(λj)uλj = uλj |uλj |α

and the following limit exists

(3.23) lim
j→∞

ω(λj) = ω̄ ∈ (0,∞)

Proof. Since uλj is a constrained minimizer for En,Mk,α,λj
on the ball of size 1

in L2(Rn ×Mk), then we get

d

dǫ

[

En,Mk,α,λj
(ǫ

n
2 uλj (ǫx, y)

]

ǫ=1
= 0

which is equivalent to

d

dǫ

[1

2
λj

∫

Mk
y

∫

Rn
x

|∇yuλj |2dxdvolMk
y

+
1

2
ǫ2

∫

Mk
y

∫

Rn
x

|∇xuλj |2dxdvolMk
y
− 1

2 + α
ǫαn/2‖uλj‖2+α

L2+α
x,y

]

ǫ=1
= 0

By computing explicitly the derivative (in ǫ) we deduce (3.21).

Next notice that by using the Lagrange multiplier technique we get (3.22) for a
suitable ω(λj) ∈ R. On the other hand by (3.22) we get

∫

Mk
y

∫

Rn
x

(λj |∇yuλj |2 + |∇xuλj |2)dxdvolMk
y
+ ω(λj)‖uλj‖2L2

x,y

=

∫

Mk
y

∫

Rn
x

|uλj |2+αdxdvolMk
y
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that by (3.21) gives

ω(λj) =
−αn+ 4 + 2α

αn

∫

Mk
y

∫

Rn
x

|∇xuλj |2dxdvolMk
y
−λj

∫

Mk
y

∫

Rn
x

|∇yuλj |2dxdvolMk
y

and hence by (3.6) we get

(3.24) ω(λj) =
−αn+ 4 + 2α

αn

∫

Mk
y

∫

Rn
x

|∇xuλj |2dxdvolMk
y
+ o(1)

where limj→∞ o(1) = 0.
On the other hand notice that by (3.21) we get

Jn,Mk,α,λj
= En,Mk,α,λj

(uλj )

=
αn− 4

2αn

∫

Mk
y

∫

Rn
x

|∇xuλj |2dxdvolMk
y
+

1

2

∫

Mk
y

∫

Rn
x

λj |∇yuλj |2dxdvolMk
y

and by (3.6)

(3.25)

∫

Mk
y

∫

Rn
x

|∇xuλj |2dxdvolMk
y
=

2αn

αn− 4
Jn,Mk,α,λj

+ o(1)

By (3.5) it implies

(3.26)

∫

Mk
y

∫

Rn
x

|∇xuλj |2dxdvolMk
y
=

2αn

αn− 4
vol(Mk)I

1/
√

vol(Mk)
n,α + o(1)

that in conjunction with (3.24) and (2.4) implies ω(λj) > 0 for j large enough.
Moreover (3.23) follows by (3.24) and (3.26).

�

Next recall that the sets Mρ
n,α are the ones defined in (2.6).

Lemma 3.3. Let ω̄ be as in (3.23) and let v(x) ∈ M1/
√

vol(Mk)
n,α be such that

v(x) > 0. Then

−∆xv + ω̄v = v|v|α

Proof. It is well-known that

−∆xv + ω1v = v|v|α

for a suitable ω1 > 0. More precisely we can assume that up to translation v =
un,ω1,α. Our aim is to prove that ω1 = ω̄. Notice that by (2.8)

(3.27) ω1
1

vol(Mk)
=

4α+ 8− 2αn

αn− 4
I
‖v‖L2

x
n,α =

4α+ 8− 2αn

αn− 4
I
1/
√

vol(Mk)
n,α

On the other hand by (3.24) and (3.26) we get

ω(λj) =
−2αn+ 8 + 4α

αn− 4
vol(Mk)I

1/
√

vol(Mk)
n,α + o(1)

and hence passing to the limit in j we get

(3.28) ω̄ =
−2αn+ 8 + 4α

αn− 4
vol(Mk)I

1/
√

vol(Mk)
n,α

By combining (3.27) and (3.28) we get ω̄ = ω1.
�
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Lemma 3.4. There exist a subsequence of λj (that we shall denote still by λj) and
a sequence τj ∈ R

n
x such that

lim
j→∞

‖uλj(x + τj , y)− uω̄‖H1(Rn×Mk) = 0

where uω̄ ∈ Nn,ω̄,α, uω̄ > 0 and ω̄ is defined in (3.23).

