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THE NONLINEAR SCHRODINGER EQUATION GROUND
STATES ON PRODUCT SPACES

SUSANNA TERRACINI, NIKOLAY TZVETKOV, AND NICOLA VISCIGLIA

ABSTRACT. We study the nature of the Nonlinear Schrédinger equation ground
states on the product spaces R™ x M¥ where M¥ is a compact Riemannian
manifold. We prove that for small L? masses the ground states coincide with
the corresponding R™ ground states. We also prove that above a critical mass
the ground states have nontrivial M* dependence. Finally, we address the
Cauchy problem issue which transform the variational analysis to dynamical
stability results.
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1. INTRODUCTION

Our goal here is to study the nature of the Nonlinear Schrodinger equation
ground states when the problem is posed on the product spaces R x M¥, where
MPF is a compact Riemannian manifold. We thus consider the following Cauchy
problems
(1.1) { i0pu — Npyu —ulu|* =0, (t,z,y) € R X RY x MF

U(Ov €, y) = QO(:E? y)

where
Doy = 300 4,
j=1

and A, is the Laplace-Beltrami operator on Mf Recall that the Laplace-Beltrami
operator is defined in local coordinates as follows:

1 . .
0, Jdet (915 (1))9" (1),
Tttty v Vo WD)

where g™ (y) = (i ;(y)) ™" and g¢; j(y) is the metric tensor.
We assume that 0 < a < 4/(n+k) which corresponds to L? subcritical nonlinearity.
In this paper, we shall study the following two questions:

e the existence and stability of solitary waves for (1.1);
e the global well posedness of the Cauchy problem associated to (1.1).

The equation (1.1) has two (at least formal) conservation laws, the energy
1 1 .

(12)  Epapealn) = /M;; / , (3ITatl® = g 2+ ooty

and the L? mass,

(13) ||’UJ||%2(RTL><M1¢) = / / |u|2d:1:dvolM5
M} JRR
1
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Here we denote by dwvol M the volume form on M*. Recall that in local coordi-

nates it can be written as \/det(g; ;j(y))dy. Moreover the i-th component (in local
coordinates) of the gradient (V,u(y)) is

gi’j (y)ayju
One has the classical Gagliardo-Nirenberg inequality
a 24+a—0(a
(1.4) |‘uHiJg+a(Rank < CHUHHl (R7 x M) [|u ||L2(]R" ><(Mk)

where 6(«) = (n+ k)a/2. Thus 6(a) < 2 under our assumption 0 < o < 4/(n+ k).
This implies that the conservation laws (1.2) and (1.3) imply a control on the H*
norm which excludes a L? self-focusing blow-up and thus one expects that (1.1) has
a well-defined global dynamics. This problem seems quite delicate for a general M*.
However if we replace M* with R¥ it is well-known (see [11], [4] and the references
therein) that (1.1) has a global strong solution for every L?(R"**) initial data.

Our argument to construct stable solutions to (1.1) follows the one proposed in
[5]. Hence we shall look at the following minimization problems:
(15) KZ,M",Q = uGHl(llggka) gn,Mk,a(u)

lull L2 @n iy =r

and &, prr o (u) is defined in (1.2). In the sequel we shall use the following notation:

(16) M2, ., ={ve H(R" x M")
|\U||L2(Ran’<) = p and 5n,M’<,a(U) = KZVMIC,Q}
The first result we state concerns the compactness of minimizing sequences to (1.5).

Theorem 1.1. Let M* be a compact manifold and 0 < o < 4/(n + k). Then we
have the following:

(1.7) KZ,Mk,a > —oo and MZ,Mk,a #0, Vp > 0;

(18) Vay € HYR" x MY) st ey = p. i Ennpealug) = Ky

3 a subsequence uj, and 7, € R? s.t. uj,(x + 1,y) converges in H*(R™ x M").

The proof of Theorem 1.1 is based on the concentration compactness principle
and it will be given in the appendix. Also the following stability theorem follows
from a standard argument, hence its classical proof will be recalled in the appendix.

Theorem 1.2. Let p > 0 be fized and n, M*,« as in Theorem 1.1. Assume more-
over that

(1.9) the Cauchy problem (1.1) is globally well posed for any data p € U
where U is a H'(R™ x M*)-neighborhood of M, . .

Then the set Mp is orbitally stable, i.e.:

Ve >0 30 =d(e) >0 s.t.
QDGU, inf llo = vll g1 e x pawy < 0(€)

Mk

Mfl M’C @
implies su ( inf U,(t) — v n ) <€
P teﬂl{ veMP | «p() ||H1(JR x M*k)

n,MF o
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where uy(t, x,y) is the unique global solution to (1.1).

Let us emphasize that the stability result stated in Theorem 1.2 has two major
defaults: the first one is that we don’t have an explicit description of the minimizers
MZ,Mk,a? the second one is that it is subordinated to (1.9), i.e. the global well
posedness of the Cauchy problem (1.1). The main contributions of this paper
concern a partial understanding of the aforementioned questions.

Notice that (see [4]) a special family of solutions to (1.1) is given by
ZWtun,w,a(x)

where w > 0 and Uy, o() is defined as the unique radial solution to:

u(t,z,y) =e”

(110) - Amun,w,a + Wln,w,a = un,w,a|un7w7a|a

Unwa € H'(RY), Unwa(r) >0, 2 €RY
Next, we set,
(1.11) Nowa = {%Unwalr+7)7 €R", 0 € R}
Notice that there is a natural embedding H'(R?) ¢ H'(R} x MF). In fact every
function in H!(R?) can be extended in a trivial way w.r.t. the y variable on R” x M;
and this extension will belong to H!(R" x MF¥). In particular since now on the
set My w.o defined in (1.11), will be considered without any further comment in a

twofold way: as a subset of H'(R}) and H*(R} x M}’). By a rescaling argument
one can prove that the function

(0,00) 3w = [Junw.alizgy) € (0,00)
is strictly increasing for any 0 < a < % and
Jim [un,w,all L2y = 00 and i {lune ol L2ey) = 0

As a consequence for any fixed 0 < a < % we have:

(1.12) Vp >0 3 w(p) > 08t [[unwip)allzzen =p
In next theorem the set N, , o is the one defined in (1.11) and ./\/lz Ak o 18 defined
in (1.6).

