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Abstract

A multi-class single-server system with general service time distributions is studied in a
moderate deviation heavy traffic regime. In the scaling limit, an optimal control problem
associated with the model is shown to be governed by a differential game, that can be
explicitly solved. While the characterization of the limit by a differential game is akin to
results at the large deviation scale, the analysis of the problem is closely related to the
much studied area of control in heavy traffic at the diffusion scale.
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1 Introduction

Models of controlled queueing systems have been studied under various scaling limits. These
include heavy traffic diffusion approximations, which are based on the central limit theorem
(see [8], [5] and references therein) and large deviation (LD) asymptotics (see eg., [1], [2] and
references therein). To the best of our knowledge, the intermediate, moderate deviation (MD)
scale has not been considered before in relation to controlled queueing systems. In this paper
we consider the multi-class G/G/1 model in a heavy traffic MD regime with a risk-sensitive
type cost of a general form, characterize its asymptotic behavior in terms of a differential
game (DG), and solve the game. In a special but important case, we also identify a simple
policy that is asymptotically optimal (AO). The treatment in the MD regime shares important
characteristics with both asymptotic regimes alluded to above. It is similar to analogous results
in the LD regime, in that the limit behavior is indeed governed by a DG. The DG itself is
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closely related to Brownian control problems (BCP) that arise in diffusion approximations. In
particular, the solution method by which BCP are transformed into problems involving the
so-called workload process, turns out to be useful for solving these DG as well.

Treatments of queueing models in the MD regime without dynamic control aspects include
the following. In [22], Puhalskii and Whitt prove LD and MD principles for renewal processes.
Puhalskii [21] establishes LD and MD principles for queue length and waiting time processes
for the single server queue and for single class queueing networks in heavy traffic (Puhalskii
refers to this regime as near heavy traffic, to emphasize that the deviations from critical load
are at a larger scale than under standard heavy traffic; we will use the term heavy traffic in this
paper). Majewski [20] treats feedforward multi-class network models with priority. Wischik
[25] (see also [I7]) illuminates on various links between results on queueing problems in LD
and MD regimes, as well as similarities between MD and diffusion scale results, particularly
the validity of results such as the snapshot principle and state space collapse. Based on these
similarities he conjectures that the well-established dynamic control theory for heavy traffic
diffusion approximations should have a parallel at the MD scale (our treatment certainly
confirms this expectation for the model under investigation). Cruise [9] considers LD and MD
as a part of a broader parametrization framework for studying queueing systems.

In the model under consideration (see the next section for a complete description), cus-
tomers of I different classes arrive at the system following renewal processes and are enqueued
in buffers, one for each class. A server, that may offer simultaneous service to the various
classes, divides its effort among the (at most) I customers waiting at the head of the line of
each buffer. The service time distributions depend on the class. The problem is to control these
fractions of effort so as to minimize a cost. MD scaling is obtained by considering a sequence
by, where b, — 00,/n/b, — oo. The arrival and service time scales are set proportional to
a large parameter n, with possible correction of order b,/n. Denoting by X! (¢), the number
of class-i jobs in the n-th system at time ¢, a scaled version is given by X,, = (byv/n)~ ' X,.
Moreover, a heavy traffic condition is assumed, namely that the limiting traffic intensity is
one. The cost is given by

1 T - -
E log E{eb% [f() h(Xn(t))dt+g(Xn (T))] }7

where T' > 0, and h and g are given functions.

This type of cost is called risk-sensitive (see the book by Whittle [24]). The optimal control
formulation of a dynamical system with small noise goes back to Fleming [14], who studies the
associated Hamilton-Jacobi equations. The connection of risk-sensitive cost to DG was made
by Jacobson [19]. The study of risk-sensitive control via LD theory and the formulation of the
corresponding maximum principle are due to Whittle [23]. Various aspects of this approach
have been studied for controlled stochastic differential equations, for example, [12], [I5], [16].
For queueing networks, risk sensitive control in the LD regime has been studied in [10], [1], [2].
Operating a queueing system so as to avoid large queue length or waiting time is important in
practice, for preventing buffer overflow and assuring quality of service. A risk-sensitive criterion
penalizes such events heavily, and thus provides a natural way to address these considerations.
Further motivation for this formulation is that the solution automatically leads to robustness
properties of the policy (see Dupuis et al. [I1]). Note that working in MD scale leads to some
additional desired robustness properties. Namely, since the rate function in this case typically