Proof. By combining (3.6) and (3.26), and since ‖uλj‖L2
x,y

= 1, we deduce that

uλj is bounded in H1(Rn ×Mk). Moreover by combining (3.5) with the fact that

I
1/
√

vol(Mk)
n,α < 0 (see (2.4)) then we get

inf
j
‖uλj‖L2+α

x,y
> 0

By using the localized version of the Gagliardo Nirenberg inequality (6.5) (in the
same spirit as in the appendix) we get the existence (up to subsequence) of τj ∈ R

n
x

such that
uλj (x+ τj , y)⇀ w 6= 0 in H1(Rn ×Mk)

Moreover due to (3.4) we can assume that

w(x, y) ≥ 0 a.e. (x, y) ∈ R
n
x ×Mk

y

and by (3.6) we get ∇yw = 0. In particular w is y-independent.
By combining (3.6) and (3.23) we pass to the limit in (3.22) in the distribution
sense and we get

(3.29) −∆xw + ω̄w = w|w|α in R
n
x , w(x) ≥ 0, w 6= 0

We claim that

(3.30) ‖w‖L2
x
=

1
√

vol(Mk)

If not then we can assume ‖w‖L2
x
= β < 1√

vol(Mk)
and since w solves (3.29) by

(2.5) we get

(3.31) w ∈ Mβ
n,α

On the other hand by Lemma 3.3 the equation (3.29) is satisfied by any v ∈
M

1√
vol(Mk)

n,α . Hence again by (2.5) and by the injectivity of the map ρ → ω(ρ)
(see (1.12)) we deduce that necessarily β = 1√

vol(Mk)
.

In particular by (3.30) we deduce

lim
j→∞

‖uλj(x + τj , y)− w‖L2
x,y

= 0

Next notice that by (3.6) and since we have already proved that ∇yw = 0 we deduce
that

lim
j→∞

‖∇yuλj (x+ τj , y)‖L2
x,y

= 0 = ‖∇yw‖L2
x,y

Hence in order to conclude that uλj (x+ τj , y) converges strongly to w in H1(Rn ×
Mk) it is sufficient to prove that

lim
j→∞

‖∇xuλj (x+ τj , y)‖L2
x,y

=
√

vol(Mk)‖∇xw‖L2
x
= ‖∇xw‖L2

x,y

This last fact follows by combining (2.9) (where we use the fact that w ∈ Nn,ω̄,α

by (3.29) and ‖w‖L2
x
= 1√

vol(Mk)
by (3.30)) and (3.26).
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�

Lemma 3.5. There exists j0 > 0 such that

∇yuλj = 0, ∀j > j0

Proof. By Lemma 3.4 we can assume that

(3.32) uλj → uω̄ in H1(Rn ×Mk)

We introduce wj =
√

−∆yuλj . Notice that due to (3.22) the functions wj satisfy

(3.33) − λj∆ywj −∆xwj + ω(λj)wj =
√

−∆y(uλj |uλj |α)
that after multiplication by wj implies

(3.34)

∫

Mk
y

∫

Rn
x

[

λj |∇ywj |2 + |∇xwj |2 + ω(λj)|wj |2

−
√

−∆y(uλj |uλj |α)wj

]

dxdvolMk
y
= 0

In turn it gives

(3.35) 0 =

∫

Mk
y

∫

Rn
x

(λj − 1)|∇ywj |2 − (α+ 1)
√

−∆y(uλj |uω̄|α)wjdxdvolMk
y
+

∫

Mk
y

∫

Rn
x

(|∇ywj |2+|∇xwj |2+ω̄|wj |2+
√

−∆y(uλj ((α+1)|uω̄|α−|uλj |α))wjdxdvolMk
y

+

∫

Mk
y

∫

Rn
x

(ω(λj)− ω̄)|wj |2dxdy ≡

Ij + IIj + IIIj

Next we fix an orthonormal basis of eigenfunctions for −∆y, i.e. −∆yϕk = µkϕk

and ϕ0 = const. We can write the following development

(3.36) wj(x, y) =
∑

k∈N\{0}
aj,k(x)ϕk(y)

(where the eigenfunction ϕ0 does not enter in the development). By using the
representation in (3.36) we get

(3.37) Ij ≥
∑

k 6=0

(λj − 1)|µk|2
∫

Rn
x

|aj,k(x)|2dx− (α+1)
∑

k 6=0

∫

Rn
x

|uω̄(x)|α|aj,k(x)|2dx

and by (3.23) we get

(3.38) IIIj = o(1)‖wj‖2L2
x,y

By combining (3.37) with (3.38) we get

(3.39) Ij + IIIj ≥ 0

for j large enough. In order to estimate IIj notice that by the Cauchy-Schwartz
inequality we get

(3.40)
∣

∣

∣

∫

Mk
y

∫

Rn
x

√

−∆y(uλj ((α+ 1)|uω̄|α − |uλj |α))wjdxdvolMk
y

∣

∣

∣

≤ ‖
√

−∆y(uλj ((α + 1)|uω̄|α − |uλj |α))‖
L

2(n+k)
n+k+2
x L

2(n+k)
n+k+2
y

‖wj‖
L

2(n+k)
n+k−2
x,y
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≤ C‖∇y(uλj ((α + 1)|uω̄|α − |uλj |α))‖
L

2(n+k)
n+k+2
x L

2(n+k)
n+k+2
y

‖wj‖
L

2(n+k)
n+k−2
x,y

where at the last step we have used the following estimate

(3.41) ∀p ∈ (1,∞) ∃c(p), C(p) > 0 s.t.