Theorem 1.3. Let n, M* o as in Theorem 1.2. There exists p* € (0,00) such
that:

P _ *
(1.13) MG st 0 = No oo fooiiim a0 70 <P
and

p _ *
(1.14) Mka’a ﬁNn,w(p/\/m),a =0, Vp>p
where w(p/+/vol(MF)) is uniquely defined in (1.12). In particular for p > p* the
elements of MZ Mk o depend in a nontrivial way on the MF variable.

By the approach of Weinstein [13] one may expect that N, ., o is stable under
(1.1) for @ < 4/n and w small enough, see [9] for a recent related work. It should
however be pointed out that in such a stability result one would not get the vari-
ational description of NV, ., o as is the case in Theorem 1.3 (o < 4/(n + k)). We
underline that by combining Theorem 1.2 and Theorem 1.3 we get a stable set for
large values of the mass p, and in general it is independent of the solitary solitary
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waves associated to NLS in R™.

Next we shall focus on the question of the global well-posedness of the Cauchy
problem associated to (1.1) in the particular case n > 1, k = 1. For every n > 1 we
fix the numbers

42+ a)

p:=p(n,a) = and ¢ :=q(n,a) =2+ «

and for every T > 0 we define the localized norms:

(1.15) lult, 2, )l xr = llult, 2, Y) | Lo((—1,7);Lae; 1 (M2))
and
(1.16) lu, 2, y)llve = VaoullLe(—7,1);9®2;L2(02))

Theorem 1.4. Let n > 1 be fized and oo < 4/(n + 1), then for every initial data
o € HY(R™ x M?'), the Cauchy problem (1.1) has a unique global solution u(t,,y)
satisfying :

u(t,z,y) € C((=T,T); H'R™ x M*)) N X7 N Y7, VT >0

Remark 1.1. The main difficulty in the analysis of the Cauchy problem (1.1) (com-
pared with the Cauchy problem in the euclidean space) is related with the fact
that the propagator e 2=y on R™ x M; does not satisfies the Strichartz estimates
—itA

which are available for the propagator e =n+k on the euclidean space R,

Let us now describe some other known cases when (1.1) is well-posed in H!(R" x
MP*) under the assumption o < 4/(n + k). Using the analysis of [2, 3] one may
prove such a well-posedness result in the case R x M2, ie. n = 1 and k = 2.
Moreover, using the analysis of the recent papers [6] and [7] one may also prove
such a well-posedness result in the cases R? x T? and R x T? respectively.

Notation. Next we fix some notations. We denote by L2 and H_ respectively the
space LP(R7) and H*(R7). We also use the notation L? = LP(RZ x M}) and
LPLY = LP(RY; LY(M))). If v(t) is a time dependent function defined on Ry and
valued in a Banach space X, then we define

[0l = [ o

For every p € [1,00] we denote by p’ € [1,00] its conjugate Holder exponent. We
denote by e*A=w the free propagator associated to the Schrédinger equation on
R? x MF.

2. SOME USEFUL RESULTS ON THE EUCLIDEAN SPACE R? WITH n > 1

In this section we recall some well known facts (see [4]) related to the following
minimization problem on R7:
(2.1) Ir .= inf &, q.(u)
’ wEH]
llull L2 =p

where for o < 4/n

1 1
2.2 Enalu) == sul’dr — —— >teq
(22) w0 =g [ Vel g [ o

x
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By an elementary rescaling argument we have

2 7,0 = pHie o e

It is well-known that

(2.4) —oo<If,<0,¥p>0

and

(2.5) M8 = Nty

where NV, ., o is defined in (1.11),

(2.6) M8 = {u e HYull s = p and Eqalu) = 12}

and w(p) is defined uniquely (see (1.12)) by the relation

Hun,w(p),a”Lﬁ =p
We also recall that the functions w4 o (defined as the unique radially symmetric

and positive solution to (1.10)) satisfy the following Pohozaev type identity (for a
proof of (2.7) see the proof of (3.21) in next section):

on
2.7 unnwa2dx:7/ Un.w.o| Tz
(27) [ 1Vetmialte = 5y | hnsa

On the other hand if we multiply (1.10) by 4.« and we integrate by parts then
we get

[ Vattnwalde + olltnalis = [ fnwal*ods
RZ RZ

that in conjunction with (2.7) gives

2 4 —
(2.8) Wl a2 = u/ IV st .| 2
an ]R;L
4 8—2 1 1
= 70&4— OATL(_/ |vmuan|2d5E— P— |unwa|2+ad$)
an — 4 2 Jrp ” 24aJp T
- 4o + 8 — 2an Hun,w,aHL%
- an —4 e

(at the last step we have used the fact that due to (2.5) we have that u, 4 o is a
minimizer for &, , on its associated constrained).
Finally notice that by (2.7) we deduce

Un,w,a — 4
9 B = e = B [ Vel
RZ

2an

3. AN AUXILIARY PROBLEM
In this section we study the minimizers of the following minimization problems
(31) Jn,M’C,a,)\ = inf gn,Mk,a,)\(u)
uw€H (R™ x M*)

lullzz =1

where

A 1 1 .
En vk an(u) = /Mg /g (§|Vyu|2 + §|Vzu|2 — 2_’_—a|u|2Jr )d:z:dvolMS
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We also introduce the following sets:
Mn,Mk,a,)\ = {’LU (S Hl(Rn X Mk)'Hw”L% v = 1 and gn,Mk,a,)\(w) = J,onk#l’)\}

Theorem 3.1. Let n, M* and 0 < a < %Jrk be given. There exists A* € (0,00)
such that:

(32) Mn,M’“,a,)\ = Nn,w,aa VA > A"
and
(33) Mn,M",a,)\ ﬂ./\/n@,a = (Z), YA < A*

where @ is defined by the condition
vol(M*)|[ungalZ: =1

We fix a sequence \; — oo and a corresponding sequence of functions uy, €
My ak a,n, - In the sequel we shall assume that

(3.4) uy, (z,y) >0, V(z,y) € R} x Myf

Indeed it is well-known that if uy, is a minimizer, then also |uy,| is a minimizer.
In particular there exists at least one minimizer which satisfies (3.4).