depends only on first and second moments of the underlying primitives, the characteristics of
the problem are insensitive to distributional perturbations which preserve these moments. The
price paid for working in MD scale is that a heavy traffic condition has to be assumed for the
problem to be meaningful (as it is in diffusion approximations but not in LD analysis).

The DG governing the limit behavior can be solved explicitly, a fact that not only is useful
in characterizing the limit in a concrete way, but also turns out to be of crucial importance
when proving the convergence. To describe the game (see Section 2 for the precise definition),
consider the dynamics

o(t) =z +yt+ /0 (A(s) — fi(s))ds + n(t) € RL.

Here z is an initial condition, y is a term capturing the order b,\/n time scale correction
alluded to above, and X and Ji represent perturbations at scale b, /y/n of arrival and service
rates, respectively. These are functions mapping [0,7] — Ri, controlled by player 1. Next,
n :[0,00) — ]Rfr is a function whose formal derivative represents deviations at scale b,/\/n
of the fraction of effort dedicated by the server to each class. This function is controlled by
player 2, and is regarded admissible if (a) for all ¢, p(t) € RL (b) 6-7(0) >0, and (c) € -7 is
nondecreasing, where 6 = (%, cee i) is what is often called the workload vector in the heavy
traffic literature. The cost, which player 1 (resp., 2) attempts to maximize (minimize) is given

by T T
/O h(o(s))ds + g(o(T)) — /0 S faidu(s)? + bifis(s)2)ds, (1)

where a; and b; are positive constants.

It is instructive to compare this to the game obtained under LD scaling. The form presented
here corresponds to the multiclass M/M/1 model, following [2] (the setting there includes
multiple, heterogenous servers, but the presentation here is specialized to the case of a single
server). One considers

=T, o) =+ /O (3(s) — u(s) ® fi(s))ds,

where I is the Skorohod map with normal reflection on the boundary of the positive orthant, A
and fi are functions [0, 7] — [0, oo)l , representing perturbations at the LD scale, and controlled
by a maximizing player; u : [0,7] — S where S = {s € [0,1]] : 3 s; = 1} is controlled by
minimizing player representing fraction of effort per class, and e denotes the entrywise product
of two vectors of the same dimension. The cost here takes the form

T T B N
/O h(o(5))ds + g(o(T)) — /O [1-1(\(s)) + u(s) - [((s)))ds, (2)

where [ and [ represent LD cost associated with atypical behavior (see [2] for more details).
The paper [2] provides a characterization of the game’s value in terms of a Hamilton-Jacobi-
Isaacs (HJI) equation. However, an explicit solution to the game is provided there only in
the special case where h vanishes and ¢ is linear. In contrast, the game associated with MD
turns out to be explicitly solvable, as we show in this paper. The reason for this is that while
in the LD game the last term of the cost (@) involves both (A, i) and u, the corresponding



term in () involves only (5\, ), not 1. Hence this term plays no role when one computes the
optimal response 7 to a given (X, /i) (it does when one optimizes over (X, /1)). This optimal
response is computed via projecting the dynamics in the direction of the workload vector, and
using minimality considerations of the one-dimensional Skorohod problem. In fact, the optimal
response 7 to (5\, fi) is precisely the one that arises in the diffusion scale analysis of the model,
used there to map the Brownian motion term to the optimal control for the BCP. Thus the
link to diffusion approximations is strong.