c(p)‖
√

−∆yf‖Lp
y
≤ ‖∇yf‖Lp

y
≤ C(p)‖

√

−∆yf‖Lp
y

Indeed, using [10, Theorem 3.3.1], we have that
√

−∆y is a first order classical

pseudo differential operator onM with a principle symbol (gi,j(y)ξi ξj)
1/2. Observe

that

C1

∑

i,j

gi,j(y)ξi ξj ≤
∑

i

|
∑

j

gi,j(y)ξj |2 ≤ C2|ξ|2 ≤ C3

∑

i,j

gi,j(y)ξi ξj

Moreover one can assume that in (3.41) f has no zero frequency. Then one can de-
duce (3.41) by working in local coordinates, introducing a classical angular partition
of unity according to the index l ∈ [1, · · · , k] such that

∑

i,j

gi,j(y)ξi ξj ≤ c|
∑

j

gl,j(y)ξj |2

and, most importantly, using the Lp boundedness of zero order pseudo differential
operators on R

k (for the proof of this fact we refer to [10, Theorem 3.1.6]).
Next, by the chain rule we get

∇y

(

uλj ((α+ 1)|uω̄|α − |uλj |α)
)

= (α+ 1)∇yuλj

(

|uω̄|α − |uλj |α
)

and by the Hölder inequality we can continue the estimate (3.40) as follows

... ≤ C
∥

∥

∥
‖∇yuλj‖Lq

y
‖|uω̄|α − |uλj |α‖Lr

y

∥

∥

∥

L

2(n+k)
n+k+2
x

‖wj‖
L

2(n+k)
n+k−2
x,y

where
1

q
+

1

r
=
n+ k + 2

2(n+ k)

and again by the Hölder inequality in the x-variable we can continue

... ≤ C‖∇yuλj‖Lq
x,y

‖|uω̄|α − |uλj |α‖Lr
x,y

‖wj‖
L

2(n+k)
n+k−2
x,y

Notice that if we fix

q =
2(n+ k)

n+ k − 2
and r =

n+ k

2
then by combining the Sobolev embedding

(3.42) H1
x,y ⊂ L

2(n+k)
n+k−2
x,y

with (3.32) and (3.41), we can continue the estimate

... ≤ o(1)‖
√

−∆yuλj‖Lq
x,y

‖wj‖H1
x,y

= o(1)‖wj‖2H1
x,y

where limj→∞ o(1) = 0. By combining this information in conjunction with the
structure of IIj we get

(3.43) IIj ≥ ‖wj‖2H1
x,y

(1− o(1)) ≥ 0 for j > j0

By combining (3.35), (3.39) and (3.43) we deduce wj = 0 for j large enough.
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�

Proof of Theorem 3.1 By using the diamagnetic inequality we deduce that
(up to a remodulation factor eiθ) we can assume that v ∈ Mn,Mk,α,λ is real valued.
Moreover if v ∈ Mn,Mk,α,λ then also |v| ∈ Mn,Mk,α,λ. By a standard application of
the strong maximum principle we finally deduce that it is not restrictive to assume
that v ∈ Mn,Mk,α,λ and v(x, y) > 0, ∀(x, y) ∈ R

n
x ×Mk

y .

First step: ∃λ̃ > 0 s.t. ∀v ∈ Mn,Mk,α,λ, v(x, y) > 0 we have ∇yv = 0, ∀λ > λ̃

Assume that the conclusion is false then there exists λj → ∞ such that uλj (x, y) ∈
Mn,Mk,α,λj

, uλj (x, y) > 0 and ∇yuλj 6= 0. This is absurd due to Lemma 3.5.

Second step: conclusion

We define

λ∗ = inf
λ
{λ > 0|∇yv = 0 ∀v ∈ Mn,Mk,α,λ}

By the first step λ∗ < ∞. Moreover it is easy to deduce that if λ > λ∗ then the
minimizers of the problem Jn,Mk,α,λ are precisely the same minimizers of the prob-

lem I
1/
√

vol(Mk)
n,α , which in turn are characterized in section 2 (hence we get (3.2)).

Next we prove that λ∗ > 0. It is sufficient to show that

(3.44) lim
λ→0

Jn,Mk,α,λ < vol(Mk)I
1/
√

vol(Mk)
n,α

(see (2.1) and (3.1) for a definition of the quantities involved in the inequality
above). Let us fix ρ(y) ∈ C∞(Mk) such that

∫

Mk

|ρ|2dvolMk
y
= 1

and ρ2(y0) 6= 1
vol(Mk)

for some y0 ∈Mk (i.e. ρ(y) is not identically constant). Then

we introduce the functions

ψ(x, y) = ρ(y)4/(4−αn)Q(ρ(y)(2α)/(4−αn)x)

where Q(x) is the unique radially symmetric minimizer for I
1/
√

vol(Mk)
n,α . Then we

get

‖ψ(x, y)‖2L2
x
= (ρ(y))2 and En,α(ψ(x, y)) = I1n,α(ρ(y))