Notice that the functions uy; depend in principle on the full set of variables (z,y).
Our aim is to prove that for j large and up to subsequence, the functions uy; will
not depend explicitly on the variable y.

First we prove some a priori bounds satisfied by uy, (z, y). Recall that the quantities
I? ., are defined in (2.1).

n,a

Lemma 3.1. Assume the same assumptions as in Theorem 3.1, then we have:

(3.5) lim J, aean, = vol(MF) Y M)
J—00

and

(3.6) lim ) / / |V yux, |*dzdvol yp = 0
Jj—o0 Mé“ n h Y

Proof. First notice that

(3.7) Tars s, < vol(MF)L/Y 0T

and &, o(w) = I,ll/o} vOl(Mk).

1 — %
In fact let w(x) € H, be such that ||w[|z: = Jool(3T)

Then we get easily:

Jka,Oh)\j S gﬂ,Mk,a)\j (w(x))
1 1 Vo
=vol(M*) (5 [ [VawfPds — —— [ fw*ede) = vol(M*) 1Y "
2 Jrp 2+a fpr .

and this concluded the proof of (3.7).
Next we claim that

(3.8) lim / / |V yun, [*dzdvol yp. = 0
M}k JRD Y

j—o0
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In order to prove this fact assume by the absurd that it is false then there exists a
subsequence of \; (that we still denote by A;) such that

lim A; = oo and / / |Vyun, [Pdzdvol yp. > €9 > 0
j—oo M!’j n v
and in particular

(3.9) lim (\; — 1)/ / |Vyun, [2dzdvol yp. = oo
MEF JRD Y

j—o0

On the other hand by the classical Gagliardo Nirenberg inequality (see (1.4)) we
deduce the existence of 0 < p < 2 such that:

1 1
5 /M5 ‘/R;QVUUP + |va|2 + |U|2)d;vdvolM5 — o /M5 /; |U|2+ad$dUOlM§

1
>3 [ [ ATl 192007+ ) dadvoly
2 M{f ;l Y

—C

o
/ / (IVyv* + | Vo] + |[v]*)dzdvol prx
M; R7 Y
> 225(1/%2 — Ot") = C(p) > —
Vo€ H'(R" x M*) s.t. [jvf|z =1
By the previous inequality we get

1 1
Enntran ) =50 =1) [ [ 190 2 5+

Vo e H'(R" x M*) st. ||ofrz, =1

In particular if we choose v = uy; then we get

Jn,Mk,a,)\j = gn,Mk,a)\j (U’)\j)
1 1
> E(Aj - 1)/ / |Vyu,\j|2d:1cdvolM5 ~3 +C(p)
M JRY

By (3.9) this implies limy, o0 Jy, a o1, = 00 and this is in contradiction with (3.7).
Hence (3.8) is proved.

Next we introduce the functions

Wi (y) = ||u>\j (LL', y)”%i
Notice that
(3.10) leo; ()l = 1
and moreover

| 19w wldvolg <€ [ Jus, @)l 9yus, (o)l dodvolagy
Mp MF JRZ

< Cllun,llzz ¥y, 2z

Hence due to (3.8) we get

(3.11) lim || Vyw|l: =0
Jj—o0 v
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By combining (3.10) and (3.11) with the Rellich compactness theorem and with
the Sobolev embedding W11 (M1) c L>°(M?) and Wh(M?) C L?(M?) we deduce
respectively in the case k =1 and k = 2 that (up to a subsequence)

(3.12) lim [Jw;(y) — 1/vol(M*")||zr =0, V1 <7 < o0
‘]*}OO

and

(3.13) lim |w;(y) — 1/vol(M?)||- =0, V1 <7 <2
j—oo &4

For k > 2 we use the Sobolev embedding H'(M*) C L*/(*=2)(M*) and we get

sup [u, [l o p2v/o-2 < Csup [lun, [l L2 gy < o0
J ® J

(where at the last step we have used the fact sup; ([lux, |22 LTIV, e y) < 00).

By the Minkowski inequality the bound above implies sup; [[uy; ||, 2¢/k-2),, Which
Y x

is equivalent to the condition

(3.14) sup |Jw; (y )”Lk/(k 2) < 0o for k> 2
J

By combining (3.10) and (3.11) with the Rellich compactness theorem we deduce
that up to a subsequence

lw;(y) — 1/vol(Mk)||L; =0 for k> 2
and hence by interpolation with (3.14) we get
(3.15) [w;(y) = 1/vol(M*)|| Ly =0 for k > 2,1 <r < k/(k—2)
By the definition of I/ , (see (2.1)) and (2.3) we get
1 2 1 24«
(3.16) 5/ | (Van ()P 5 / oy ) e
”“)\j('vy)” 2 8+4a—2an)/(4—an a—an —an
> Do’ = Il Gyl = I () e e/ e
vy e M*, VjeN

Next notice that by definition
(317) Jn,Mk,a,)\j = gn,Mk,a)\j (u>\j)

1 1
=3 / / (NI Vyun, |? + |Vaouy, [?)dedy — / / |u|>T*dxdvol pgx
2 Mb ;1 J J 2 + o M; ;L Y

and we can continue

1 1
(3.18) ..> /Mk (2/ |Vaun, (z,y)Pde — 750 ) [ux, (x7y)|2+adx)dvolM§
Y T

> I7];,o¢ / wj (y)(4+2a—om)/(4—an)dvole
M}k !