In [2] (following the technique of [I]), the convergence is proved by establishing upper and
lower bounds on the limiting risk-sensitive control problem’s value in terms of the lower and,
respectively, upper values of the DG. The existence of a limit is then argued via uniqueness of
solutions to the HJI equation satisfied by both values. The arrival and service are assumed to
follow Poisson processes and the convergence proof uses the form of the Markovian generator
and martingale inequalities related to it. Since in the MD regime the performance depends
only on the first two moments of the primitives, these moments carry all relevant information
regarding the limit (under tail assumptions), and so in this paper we aim at general arrival and
service processes. As a result, the tools based on the Markovian formulation mentioned above
can not be used. The approach we take uses completely different considerations. The asymp-
totic behavior of the risk-sensitive control problem is estimated, above and below, directly by
the DG lower value (the corresponding upper value is not dealt with at all in this paper). This
is made possible thanks to the explicit solvability of the game. More precisely, the arguments
by which the game’s optimal strategy is found, including the workload formulation and the
minimality property associated with the Skorohod map, give rise, when applied to the control
problem, to the lower bound. The proof of the upper bound is by construction of a particular
control which again uses the solution of the game and its properties. Note that this approach
eliminates the need for any PDE analysis.

The control that is constructed in the proof of the upper bound is too complicated for
practical implementation. A simple solution to the DG is available in the case where h and
g are linear (see Section [0l for the precise linearity condition). It is a fixed priority policy
according to the well-known cu rule. As our final result shows, applying a priority policy in
the queueing model, according to the same order of customer classes, is AO in this case.

To summarize the main contribution of the paper, we have (a) provided the first treatment
of a queueing control problem at the MD scale (b) identified and solved the DG governing the
scaling limit for quite a general setting, and (c¢) proved AO of a simple policy in the linear
case. Finally, it is important to mention that our results strongly suggest that techniques such
as the equivalent workload formulation, which have proven powerful for control problems at
the diffusion scale, are likely to be useful at the MD scale in far greater generality than the
present setting. We intend to study this in future work.

We will use the following notations. For a positive integer k and a,b € R¥, a - b denotes
the usual scalar product, while || - || denotes Euclidean norm. For 7" > 0 and a function
f[0,T] — RF let ||fllf = supseioq I f(s)ll, ¢ € [0,7]. When k = 1, we write |f[; for
| £1l; and [|f||* for ||f|%. Denote by C([0,T],R¥) and D([0,T],R¥) the spaces of continuous
functions [0,7] — RF and, respectively, functions that are right-continuous with finite left
limits (RCLL). Endow the space D([0,T], R¥) with the Skorohod-Prohorov-Lindvall metric or



J1 metric, defined as
dp, ) = inf (IF1° v sup lo(®) =/ (FO),  ¢,¢ € D(O, TL,RY)
Jer [0,7)

where 7" is the set of strictly increasing, continuous functions from [0, 7] onto itself, and

T R (O]
0<s<t<T s

As is well known [6], D([0,T], R¥) is a Polish space under the induced topology.

The organization of the paper is as follows. The next section introduces the model and an
associated differential game and states the main result. In Section 3 we find a solution to the
game and describe properties of it that are useful in the sequel. Section 4 gives the proof of
the main theorem. In Section 5 we discuss the case of linear cost and identify an AO policy.
Finally, the appendix gives the proof of a proposition stated in Section 2.

2 Model and results

2.1 The model

The model consists of I customer classes and a single server. A buffer with infinite room is
dedicated to each customer class, and upon arrival, customers are queued in the corresponding
buffers. Within each class, customers are served at the order of arrival. The server may only
serve the customer at the head of each line. Moreover, processor sharing is allowed, and so the
server is capable of serving up to I customers (of distinct classes) simultaneously.

The parameters and processes that we now introduce will depend on an index n € N, that
will serve as a scaling parameter. Arrivals occur according to independent renewal processes,
and service times are independent and identically distributed across each class. Let 7 =
{1,2,...,1}. Let A}, > 0,n € N,i € T be given parameters, representing the reciprocal mean
inter-arrival times of class-i customers. Given are I independent sequence {IA*(1) : I € N}er,
of positive i.i.d. random variables with mean E[IA’(1)] = 1 and variance 02-2’114 = Var(IA'(1)) €

(0,00). With 2(1) = 0, the number of arrivals of class-¢ customers up to time ¢, for the n-th
system, is given by