8+4α−2αn
4−αn

and as a consequence we deduce
∫

Mk
y

∫

Rn
x

(1

2
|∇xψ(x, y)|2 −

1

2 + α
|ψ(x, y)|2+α

)

dxdvolMk
y

= I1n,α

∫

Mk
y

(ρ(y))
8+4α−2αn

4−αn dvolMk
y

< I1n,α

(

∫

Mk

(ρ(y))2dvolMk
y

)

4−αn+2α
4−αn

vol(Mk)−
2α

4−αn = I1n,αvol(M
k)−

2α
4−αn
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where at the last inequality we have used the fact that I1n,α < 0 in conjunction with
the Hölder inequality (moreover we get the inequality < since by hypothesis ρ(y)
is not identically constant). As a byproduct we get

lim
λ→0

En,Mk,α,λ(ψ(x, y)) < I1n,αvol(M
k)−

2α
4−αn = vol(Mk)I

1/
√

vol(Mk)
n,α

(where we have used (2.3)) which in turn implies (3.44).

Let us finally prove (3.3). It is sufficient to show that if v ∈ Mn,Mk,α,λ for
λ < λ∗ then ∇yv 6= 0. Assume by the absurd that it is false, then we get λ1 < λ∗

and v1 ∈ Mn,Mk,α,λ1
such that ∇yv1 = 0. Arguing as above it implies that

(3.45) Jn,Mk,α,λ1
= vol(Mk)I

1/
√

vol(Mk)
n,α

On the other hand by definition of λ∗ there exists λ2 ∈ (λ1, λ
∗] and v2 ∈ Mn,Mk,α,λ2

such that ∇yv2 6= 0. As a consequence we deduce that

Jn,Mk,α,λ1
< En,Mk,α,λ2

(v2) = Jn,Mk,α,λ2
≤ vol(Mk)I

1/
√

vol(Mk)
n,α

where at the last step we have used (3.7). Hence we get a contradiction with (3.45).
�

4. Proof of theorem 1.3

In the sequel the homogeneity of the euclidean space R
n will play a key role.

Due to this property we shall be able to reduce the proof of Theorem 1.3 to the
problem studied in the previous section.
In view of section 2 it is sufficient to prove that there exists ρ∗ > 0 such that

(4.1) v ∈ Mρ
n,Mk,α

implies ∇yv = 0 for ρ < ρ∗

and

(4.2) v ∈ Mρ
n,Mk,α

implies ∇yv 6= 0 for ρ > ρ∗

By an elementary computation we have that the map

S1 ∋ u→ ρ4/(4−αn)u(ρ2α/(4−αn)x, y) ∈ Sρ

where

Sλ = {v ∈ H1(Rn ×Mk)|‖v‖L2
x,y

= λ}
is a bijection. Moreover we have

En,Mk,α(ρ
4/(4−αn)u(ρ2α/(4−αn)x, y)) = ρ(8−2αn)/(4−αn)

∫

Mk
y

∫

Rn
x

|∇yu|2dxdvolMk
y

+ρ(8−2αn+4α)/(4−αn)

∫

Mk
y

∫

Rn
x

|∇xu|2dxdvolMk
y

−ρ(8−2αn+4α)/(4−αn) 1

2 + α

∫

Mk
y

∫

Rn
x

|u|2+αdxdvolMk
y

= ρ(8−2αn+4α)/(4−αn)
(1

2
ρ−4α/(4−αn)

∫

Mk
y

∫

Rn
x

|∇yu|2dxdvolMk
y

+
1

2

∫

Mk
y

∫

Rn
x

|∇xu|2 −
1

2 + α
|u|2+ 4

d dxdvolMk
y

)
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In particular (4.1) and (4.2) are satisfied provided that there exists ρ∗ > 0 such
that

(4.3) v ∈ Mn,Mk,α,ρ−4α/(4−αn) implies ∇yv = 0 for ρ < ρ∗

and

(4.4) v ∈ Mn,Mk,α,ρ−4α/(4−αn) implies ∇yv 6= 0 for ρ > ρ∗

that in turn follow by Theorem 3.1.

5. Proof of Theorem 1.4

The main tool we use is the following Strichartz type estimates (whose proof
follows by [12]).

Proposition 5.1. For every manifold Mk
y , n ≥ 1 and p, q ∈ [2,∞] such that:

2

p
+
n

q
=
n

2
, (p, n) 6= (2, 2)

there exists C > 0 such that

(5.1) ‖e−it∆x,yf‖Lp
tL

q
xH1

y
+
∥

∥

∥

∫ t

0

e−i(t−s)∆x,yF (s)ds
∥

∥

∥

Lp
tL

q
xH1

y

≤ C
(

‖f‖L2
xH

1
y
+ ‖F‖

Lp′

t Lq′
x H1

y

)

;