= I}Lavol(Mk)vol(Mk)_(4+2°‘_0‘")/(4_0‘") +0(1)
where o(1) — 0 as j — oo and at the last step we have combined (3.12), (3.13) and

(3.15) respectively for k = 1, k = 2 and k > 2 and we used our assumption on a.
By combining this fact with (2.3) we have

(3.19) hm inf J, ark 0, 2 vol (M*) I, Lyt
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Hence (3.5) follows by combining (3.7) with (3.19).

Next we prove (3.6). For that purpose, it suffices to keep the term A;|Vyuy,|?
in the previous analysis. Namely, by combining (3.5) with (3.17) and (3.18) we get

VO, k . 1 .
20y volMIEY ™ )2 5o [ [ 19, Pdadvolyg + 10

where
lim g(j) =0
J—0o0
and
liminf h(j) > vol(M*) I3 ")
J—00

Hence (3.6) follows by (3.20).

Lemma 3.2. We have the following identity:

an
(3.21) /Mk/ |Vgcu,\j|2d:1cdvoll\/[éc = M/Mk/ |u>\j|2+ad$dUOlM5

Moreover there exist J € N such that
Vi > J Jw(Aj) >0 s.t.

(3.22) = N Ayuy, — Aguy; +w(Nj)uy, = un;|ux,|*
and the following limit exists
(3.23) lim w(A;) =w € (0,00)

Jj—o0

Proof. Since uy; is a constrained minimizer for &, px o, on the ball of size 1
in L2(R™ x M*), then we get
d n
& [gn,Mk,a,)\j (6 2 U, (EI, y):| =1 =0

which is equivalent to

drl
Tl /Mk / Vs, [Pdudvolyy,

1, 2 1 2 2+
+§€ /M)C /n |Vauy,| dxdvolM5 - 2+a€0¢"/ HUAJHLEE%‘ = 0
* JRz

By computing explicitly the derivative (in €) we deduce (3.21).

Next notice that by using the Lagrange multiplier technique we get (3.22) for a
suitable w(A;) € R. On the other hand by (3.22) we get

[ [ Oul¥ 2 4 W, [P)daduotgg + w3, I
M;/C R’; Y T,y

— 2+
= / / [u, | O‘da:dvol]\/_[;C
M} JRR
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that by (3.21) gives

—an+4+2
w(Aj)ZW/ /|vzuAj|2dxdvon§—Aj/ /|Vyu)\j|2d:1:dvolM§
Mk JRZ M}y JRY

and hence by (3.6) we get

— 442
(3.24)  w()) = _ontitee IV aun, [Pdadvol e + o(1)
n Mk Vi J Y

(%

where lim;_, o(1) = 0.
On the other hand notice that by (3.21) we get

Jn,M’“,a,)\j = gn,Mk,a,Aj (U‘)\j)

an —4 1
= Yo /]\4{/c /Z |vm’U,)\j|2dJ]d’UOlM5 + 5 /]\4{/c /;z )\J|Vyu)\J|2dxdvolM§

and by (3.6)

2an
(325) /Mk/ |un>\j|2dxdv0lM5 = mJn7Mk7a,>\j + 0(1)
y T

By (3.5) it implies
2 vo
(3.26) / / IV g, |2 dadvol . = “”4UOZ(M’“)I}L,@V MY L o(1)
ME JR? vooa

that in conjunction with (3.24) and (2.4) implies w(A;) > 0 for j large enough.
Moreover (3.23) follows by (3.24) and (3.26).
O
Next recall that the sets M}, , are the ones defined in (2.6).

Lemma 3.3. Let @ be as in (3.23) and let v(z) € ./\/l,lz{oj vl M) be such that
v(z) > 0. Then
—Azv + v = v|v|®
Proof. It is well-known that
—ALv + wiv = vfu|*

for a suitable w; > 0. More precisely we can assume that up to translation v =
Un,wy,a- OUr aim is to prove that w; = @. Notice that by (2.8)

1 da+8—2an lvll,z  4a+8— 20471]1/~/vol(Mk)
w = n,o = — n,o
Yool (MF) an —4 ’ an —4 ’

On the other hand by (3.24) and (3.26) we get

-2 4 vo
w(\) = cant ot 8: Lol (MF) LY M 4 o)
an —

(3.27)

and hence passing to the limit in j we get
-2 8+4 Vo
(3.28) ik TS VIO AL

w:
an —4

By combining (3.27) and (3.28) we get & = w;.



THE NLS GROUND STATES ON PRODUCT SPACES 11

Lemma 3.4. There exist a subsequence of \; (that we shall denote still by \;) and
a sequence 7; € R7 such that

hm ||U)\j (.’I; + Tj,y) - u@”Hl(R"XMk) =0
Jj—o0
where ug € Nn@a, ug > 0 and & is defined in (3.23).

Proof. By combining (3.6) and (3.26), and since [luy,||zz A = 1, we deduce that
uy, is bounded in H'(R™ x M*). Moreover by combining (3.5) with the fact that
\/vo k
I,i,/a M o (see (2.4)) then we get
1nf ||U)\]. ||L2+a >0
J Y
By using the localized version of the Gagliardo Nirenberg inequality (6.5) (in the
same spirit as in the appendix) we get the existence (up to subsequence) of 7; € R?
such that
uy, (z +75,y) = w#0in HY(R" x M*)
Moreover due to (3.4) we can assume that
w(z,y) > 0ae. (z,y) € RY x M;

and by (3.6) we get V,w = 0. In particular w is y-independent.
By combining (3.6) and (3.23) we pass to the limit in (3.22) in the distribution
sense and we get

(3.29) —Ayw 4 ow = ww|® in R}, w(x) >0, w#0
We claim that

1
3.30 w = —
(3.30) sz =~

_ 1 ~

If not then we can assume |wl|p: = 8 < T and since w solves (3.29) by
(2.5) we get
(3.31) we Mj,