Similarly we consider another class of parameters uf, > 0,n € N,i € T, representing reciprocal
mean service times. We are also given I independent sequence {ST*(l) : | € N}, of positive
i.i.d. random variables (independent also of the sequences {IA'}) with mean E[ST?(1)] = 1 and
variance 03 g = Var(ST'(1)) € (0,00). The time required to complete the service of the I-th

class-i customer is given by ST(I)/ui, and the potential service time processes are defined as
ST

Yk
.()St}, t>0.
Hp,

l
Sh(t) = sup{l >0 : Z
k=1



We also consider the moderate deviations rate parameters {b,}, that form a sequence, fixed
throughout, with the property that limb,, = oo while lim % =0, as n — oo. The arrival and
service parameters are assumed to satisfy the following conditions. As n — oo,

A

° 7—>/\i>0and%—>ui€(0,oo),

o X = (N = nd) 5 A e (—00,00),

o fih = grom(uh —npt) = it € (—o0,00).

Also the system is assumed to be critically loaded in the sense that Z{ p' =1 where p' = ’\—z
“w
for i € 7.

For i € Z, let X! be a process representing the number of class-i customers in the n-th
system. With S = {z € [0,1]f : Y x; < 1}, let B,, be a process taking values in S, whose
i-th component represents the fraction of effort devoted by the server to the served class-i
customer. The number of service completions of class-i jobs during the time interval [0,¢] is

assumed to be given by ' o
Dy, (t) == S, (T;,(1)), (3)
where .
1) = [ Bis)ds. @)
0
The following equation follows from foregoing verbal description

X5, (1) = X3,(0) + AL (1) — S, (T (1)) ()

For simplicity, the initial conditions X! (0) are assumed to be deterministic. Note that, by
construction, the arrival and potential service processes have RCLL paths, and accordingly, so
do D,, and X,,.

The process By, is regarded a control, that is determined based on observations from the past
(and present) events in the system. A precise definition is as follows. Fix 7" > 0 throughout.
Given n, the process B, is said to be an admissible control if its sample paths lie in D([0, T, R ),
and

e It is adapted to the filtration
{4 (s), Su(Ta(s),i € I,s < 1},
where T,, is given by ({@);
e For i € Z and ¢t > 0, one has
X!(t)=0 implies B.(t) =0, (6)

where X, is given by (@)).



Denote the class of all admissible processes B, by i,. Note that this class depends on the
processes A, and S,,, but we consider these processes as fixed.
We next introduce centered and scaled versions of the processes. For i € 7 let
- 1 : , ~ 1

(A5(8) = At), S%(t)an\/ﬁ(Sé(t)—u%t)a Xp(t) = X, (1. (7)

A0 ==

It is easy to check from (@) that

X5 (t) = X0 (0) + yht + AL (t) — Sp(TL(1) + Z,(t), (8)
where we denote , Ja
i n VI, i i 1i i~q
Zn(t) = %b—(pt_Tn(t))7 yn:/\n_p:un' (9)

Note that these processes have the property

n .
Z — 7, starts from zero and is nondecreasing, (10)

i n

thanks to the fact that 3, BL < 1 while >_, p; = 1. Clearly X}, is nonnegative, i.e.,
Xit)>0 t>0,iel. (11)
We impose the following condition on the initial values:

Xn(0) = 2 €RL as n — .

The scaled processes (fl",g") are assumed to satisfy a moderate deviation principle. To
express this assumption, let Iy, k = 1,2, be functions on D([0,T], R’) defined as follows. For

= (7,01,---,7/)1) € D([OvT]’RI)v

1 2( . : _
I() = { 5 ZZ 1 /\Z fo 1/1 ds if all v; are absolutely continuous and ¥ (0) = 0,

00 otherwise,
and
I 1 (T2 i : i —
L) =1 2 Y oic1 oT o fo P (s)ds if all ¢); are absolutely continuous and (0) = 0,
o0 otherwise.