(5.2) ‖∇xe
−it∆x,yf‖Lp

tL
q
xL2

y
+
∥

∥

∥
∇x

∫ t

0

e−i(t−s)∆x,yF (s)ds
∥

∥

∥

Lp
tL

q
xL2

y

≤ C
(

‖∇xf‖L2
xL

2
y
+ ‖∇xF‖Lp′

t Lq′
x L2

y

)

and

(5.3)
∥

∥

∥

∫ t

0

e−i(t−s)∆x,yF (s)ds
∥

∥

∥

Lp
tL

q
xL2

y

≤ C‖F‖
Lp′

t Lq′
x L2

y

Moreover

(5.4) ‖e−it∆x,yf‖L∞

t L2
xH

1
y
+
∥

∥

∥

∫ t

0

e−i(t−s)∆x,yF (s)ds
∥

∥

∥

L∞

t L2
xH

1
y

≤ C
(

‖f‖L2
xH

1
y
+ ‖F‖

Lp′

t Lq′
x H1

y

)

and

(5.5) ‖∇xe
−it∆x,yf‖L∞

t L2
xL

2
y
+
∥

∥

∥
∇x

∫ t

0

e−i(t−s)∆x,yF (s)ds
∥

∥

∥

L∞

t L2
xL

2
y

≤ C
(

‖∇xf‖L2
xL

2
y
+ ‖∇xF‖Lp′

t Lq′
x L2

y

)

Next we shall use the norms ‖.‖XT and ‖.‖YT introduced in (1.15) and (1.16) for
time dependent functions. We also introduce the space ZT whose norm is defined
by

‖v‖ZT ≡ ‖v‖XT + ‖v‖YT

and the nonlinear operator associated to the Cauchy problem (1.1):

Tϕ(u) ≡ e−it∆x,yϕ+

∫ t

0

e−i(t−s)∆x,yu(s)|u(s)|αds
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We split the proof of Theorem 1.4 in several steps.

5.1. Local Well Posedness. This subsection is devoted to the proof of the fol-
lowing fact:

∀ϕ ∈ H1(Rn ×M1) ∃T = T (‖ϕ‖H1(Rn×M1)) > 0

and ∃!v(t, x) ∈ ZT ∩ C((−T, T );H1(Rn ×M1))

s.t. Tϕv(t) = v(t) ∀t ∈ (−T, T )

First step:

∀ϕ ∈ H1(Rn ×M1) ∃T = T (‖ϕ‖H1(Rn×M1)) > 0, R = R(‖ϕ‖H1(Rn×M1)) > 0 s.t.

Tϕ(BZT̃
(0, R)) ⊂ BZT̃

(0, R) ∀T̃ < T

First we estimate the nonlinear term:

‖u|u|α‖
Lp′

t Lq′
x H1

y

≤
∥

∥

∥
‖uα(t, x, .)‖L∞

y
‖u(t, x, .)‖H1

y

∥

∥

∥

Lp′

t Lq′
x

(where (p, q) is the couple in (1.15) and (1.16)) and after application of the Hölder
inequality in (t, x) we get

... ≤ ‖u‖Lp
tL

q
xH1

y
‖u‖α

Lαp̃
t Lαq̃

x L∞

y

≤ C‖u‖Lp
tL

q
xH1

y
‖u‖α

Lαp̃
t Lαq̃

x H1
y

where we have used the embedding H1
y ⊂ L∞

y and we have chosen

1

p̃
+

1

p
= 1− 1

p

1

q̃
+

1

q
= 1− 1

q
By direct computation we have:

(5.6) αq̃ = q and αp̃ < p

By combining the nonlinear estimate above with (5.1), (5.6) and the Hölder in-
equality (in the time variable) we get:

(5.7) ‖Tϕu‖XT ≤ C(‖ϕ‖L2
xH

1
y
+ T a(d)‖u‖1+α

XT
)

with a(d) > 0.
Arguing as above get

‖∇x(u|u|α)‖Lp′

t Lq′
x L2

y
≤ C‖∇xu‖Lp

tL
q
xL2

y
‖uα‖Lp̃

tL
q̃
xL∞

y

≤ C‖u‖YT ‖u‖αLαp̃
t Lαq̃

x H1
y

where p̃ and q̃ are as above and we have used the embedding H1
y ⊂ L∞

y . As a
consequence of this estimate and (5.2) we get:

(5.8) ‖Tϕu‖YT ≤ C(‖∇xϕ‖L2
x,y

+ T a(d)‖u‖YT ‖u‖αXT
)

with a(d) > 0.
By combining (5.7) with (5.8) we get

‖Tϕu‖ZT ≤ C(‖ϕ‖H1(Rn×M1) + T a(d)‖u‖ZT ‖u‖αZT
)
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The proof follows by a standard continuity argument.

Next we introduce the norm

‖w(t, x, y)‖Z̃T
≡ ‖w(t, x, y)‖Lp((−T,T );Lq

xL2
y)

and we shall prove the following.