On the other hand by Lemma 3.3 the equation (3.29) is satisfied by any v €

1

MY Hence again by (2.5) and by the injectivity of the map p — w(p)
: _ 1

(see (1.12)) we deduce that necessarily g = Tl

In particular by (3.30) we deduce

lim [Jux; (z 4 75, 9) —wllzz , =0
j—o0 =y

Next notice that by (3.6) and since we have already proved that V,w = 0 we deduce
that

lim [|[Vyux; (z + 75, 9)| 22
j—00

@,y

= 0=V,

Hence in order to conclude that uy, (z + 75, y) converges strongly to w in H'(R™ x
MP*) it is sufficient to prove that

lim [|Vouy, (@ 475, 9)[22, = /0ol (M*)[Vaw] L2 = [[Vaw] 2

@,y

J

This last fact follows by combining (2.9) (where we use the fact that w € M, 5.

by (3.29) and [Jwl|zz = \/ﬁ by (3.30)) and (3.26).
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O
Lemma 3.5. There exists jo > 0 such that
VyuA]. =0, Vj > jo
Proof. By Lemma 3.4 we can assume that
(3.32) ux, = ug in H'(R™ x M*)
We introduce w; = \/—Ayuy,;. Notice that due to (3.22) the functions w; satisfy
(3.33) — )\jAywj — Amwj + w()\j)wj = 4/ —Ay(uAj |u,\j |a)
that after multiplication by w; implies
(3.34) [ L PtV + 192 + O s
M} JR

- —Ay(uAj|u>\j|°‘)wj}d:z:dvolMéc =0

In turn it gives

(3.35) O:/Mk/ (g = 1)V 2 = (@ + 1) /=85 (un, | dadvol gy +

L 09019 Pl Pt =, (Gt sl ) dadvol

/ / ) — @) |w;|*dedy =
Mk n

I +11; + 1115
Next we fix an orthonormal basis of eigenfunctions for —A,, i.e. —Aypr = prpr
and ¢¢ = const. We can write the following development

(3.36) wie,y) = D> ajr(@)er(y)
keN\{0}

(where the eigenfunction ¢y does not enter in the development). By using the
representation in (3.36) we get

(3.37) I; =) (N —1) |uk|2/ |aj(x)|?de — (a+1) Z/ |%|a; k()| ?dx

k40 k£0
and by (3.23) we get
(3.38) I11; = o(1)||w;|7: |
By combining (3.37) with (3.38) we get
(3.39) I +1II; >0

for j large enough. In order to estimate I1; notice that by the Cauchy-Schwartz
inequality we get

Ba0) | /Mk / n VB, (@ + Dlual = [u, ) wydadvolygg

< W=y (un, (o + 1)fug|* — |uAj|a))H 2ty 2t |05 s
RIS LT

ty
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< O|Vy(un, (o + Dfug|® — |ux, %) oy lwill 2ceen)
Ly LIyF

where at the last step we have used the following estimate

(3.41) Vp € (1,00) Je(p), C(p) > 0 s.t.

PIIV=Ayflly < IVyfllzy < COIIV By flizs
Indeed, using [10, Theorem 3.3.1], we have that \/—A, is a first order classical

pseudo differential operator on M with a principle symbol (g% (y)&; §j)1/ 2. Observe
that

olzgﬂ @§J<Z|Zgﬂ )& < CaleP <G5> g™ ()& &

i,j
Moreover one can assume that in (3.41) f has no zero frequency. Then one can de-

duce (3.41) by working in local coordinates, introducing a classical angular partition
of unity according to the index I € [1,--- , k] such that

Zg” €Z€J§C|ZQU §|2

and, most importantly, using the LP boundedness of zero order pseudo differential
operators on R¥ (for the proof of this fact we refer to [10, Theorem 3.1.6]).
Next, by the chain rule we get

Y, (1w, (@ + Dfus]* = fus, |)

= (a+1)Vyuy, (|ua,|°‘ — |u,\j|0‘)
and by the Holder inequality we can continue the estimate (3.40) as follows

- < 0|19y, g sl = fua, 1]

2(n+k) ||’w]|| 2(n+k)
L;L+k+2 Lﬁ;kiz

where
1 1 n+k+2

PR oS
and again by the Holder inequality in the x-variable we can continue
- S OIVyunline , Nual® = lux, [l

z,y

ij”%%

Notice that if we fix

2(n+k) n+k
g=————>andr=
n+k—2 2

then by combining the Sobolev embedding

2(n+k)

(3.42) Hg, C Liy

with (3.32) and (3.41), we can continue the estimate

DIV =Bgus, llzz, sl = o0 uyl

where lim; o, 0(1) = 0. By combining this information in conjunction with the
structure of 11; we get

(3.43) IT; > |lw;][Fs (1 = o0(1)) = 0 for j > jo
By combining (3.35), (3.39) and (3.43) we deduce w; = 0 for j large enough.
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Proof of Theorem 3.1 By using the diamagnetic inequality we deduce that
(up to a remodulation factor €*) we can assume that v € M, aik o, 18 Teal valued.
Moreover if v € M, ppx o 5 then also [v| € M, yk o \. By a standard application of
the strong maximum principle we finally deduce that it is not restrictive to assume
that v € M, pr ox and v(z,y) > 0, V(z,y) € R} x M;

First step: A > 0 s.t. Vv € M, ark ans v(2,y) > 0 we have Vyv =0, YA > A

Assume that the conclusion is false then there exists A\; — oo such that uy, (z,y) €
M, kx> s, (2,y) > 0 and Vyuy, # 0. This is absurd due to Lemma 3.5.

Second step: conclusion

We define
)\* = lI;f{)\ > O|Vy’U = O VU (S Mn,Mk,a,)\}

By the first step \* < oco. Moreover it is easy to deduce that if A > A* then the
minimizers of the problem J,, psx . » are precisely the same minimizers of the prob-

Il/\/'uol(Mk)

, which in turn are characterized in section 2 (hence we get (3.2)).