Let I(y) = L1 (") + Ix(¢?) for o = (1, 9%) € D([0,T],R*).
Condition 2.1 (Moderate deviation principle) The sequence
(A,,S,) = (AL, ... AL St .. SI)
satisfies the LDP with rate parameters b, and rate function 1 in D([0,T],R?); i.e.,
e For any closed set F' C D([O,T],RQI)

log]P’((fin,S’n) € F) < — inf I(¢),

lim sup — Jnf,
€

b2

n



e For any open set G C D([0,T], R?)

| 5 & :
lim inf 0 logP((An, Sp) € G) > —Jggﬂ(zﬁ)

n

Remark 2.1 [t is shown in [22] that each one of the following statements is sufficient for
Condition [2.1] to hold:

o There exist constants ug > 0, 3 € (0,1] such that E[e®UA)’] Blew0ST)] < o0, i € T,
and bg_znﬁ/2 — 005

e For some e > 0, E[(IAY)*"¢], E[(ST")?*¢] < 00, i € Z, and b;,,*logn — co.

To present the risk-sensitive control problem, let & and g be nonnegative, continuous func-
tions from ]Rfr to R, monotone nondecreasing with respect to the usual partial order on Ri.
Assume that h, g have at most linear growth, i.e., there exist constants ci, co such that

9(x) + h(z) < crflz]l + co.

Given n, the cost associated with the initial condition X,,(0) and control B, € &L, is given by

P (0), B2) = L g [ Mt 12

b,
The value function of interest is given by

VX, (0)) = B,if%{l ) J"(X,(0), By).

2.2 A differential game

We next develop a differential game for the limit behavior of the above control problem. Let
0= (ﬁ”p_lf) and y = (y1,...,yr) where y; = A" — p'fi’. Denote P = Cy([0,T],R?*!) (the
subset of C([0,T],R?!) of functions starting from zero) and

E={¢CeC([0,T],R!) : 0 starts from zero and is nondecreasing}.

Endow both spaces with the uniform topology. Let R be the mapping from D([0,7],R?) into
itself defined by
R[Y]i(t) = vi(pit),  te€[0,T], i€l

Given ¢ = (¢, 4?) € P and ¢ € E, the dynamics associated with initial condition x and data
1, is given by

i(t) = @i + yit + 0} (1) = Rt + G(t), i€ (13)
Note the analogy between the above equation and equation (), and between the condition
6 - ¢ nondecreasing and property (I0). The following condition, analogous to property (1),

will also be used,
wi(t) >0, t>0,iel. (14)



The game is defined in the sense of Elliott and Kalton [13], for which we need the notion of
strategies. A measurable mapping o : P — E'is called a strategy for the minimizing player if it
satisfies a causality property. Namely, for every ¢ = (1!, 4?), 1 = (¥',4?) € P and t € [0,T],

(61, RI62))(s) = (6", RIG2)(s) for all s € [0,¢] implies a[](s) = a[d](s) for all s € [0, ).
(15)
Given an initial condition z, a strategy « is said to be admissible if, whenever ¢y € P and
¢ = af¢], the corresponding dynamics (I3]) satisfies the nonnegativity constraint (I4]). The set
of all admissible strategies for the minimizing player is denoted by A (or, when the dependence
on the initial condition is important, A,). Given z and (¢,() € P x E, we define the cost by

(6,C) = / he0))dt + g(p(T)) ~ 1(0),
where ¢ is the corresponding dynamics. The value of the game is defined by

V(z) = inf sup (P, afy]).

2.3 Main result

For w € Ry, denote
h*(w) = inf{h(z) 12 € RL, 0 -2 =w}, ¢*(w)=inf{g(z): 2R, 0 2z =uw}

We need the following condition. It is similar to the one imposed in [4], [3], where an analogous
many-server model is treated in a diffusion regime.

Condition 2.2 (Existence of a continuous minimizing curve) There exists a continuous
map f: Ry — Ri such that for all w € Ry,

0-fw)=w, h(w)=h(f(w), g¢"(w)=g(f(w)).