Second step: let T,R > 0 as in the previous step then

∃T ′ = T ′(‖ϕ‖H1(Rn×M1)) < T s.t. Tϕ
is a contraction on BZT ′

(0, R) endowed with the norm ‖.‖Z̃T ′

It is sufficient to prove:

(5.9) ‖Tϕv1 − Tϕv2‖Z̃T
≤ CT a(d)‖v1 − v2‖Z̃T

sup
i=1,2

{‖vi‖ZT }α

with a(d) > 0. Notice that we have

‖v1|v1|α − v2|v2|α‖Lp′((−T,T );Lq′
x L2

y)

≤ C
∥

∥

∥
‖v1 − v2‖L2

y
(‖v1‖L∞

y
+ ‖v2‖L∞

y
)α
∥

∥

∥

Lp′((−T,T );Lq′
x )

≤ CT a(d)‖v1 − v2‖Z̃T
sup
i=1,2

{‖vi‖ZT }α

where we have used the Sobolev embedding H1
y ⊂ L∞

y and the Hölder inequality in
the same spirit as in the proof of (5.7) and (5.8). We conclude by combining the
estimate above with the Strichartz estimate (5.3).

Third step: existence and uniqueness of solution in ZT ′ where T ′ is as in the pre-
vious step

We apply the contraction principle to the map Tϕ defined on the complete space
BZT ′

(0, R) endowed with the topology induced by ‖.‖Z̃T ′
. It is well-known that

this space is complete.

Fourth step: regularity of the solution

By combining the previous steps with the fixed point argument we get the existence
of a solution v ∈ ZT ′ . In order to get the regularity v ∈ C((−T ′, T ′);H1(Rn×M1))
it is sufficient to argue as in the first step (to estimate the nonlinearity) in conju-
gation with the Strichartz estimates (5.4) and (5.5).

5.2. Global Well Posedness. Next we prove that the local solution (whose ex-
istence has been proved above) cannot blow-up in finite time. The argument is
standard and follows from the conservation laws:

(5.10) ‖u(t)‖L2
x,y

≡ ‖ϕ‖L2
x,y

(5.11) En,M1,α(u(t)) +
1

2
‖u(t)‖2L2

x,y
≡ En,M1,α(ϕ) +

1

2
‖ϕ‖2L2

x,y
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where En,M1,α is defined in (1.2). By the Gagliardo Nirenberg inequality we deduce

En,M1,α(u(t))+
1

2
‖u(t)‖2L2

x,y
≥ 1

2
‖u(t)‖2H1(Rn×M1)−C‖u(t)‖2+α−µ

L2
x,y

‖u(t)‖µH1(Rn×M1)

for a suitable µ ∈ (0, 2). By combining the estimate above with (5.10) and (5.11)
we get

1

2
‖u(t)‖2H1(Rn×M1) − C‖ϕ‖2+α−µ

L2
x,y

‖u(t)‖µH1(Rn×M1) ≤ En,M1,α(ϕ) +
1

2
‖ϕ‖2L2

x,y

Since µ ∈ (0, 2) it implies that ‖u(t)‖H1(Rn×M1) cannot blow-up in finite time.

6. Appendix

For the sake of completeness we prove in this appendix Theorems 1.1 and 1.2.
Our argument is heavily inspired by the work [5] even if, in our opinion, the follow-
ing presentation of Theorem 1.1 is simpler compared with the original one.

Proof of Theorem 1.1 For any given ρ > 0 we shall denote by uj,ρ ∈ H1(Rn×Mk)
any constrained minimizing sequence, i.e.:

(6.1) ‖uj,ρ‖L2
x,y

= ρ and lim
j→∞

En,Mk,α(uj,ρ) = Kρ
n,Mk,α

Next we split the proof in many steps.

First step: Kρ
n,Mk,α

> −∞ and supj ‖uj,ρ‖H1
x,y

<∞, ∀ρ > 0

By the classical Gagliardo Nirenberg inequality (see (1.4)) we get the existence
of µ ∈ (0, 2) such that

En,Mk,α(uj,ρ) +
1

2
ρ2

≥ 1

2

∫

Mk
y

∫

Rn

(|∇x,yuj,ρ|2 + |uj,ρ|2)dxdvolMk
y − C(ρ)‖uj,ρ‖µH1(Rm×Mk)

≥ inf
t>0

(1/2t2 − C(ρ)tµ) > −∞
The conclusion follows by a standard argument.

Second step: the map (0,∞) ∋ ρ→ Kρ
n,Mk,α

is continuous

Fix ρ ∈ (0,∞) and let ρj → ρ. Then we have

K
ρj

n,Mk,ρ
≤ En,Mk,α

(ρj
ρ
uj,ρ

)

=

(ρj
ρ

)2(1

2
‖∇x,yuj,ρ‖2L2

x,y
− 1

2 + α

(ρj
ρ

)α

‖uj,ρ‖2+α

L2+α
x,y

)

=
(ρj
ρ

)2(1

2
‖∇x,yuj,ρ‖2L2

x,y
− 1

2 + α
‖uj,ρ‖2+α

L2+α
x,y

)

+
1

2 + α

(ρj
ρ

)2(

1−
(

ρj
ρ

)α
)

‖uj,ρ‖2+α

L2+α
x,y

=
(1

2
‖∇x,yuj,ρ‖2L2

x,y
− 1

2 + α
‖uj,ρ‖2+α

L2+α
x,y

)
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+
((ρj

ρ

)2

− 1
)(1

2
‖∇x,yuj,ρ‖2L2

x,y
− 1

2 + α
‖uj,ρ‖2+α

L2+α
x,y

)