Next we prove that \* > 0. It is sufficient to show that
(3.44) lim J,, age 0 < vol(M¥)L) A

(see (2.1) and (3.1) for a definition of the quantities involved in the inequality
above). Let us fix p(y) € C°°(M¥) such that

/ . |p|2dvolM5 =1
M

and p?(yo) # vol(Mk for some yo € M* (i.e. p(y) is not identically constant). Then
we introduce the functlons

Y(x,y) = p(y)4/(47am)Q(p(y)@a)/@fom)x)
UW. Then we

where Q(z) is the unique radially symmetric minimizer for I,'o
get

8+4a—2an

(@, 9)lIZ2 = (p(y)? and Ena(¥(z,y)) = I o (p(y)) ==

and as a consequence we deduce

/ / SVt )P — 5o )P ) dzdvol gy
Mk n
=1, / (p(y)) ~ 3= dvol
b Mk Yy

<iha( [ pw)Pdvolusy ) T ol (M) < 1L ol(3¥)
M
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where at the last inequality we have used the fact that I} , < 0 in conjunction with
the Holder inequality (moreover we get the inequality < since by hypothesis p(y)
is not identically constant). As a byproduct we get

1im &, are 0 ((@,9) < I o0ol(MF) ™75 = vol(MF) 1/
t :
(where we have used (2.3)) which in turn implies (3.44).

Let us finally prove (3.3). It is sufficient to show that if v € M, prk o 5 for
A < A* then Vv # 0. Assume by the absurd that it is false, then we get A; < A*
and v1 € M, pr o 5, such that Vv, = 0. Arguing as above it implies that

(3.45) T attan, = vol(MFYLYY M)

n,o

On the other hand by definition of \* there exists Ao € (A1, \*] and va € My, sk o2,
such that Vyvs # 0. As a consequence we deduce that

(Mk)Lll/a\/ vol(M*)

where at the last step we have used (3.7). Hence we get a contradiction with (3.45).
O

Jn,M",a,)\l < gn,Mk,a,)\z (v2> = Jn,Mk,a,)\g < vol

4. PROOF OF THEOREM 1.3

In the sequel the homogeneity of the euclidean space R™ will play a key role.
Due to this property we shall be able to reduce the proof of Theorem 1.3 to the
problem studied in the previous section.

In view of section 2 it is sufficient to prove that there exists p* > 0 such that

(4.1) veMP .  implies V, v =0 for p < p*
and
(4.2) veM? .  implies Vv # 0 for p > p*

By an elementary computation we have that the map
S1d>u— p4/(4—an)u(p2a/(4—an)x7y) c Sp
where

Sn={ve H'R" x M")[|lv]lzz , = A}

z,y

is a bijection. Moreover we have

B nty(p =0y 20/ (Amam) gy p(8=20m)/(4=am) /Mk/ 9yl dedvolyg
y T
+p(8—2an+4a)/(4—an)/ / |Vmu|2dxdvole
Mk JR7 Y

—2an+4a —an 1 @
_p(8=2an+1a)/(4 )2+—Oz/M§ /g Ju|*T dzdvol

2 M?Lc ;7, v

1 1 4
32 /M; / Vel = 5o Fdrdvolyyy )
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In particular (4.1) and (4.2) are satisfied provided that there exists p* > 0 such
that

(4.3) v € M, e
and

(4.4) v € M, ppe
that in turn follow by Theorem 3.1.

—4a/(1-an) implies Vv = 0 for p < p*

;P

4a/(4—any implies Vv # 0 for p > p*

yOHP T

5. PROOF OF THEOREM 1.4

The main tool we use is the following Strichartz type estimates (whose proof
follows by [12]).
Proposition 5.1. For every manifold Myf, n>1 and p,q € [2,00] such that:

2 n n

ST =5 ) # (2

p
there exists C' > 0 such that
t
—itDAg y ora —i(t—s)Az y
(1) e~ 2 flaeam + | [ e PO
< C(Ifllzzmy +1Fl 1y )
t
5.2 V. —itAg y vra va/ —i(t—s)Am,yF d ‘
(5.2) Ve fllerrars + ; e (s)ds Lrace
< O(IVafllzzey + IVaFll Ly o 1)
and
t
(5.3) H e_i(t_s)Amva(s)ds‘ <C|F|. v
0 LPLL2 — LY Ly L
Moreover
t
—itDAg y —i(t—s)Az y
(5.4) e~ oz + | [ e LT -
< (I hszmy + 1PNy e 1)
and
t
55 Ve e £l o va/ —i(t=5)Aey () d ‘
(5.5) Ve f”Lt rzr2 + ; e (s)ds L2

< O(IVafllzzny + IVaFll Ly o 1)

Next we shall use the norms ||.|| x,. and |||y, introduced in (1.15) and (1.16) for
time dependent functions. We also introduce the space Zr whose norm is defined
by

[0llzr = [[0llxr + 0llve
and the nonlinear operator associated to the Cauchy problem (1.1):

t
To(u) = e~ theuy —l—/o e_l(t_S)Aw*yu(s)|u(s)|o‘ds
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We split the proof of Theorem 1.4 in several steps.

5.1. Local Well Posedness. This subsection is devoted to the proof of the fol-

lowing fact:
Vo € H'(R" x M) 3T = T(||ol i1 (rr xarr)) > 0

and (t,z) € Zr NC((~=T,T); H*(R™ x M)
s.t. Too(t) = wv(t) Yte (-T,T)

First step:
Vi € HY(R™ x M") 3T = T(| ol s zn xarry) > 0, R = R(l @l s an xary) > 0 st
T+(Bz.(0,R)) C Bz (0,R)VT <T

First we estimate the nonlinear term:

el oy < [[l0” s e e,y

'y
(where (p, g) is the couple in (1.15) and (1.16)) and after application of the Holder
inequality in (¢, z) we get

.. < |\UHL§L3H;||U||%;¢L;§L;O

S C”u”LfL%H; ||u||%;¥ﬁLg§H§

where we have used the embedding H; C Ly® and we have chosen

1 1 1

- +-=1—--

p p p

1 1 1

—+-=1--

q q q
By direct computation we have:
(5.6) ag=qand ap < p

By combining the nonlinear estimate above with (5.1), (5.6) and the Holder in-
equality (in the time variable) we get:

(5.7) 1 Toullxr < CUl@lrz iy + T@lull 35

with a(d) > 0.