Example 2.1 a. The linear case: h(x) = Y c;x; and g(x) = Y d;x;, for some nonnegative
constants c;, d;. If we require that crpuy = min; ¢;u; and drpuy = min; d;p; then the condition
holds with f(w) = (0,...,0,wur). This is the case considered in Section [3.

b. If h is homogeneous of degree a,0 < a < 1, and z* € argmin{h(z) : 0 -z = 1}, it is easy
to check that f(w) = wz™ satisfies the above condition provided g = dh for some non-negative
constant d.

Condition 2.3 (Exponential moments) Denote

I
Ap (¥t %) Z up CHOIEDS up 7 (t)
Then for any constant K,



A sufficient condition for the above is as follows (see the appendix for a proof).

Proposition 2.1 If there exists ug > 0 such that E[e" 4] and E[e®5T"), i € I, are finite
then Condition [Z23 holds.

Note that taking # = 1 in Remark 2.1l shows that the hypothesis of Proposition 2.1]is sufficient
for Condition 1] as well.
Our main result is the following:

Theorem 2.1 Let Conditions 21, 22 and[Z3 hold. Then lim,,_,, V"(X,(0)) = V (z).

Remark 2.2 While the game formulation given above is natural to work with in the proofs,
there is a simpler, equivalent formulation which avoids the use of the time scaling operator R.
Define a functional 1(v)) = I (¢') +I2(¢?) on D([0,T],R?!), where I, k = 1,2, are functionals
on D([0,T],RY) given by Iy =1y, and, for ¢ = (41, ...,v1) € D([0,T],RY),

15! 1 (T2 : . : _
L) = { 5D il T ey fo Yi(s)ds if all 1; are absolutely continuous and 1 (0) =0,

00 otherwise.

The dynamics of the game ¢ are now
@i(t) = x; = yit + () — () + ¢'(t) > 0.

A strategy o should now satisfy the following version of the causality property:

P(s) =(s) for all s € [0,t] implies a[](s) = a[v](s) for all s € [0,¢].
Denote the set of all such strategies by A,. Given x and (1,() € P x E, let

T
(6,0 = [ hp(O)d + g(e (1) ~ 10)
where @ is as above. Then it is easy to see that the value of the game can also be defined as

V(z) = inf sup c(y,aly]).
a€Agz peP

3 Solution of the game

In this section we find a minimizing strategy for V', under Condition 2.2} following an idea from
[18]. Throughout this section, the initial condition z is fixed. Consider the one-dimensional
Skorohod map I' from D([0,T],R) to itself given by

I'lz|(t) = 2(t) — sél[lof,t][z(s) AO], te[0,T]. (16)

Clearly, I'[z](t) > 0 for all t. Let also

I'z|(t) = —sél[lofﬂ[z(s) AO],  te|0,T].

10



It is clear from the definition that, for z,w € D([0,T],R)

sup |I'[z] — I'[w]| < 2sup [z — w|. (17)
[0,7] (0,7

The construction below is based on the mapping I" and the function f from Condition
For ¢ = (¢1,4?) € P, let R[] be defined by

RIY|(t) =z +yt + ' (t) — RW*)(t),  t€[0,T]. (18)

Let B
wolt)] = T'[0 - 4], (19)
ag[v](t) = fleel¥](t)) — ¥(t),  te0,T], (20)

where ¢ : [0, T] — R is given by R[+)]. Sometimes we also use the notation ég for the mapping
defined by

aglv)(t) = f(ale)(1) —¥(t),  te[0,T], (21)
where @g[tp] = I'[0 - )] and

V(t) =z + yt + ¥ (t) — P3(2), te0,7).

Note that ag[i', 9% = ag[v", R[$?]].
Let us show that ay is an admissible strategy. Let ¢ € P be given and denote { = ay[t)].
Note that the dynamics corresponding to (1, () is given by

o =1+C= fleolt)])

Multiplying (20) by 6,
0-C=wplp] —0-p=116-9]. (22)

Since 6 - (0) = - x > 0, it follows that 6 - ((0) = 0. Moreover, by definition of I", 6 - ¢
is nondecreasing. This shows ( € E. The causality property (I3 follows directly from an
analogous property of I'. Next, ¢g(t) > 0 for all ¢, and, by definition, f maps R to Rﬂ_,
whence ¢(t) € RL for all ¢. This shows that oy is an admissible strategy.