+
1

2 + α

(ρj
ρ

)2(

1−
(ρj
ρ

)α)

‖uj,ρ‖2+α

L2+α
x,y

Since we are assuming that ρj → ρ and supn ‖uj,ρ‖H1(Rn×Mk) < ∞ (see the first
step) we get

lim sup
j→∞

K
ρj

n,Mk,α
≤ Kρ

n,Mk,α

To prove the opposite inequality let us fix uj ∈ H1(Rn ×Mk) such that

(6.2) ‖uj‖L2
x,y

= ρj and En,Mk,α(uj) < K
ρj

n,Mk,α
+

1

j

By looking at the proof of the first step we also deduce that uj can be chosen in
such a way that

(6.3) sup
j

‖uj‖H1(Rn×Mk) <∞

Then we can argue as above an we get

Kρ
n,Mk,α

≤ En,Mk,α

(

ρ

ρj
uj

)

=
(1

2
‖∇x,yuj‖2L2

x,y
− 1

2 + α
‖uj‖2+α

L2+α
x,y

)

+
(( ρ

ρj

)2

− 1
)(1

2
‖∇x,yuj‖2L2

x,y
− 1

2 + α
‖uj‖2+α

L2+α
x,y

)

+
1

2 + α

( ρ

ρj

)2(

1−
(

ρ

ρj

)α
)

‖uj‖2+α

L2+α
x,y

By using (6.2), (6.3) and the assumption ρj → ρ we get

Kρ
n,Mk,α

≤ lim inf
j→∞

K
ρj

n,Mk,α

Third step: for every ρ > 0 we have (up to subsequence) infj ‖uj,ρ‖L2+α
x,y

> 0

It is sufficient to prove that Kρ
n,Mk,α

< 0. In fact we have

(6.4) Kρ
n,Mk,α

≤ vol(Mk)En,α(un,ω,α) = vol(Mk)I
ρ/
√

vol(Mk)
n,α < 0

where En,α is the energy defined in (2.2) and ω is chosen in such a way that
‖un,ω,α‖L2

x
= ρ√

vol(Mk)
. Notice that in (6.4) we have used (2.4) and (2.5).

Fourth step: for any minimizing sequence uj,ρ there exists τj ∈ R
n s.t. (up to

subsequence) uj,ρ(x+ τj , y) has a weak limit ū 6= 0

We have the following localized Gagliardo Nirenberg inequality:

(6.5) ‖v‖
L

2+4/(n+k)
x,y

≤ C sup
x∈Rn

(

‖v‖L2

Qn
x×Mk

)2/(n+k+2)

‖v‖(n+k)/(n+k+2)

H1(Rn×Mk)

where

Qn
x = x+ [0, 1]n ∀x ∈ R

n
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The estimate above can be proved as follows (see [8] for a similar argument on
the flat space R

d+k). We fix xh ∈ R
n in such a way that

⋃

hQ
n
xh

= R
n and

measn(Q
n
xi
∩Qn

xj
) = 0 for i 6= j where measn denotes the Lebesgue measure in R

n.
By the classical Gagliardo Nirenberg inequality we get:

‖v‖2+4/(n+k)

L
2+4/(n+k)

Qn
xh

×Mk

≤ C‖v‖4/(n+k)

L2

Qn
xh

×Mk

‖v‖2H1(Qn
xh

×Mk)

The proof of (6.5) follows by taking the sum of the previous estimates on h ∈ N.
Due to the boundedness of uj,ρ in H1(Rm ×Mk) (see the first step) we deduce by
(6.5) that

(6.6) 0 < ǫ0 = inf
j
‖uj,ρ‖L2+4/(n+k)

x,y
≤ C sup

x∈Rn

‖uj,ρ‖2/(n+k+2)

L2

Qn
x×Mk

(the l.h.s. above follows by combining the Hölder inequality with the third step).
The proof can be concluded by the Rellich compactness theorem once we choose a
sequence τj ∈ R

n
x in such a way that

inf
j
‖uj,ρ‖L2

Qn
τj

×Mk
> 0

(the existence of such a sequence τj follows by (6.6)).

Fifth step: the map (0, ρ̄) ∋ ρ→ ρ−2Kρ
n,Mk,α

is strictly decreasing

Let us fix ρ1 < ρ2 and uj,ρ1 a minimizing sequence for Kρ1

n,Mk,α
. Then we have

Kρ2

n,Mk,α
≤ En,Mk,α

(ρ2
ρ1
uj,ρ1

)

=
(ρ2
ρ1

)2(1

2
‖∇x,yuj,ρ1‖2L2

x,y
− 1

2 + α

(ρ2
ρ1

)α

‖uj,ρ1‖2+α

L2+α
x,y

)

=
(ρ2
ρ1

)2(1

2
‖∇x,yuj,ρ1‖2L2

x,y
− 1

2 + α
‖uj,ρ1‖2+α

L2+α
x,y

)

+
1

2 + α

(ρ2
ρ1

)2(

1−
(ρ2
ρ1

)α)