Arguing as above get

|V (ulul®) < C”vmuHLngLgHuaHLfLZL;jO

HLf’Lg’Lg
< CllullvellullZor g,

where p and ¢ are as above and we have used the embedding H; CLy. Asa

consequence of this estimate and (5.2) we get:

(5.8) IToullye < CUVaplzz, +TPullyz ull%,)

with a(d) > 0.

By combining (5.7) with (5.8) we get

| Toull ze < CUlellm @nxary + TP ull 2o |ul 2,.)



18 SUSANNA TERRACINI, NIKOLAY TZVETKOV, AND NICOLA VISCIGLIA
The proof follows by a standard continuity argument.

Next we introduce the norm
lw(t, z,y)l 2, = llw(t, z, )| Le((-7,7);2812)

and we shall prove the following.

Second step: let T, R > 0 as in the previous step then
ETI = T/(HQDHHI(R"XMl)) <T s.t. 7;

is a contraction on Bz,, (0, R) endowed with the norm |||z ,

It is sufficient to prove:

(5.9) I Tovr = Tovallz,, < CT*@ vy — 2]l 5, .S;lllp2{||villzT}a

with a(d) > 0. Notice that we have

||1)1 |1}1 |a - 1}2|U2|a||Lp/((_T)T);Lg/L§)

(e
< Offlon = wallzg Uonlleg: + ealag)™|

< CTD vy — w2l 5, sup {{|vifl z, }*
=1,

where we have used the Sobolev embedding H; C L;° and the Holder inequality in
the same spirit as in the proof of (5.7) and (5.8). We conclude by combining the
estimate above with the Strichartz estimate (5.3).

Third step: existence and uniqueness of solution in Zr: where T' is as in the pre-
vious step

We apply the contraction principle to the map 7, defined on the complete space
Bz,,(0,R) endowed with the topology induced by .||z . It is well-known that
this space is complete.

Fourth step: regularity of the solution

By combining the previous steps with the fixed point argument we get the existence
of a solution v € Zz+. In order to get the regularity v € C((=1",T"); H'(R™ x M1))
it is sufficient to argue as in the first step (to estimate the nonlinearity) in conju-
gation with the Strichartz estimates (5.4) and (5.5).

5.2. Global Well Posedness. Next we prove that the local solution (whose ex-
istence has been proved above) cannot blow-up in finite time. The argument is
standard and follows from the conservation laws:

(5.10) a2, =llells

1 1
(5.11) En,mra(u(t)) + 5””(0”%3@ = & m,alp) + §||<P||%g,y
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where &, a1 o is defined in (1.2). By the Gagliardo Nirenberg inequality we deduce

1 1 o
En, v a(u(t)) + 5”“(0”%3@ z 5”“@”?{1(11@”1\/11) —CHU(??)H?%L )l g

for a suitable p € (0,2). By combining the estimate above with (5.10) and (5.11)
we get

1 oo 1
St s g eay = CURIZE Ol e rrr) < Ennrrale) + 501

Since p € (0,2) it implies that ||u(t)|| g1 (mnx a1y cannot blow-up in finite time.
6. APPENDIX

For the sake of completeness we prove in this appendix Theorems 1.1 and 1.2.
Our argument is heavily inspired by the work [5] even if, in our opinion, the follow-
ing presentation of Theorem 1.1 is simpler compared with the original one.

Proof of Theorem 1.1 For any given p > 0 we shall denote by u; , € H'(R™x MPF)
any constrained minimizing sequence, i.e.:

(61) ||uj7PHLi,y =P and Jli{go gnkaxa(uij) = K’rPL,Mk,a
Next we split the proof in many steps.

First step: K > —00 and sup; || pllm1 < 00, Vp >0

,MFE o

By the classical Gagliardo Nirenberg inequality (see (1.4)) we get the existence
of 1 € (0,2) such that
1
8n,Mk,a(uj,p) + §p2

1
> B /Mk/ (Vi p? + |uj7p|2)dacdvol]\/f7jC - C(p)Huj)pH‘I;l(RmXﬂ/[k)

> i 2 _ M _
> %Eg(l/% C(p)tH) > —

The conclusion follows by a standard argument.
Second step: the map (0,00) 3 p — K, is continuous

Fix p € (0,00) and let p; — p. Then we have
Ky, < 5n,Mk,a(%uj,p) =
(&) (319 mmsialis, = 57 () sl )
= () (3IVanwsnlis, — 5o lusolts.)
= (2) (- (2) sl

1 1 )
= (G Vessolis, - 5oz Il 255
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pi\2 1 1 N
+((;J) - 1) (Envw,yuj,pn%g’y T 2% a 45, 2;%;)

L rpj\? Pi\* 2t
+2+a(?) (1_(?) )”“ML&J"

Since we are assuming that p; — p and sup,, [|w; pl| g1 (rrxarx) < 00 (see the first
step) we get
hmsupr] . < KP

e n,MFk o
Jj—o0
To prove the opposite inequality let us fix u; € H(R™ x M k) such that

1
(6.2) lujllzz , = pj and €, are o (uy) < KZJMk —I—;

By looking at the proof of the first step we also deduce that u; can be chosen in
such a way that

(6.3) sup | || 1 grn s army < 00
J

Then we can argue as above an we get

p
K} vpeo < Enarra (;Uj)

J

1 1
= (§||Vz,yuj||%g,y ~ 55l iﬁfa)

P2 1 2t
+((;) _1)(§||vm,yujllig,y—2+ 135 )

J

1 rp)\? P 2
= 1— (L2 ) 12t
+2+a(pj) ( (p) ||UJ|L§E

j
By using (6.2), (6.3) and the assumption p; — p we get

K’ <11m1anp]

n,MFk a 00

7(1

Third step: for every p > 0 we have (up to subsequence) inf; ||u; || 240 >0
x,y
It is sufficient to prove that K Z ko < 0. In fact we have

(6.4) K? o S 00l (MF)Ep ot o) = vol(MF) LY M) < g

where &, o is the energy defined in (2.2) and w is chosen in such a way that
[ten,w,allLz = ——L=—=. Notice that in (6.4) we have used (2.4) and (2.5).

T @ vol(M*)

Fourth step: for any minimizing sequence uj , there exists 7; € R™ s.t. (up to
subsequence) wj ,(x + 7;,y) has a weak limit @ # 0

We have the following localized Gagliardo Nirenberg inequality:

(6.5) v )2/(n+k+2)” ||(n+k)/(n+k+2)

||L2+4/(n+k) <C Sup (||U||L2 HY(R™ x M*)

QM x Mk

where
QY =x24+10,1]" Vx € R"
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The estimate above can be proved as follows (see [8] for a similar argument on
the flat space R¥*). We fix z;, € R™ in such a way that (J, w, = R™ and
measn(Qy, NQy,) = 0 for i # j where meas, denotes the Lebesgue measure in R".
By the classical Gagliardo Nirenberg inequality we get:

24+4/(n+k 4/(n+k
el < Cllella™™

24/ (ntk) = ”vH?{l(Q;th’f)

Qp, x Mk p X ME
The proof of (6.5) follows by taking the sum of the previous estimates on h € N.
Due to the boundedness of u; , in H(R™ x M¥) (see the first step) we deduce by
(6.5) that
(6.6) 0 < €0 = inf [[ujpl| 24/ < C sup [fuy, |77 )

7 z,y rER™ Qn Mk

(the Lh.s. above follows by combining the Holder inequality with the third step).
The proof can be concluded by the Rellich compactness theorem once we choose a
sequence 7; € R7 in such a way that

in HULP”Léﬁijk >0

(the existence of such a sequence 7; follows by (6.6)).

Fifth step: the map (0,p) > p — p 2K”

nMF o 18 strictly decreasing

e o1
Let us fix p; < p2 and u;,, a minimizing sequence for Kka’a. Then we have

P2 P2
Kn MF o < gn,M’“,a(p_ujwl)
JMFE, 1

P2 21 1 P2\ ¢ 2+«
- (E) (GIVesinliz, - 5= (E) et 252
1

p2\2/1
= (22) (GIVeatinliz, = 5o luim 32

1 p2)2( P2\ 2
Y (1 (2) s
+2 Ta (Pl o [, L2ty

p2\? (1 o2 1 Cj2+a
< (%) (GIVautsinliz, = 5o luiml3Ee)

1 p2)2( P2\ . 2
2 (1 (25
+2+a(m o)) ink s 355

By recalling (see the third step) that inf; ||u; | ?;fa > 0 we get
z,y

KPz < & 2KP1
n,MF « 01 n,MF «

Sizth step: let u be as in the fourth step, then |[ullrz = p

Up to subsequence we get:
ujp(x+75,y) = u(z,y) #0 ae (x,y) € R} x Myf

and hence by the Brezis-Lieb lemma (see [1]) we get

(6.7) [wjp(z + 750 y) — a(z, )| igga
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— Jugp @ + 75, 9) 1240 — [l )22, + o(1)
z,y T,y

Assume that [|ufz2 =6, our aim is to prove 6 = p. Since u # 0 necessarily 6 > 0.
Notice that since L%y is an Hilbert space we have

(6.8) P = llugpla+ 75,932

= llwjp(z +75,9) — (e, y)lliz |+ llalz,y)lZ:  +o(1)

and hence
(6.9) g ol +77.9) — a3, = 5> — 0%+ o(1)

By a similar argument

(6.10) / / 2 (Uj (@ + 75,9)) — Vaa(z,y)|*dovdy
Mk JRp
/ / o (U (@ +75,9)) — Vya(z,y)|* dedvol yp
ME n y
[ ] (Va4 19, P)dsdooly
Mk JRy Y

— [ [ (sl 730 + (905 + 73090 P)dvolsgy + o(1)
Mk JR? Y
By combining (6.10) with (6.7) we get:
(6.11) KZ Mk = M &, ark o (uj (x4 75,9)) =
M2, j

— 00
hm 5n,M",a(uj,P(I + Tj, y) - ’U’(I5 y)) + 5‘n,M",oz(ﬁ)
j—00

and we can continue the estimate as follows

vV p2—02+0(1)
.2 K KZ,Mk «

n,M*,«

where we have used (6.9). Hence by using the second step we get

K? o >EVCTY KO
n,MF.a n,MF,a n,Mk a

Assume that 6 < p, then by using the monotonicity proved in fifth step we get

t 6
= Cper ok K = K"
p )

KP

n,M*,« >

n,MF, n,MF,
and we have an absurd.

O

Proof of Theorem 1.2 Assume by the absurd that the conclusion is false, then
there exists p and two sequences p; € H'(R™ x M*) and t; € R such that

(6.12) lgn dlStHl(Rank)(%sz Mka) =0
i M*,
and
(6.13) lim inf dist g s ey (g, (£5), M0 i ) >0

J—00
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where u,,; is the solution to (1.1) with Cauchy data ;. By (6.12) we deduce the
following informations:

Jim llgslaz, = pand Jim & e (6) = K2y
and hence due to the conservation laws satisfied by solutions to (1.1) we get
Jlggo ”u%‘ (tj)HL%y = p and Jlggo gn,M’“,a(u%’j (tj)) = KZ)Mkﬁa
In turn by an elementary computation we get:
~ - . N P
||uj||L§’y =p and Jllglo gn,Mk,a(uj) - Kn)Mkﬁa

(more precisely ; is constrained minimizing sequence for K” ) where

n,MF¥ a
- U ; (tj)

Uj = pr—"—
T g, ()22,
Moreover by (6.13) it is easy to deduce

e . o
hjn_l)golf dist g (mr x prky (g, Mka’a) >0

and it is in contradiction with the compactness of minimizing sequences for K Z Mo
stated in Theorem 1.1.
O
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