‖uj,ρ1‖2+α

L2+α
x,y

≤
(ρ2
ρ1

)2(1

2
‖∇x,yuj,ρ1‖2L2

x,y
− 1

2 + α
‖uj,ρ1‖2+α

L2+α
x,y

)

+
1

2 + α

(ρ2
ρ1

)2(

1−
(ρ2
ρ1

)α)

inf
j
‖uj,ρ1‖2+α

L2+α
x,y

By recalling (see the third step) that infj ‖uj,ρ1‖2+α

L2+α
x,y

> 0 we get

Kρ2

n,Mk,α
<

(ρ2
ρ1

)2

Kρ1

n,Mk,α

Sixth step: let ū be as in the fourth step, then ‖ū‖L2
x,y

= ρ

Up to subsequence we get:

uj,ρ(x+ τj , y) → ū(x, y) 6= 0 a.e. (x, y) ∈ R
n
x ×Mk

y

and hence by the Brezis-Lieb lemma (see [1]) we get

(6.7) ‖uj,ρ(x+ τj , y)− ū(x, y)‖2+α

L2+α
x,y
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= ‖uj,ρ(x+ τj , y)‖2+α

L2+α
x,y

− ‖ū(x, y)‖2+α

L2+α
x,y

+ o(1)

Assume that ‖ū‖L2
x,y

= θ, our aim is to prove θ = ρ. Since ū 6= 0 necessarily θ > 0.

Notice that since L2
x,y is an Hilbert space we have

(6.8) ρ2 = ‖uj,ρ(x+ τj , y)‖2L2
x,y

= ‖uj,ρ(x+ τj , y)− ū(x, y)‖2L2
x,y

+ ‖ū(x, y)‖2L2
x,y

+ o(1)

and hence

(6.9) ‖uj,ρ(x+ τj , y)− ū(x, y)‖2L2
x,y

= ρ2 − θ2 + o(1)

By a similar argument

(6.10)

∫

Mk
y

∫

Rn
x

|∇x(uj,ρ(x+ τj , y))−∇xū(x, y)|2dxdy

+

∫

Mk
y

∫

Rn
x

|∇y(uj,ρ(x+ τj , y))−∇yū(x, y)|2dxdvolMk
y

+

∫

Mk
y

∫

Rn
x

(|∇xū(x, y)|2 + |∇yū(x, y)|2)dxdvolMk
y

=

∫

Mk
y

∫

Rn
x

(|∇x(uj,ρ(x+ τj , y)|2 + |∇yuj,ρ(x + τj , y)|2)dxdvolMk
y
+ o(1)

By combining (6.10) with (6.7) we get:

(6.11) Kρ
n,Mk,α

= lim
j→∞

En,Mk,α(uj,ρ(x+ τj , y)) =

lim
j→∞

En,Mk,α(uj,ρ(x+ τj , y)− ū(x, y)) + En,Mk,α(ū)

and we can continue the estimate as follows

... ≥ K

√
ρ2−θ2+o(1)

n,Mk,α
+Kθ

n,Mk,α

where we have used (6.9). Hence by using the second step we get

Kρ
n,Mk,α

≥ K

√
ρ2−θ2

n,Mk,α
+Kθ

n,Mk,α

Assume that θ < ρ, then by using the monotonicity proved in fifth step we get

Kρ
n,Mk,α

>
ρ2 − θ2

ρ2
Kρ

n,Mk,α
+
θ2

ρ2
Kρ

n,Mk,α
= Kρ

n,Mk,α

and we have an absurd.
�

Proof of Theorem 1.2 Assume by the absurd that the conclusion is false, then
there exists ρ and two sequences ϕj ∈ H1(Rn ×Mk) and tj ∈ R such that

(6.12) lim
j→∞

distH1(Rn×Mk)(ϕj ,Mρ
n,Mk,α

) = 0

and

(6.13) lim inf
j→∞

distH1(Rn×Mk)(uϕj(tj),Mρ
n,Mk,α

) > 0
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where uϕj is the solution to (1.1) with Cauchy data ϕj . By (6.12) we deduce the
following informations:

lim
j→∞

‖ϕj‖L2
x,y

= ρ and lim
j→∞

En,Mk,α(ϕj) = Kρ
n,Mk,α

and hence due to the conservation laws satisfied by solutions to (1.1) we get

lim
j→∞

‖uϕj(tj)‖L2
x,y

= ρ and lim
j→∞

En,Mk,α(uϕj(tj)) = Kρ
n,Mk,α

In turn by an elementary computation we get:

‖ũj‖L2
x,y

= ρ and lim
j→∞

En,Mk,α(ũj) = Kρ
n,Mk,α

(more precisely ũj is constrained minimizing sequence for Kρ
n,Mk,α

) where

ũj = ρ
uϕj(tj)

‖uϕj(tj)‖L2
x,y

Moreover by (6.13) it is easy to deduce

lim inf
j→∞

distH1(Rn×Mk)(ũj ,Mρ
n,Mk,α

) > 0

and it is in contradiction with the compactness of minimizing sequences forKρ
n,Mk,α

stated in Theorem 1.1.
�
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