Now we check that ap is indeed a minimizing strategy. This is based on the minimality
property of the Skorohod map (see e.g. [7, Section 2]). Namely, if z,w € D([0,7] : R), w is
nonnegative and nondecreasing, and z(t) + w(t) > 0 for all ¢, then

At +w(t) > T, telo,T].

Let o € A be any admissible strategy and consider 1 = (!,4?) € P. Then the dynamics
corresponding to ¢ and ¢ := a[¢] is given by ¢ = 1 + (. Since «a is an admissible strategy, we
have that

0-0=0-v+0-¢>0,

and 6 -  is nonnegative and nondecreasing. Thus by the above minimality property,

0-o(t) > I'l0 - ¥](t) = pal](t),  te€][0,T].

11



Therefore using monotonicity of h we have, denoting @y = @g[¢],

h(p(t)) = inf{h(q) : 6-q=10-9(t)}
> inf{h(q) : 0-q=po(t)} = h(f(ps(t)))- (23)

A similar estimate holds for g, namely

9(e(T)) = g(f(pe(T))). (24)

As a result,

sup (4, a[y]) > sup (¥, ap[Y]).

PpePr PeP
This proves that agy is a minimizing strategy, namely

V(z) = sup c(¥, ag[y)]). (25)

peP

Extension and some properties of ay. As a strategy, ay is defined on P. We extend &y
(and so ay) to
P = D([0,T],R*),

using the same definition ([20). The argument leading to ([23)) and (24]) is seen to be applicable
for this extended map. Namely,
¥, ¢ € D([0,T),R), p(t) = (t) + ¢(t) € RL, 6 ¢ nonnegative and nondecreasing
implies (26)
Jle(t) = §(f ([0 ¥](t))), for j =h,g.

Next, denote 6, = min;e7 6; and 8* = max;e7 6;. Then Condition 2Z2limplies that || f(w)| <
éw for w > 0. Let y1 = (% + 1)[2{21(:17@- + T|y;|)] Then for ¢ € [0,T], using (21,

20*
0.

laolll(t) < (S +1) A" v2) + 1. (27)

For k > 0, we define
D(r) = {yp = (@', ¢*) € D([0,T],R*) : |'|* + [[*|* <k and $(0) e RL},  (28)

where v is defined as above. Then using 21 and (7)), for every s there exists a constant
B = B(k) such that, for all ¢ € D(k),

1 [ ]]]*
leollI"

B(k), (29)
B(k). (30)

<
<
Thus given € > 0 we can find § = §(k,€) such that

[1f (w1) = f(w2)]| < % if Jw — wa| <6 and w; € [0, B(k)].
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Also using the relation ¢glyp] = I'[0 - zﬁ] where ) is defined above, we have for any ¢, €
D([0,T],R*") 3 3 )
|2olt) — @olY]]* < et — 211 + [ — &%), (31)

for some constant ¢;. Choosing 8; = 8, (k, ) sufficiently small, for 1, 1) € D(k) we have, with
¢ and ¢ denoting the dynamics corresponding to (1, &g[¢)]) and resp., (¢, dg[t)]),

~1|% € . VATES VATES
lp—ol" =5 if [t = 2" + [1* — ?|* < b1
Therefore using the above estimate and (ZI)) we have for ¢, ¢ € D(x) and 6; sufficiently small,

lag[] — ae[dllI" < e if [lw! — |1 + [[0* — @*|* < b (32)

This gives the continuity of the map d&y(and so of ag) on P.
Let a positive integer k and a map ¢ : [0,T] — R* be given. Given also a constant 7 > 0,
we define the n-oscillation of ¢ as

oscy(p) = sup{[lp(s) — (@)l = [s =] <n, s,¢ € [0,T]}.

Then, as follows directly from the definition of &y and the continuity of f, for any ¢ € D(k),
given € > 0 there exist § > 0 and 1 > 0 such that

oscy(Gpl1]) < e provided osc, (1) < 4. (33)

4 Proof of Theorem 2.1
4.1 Lower bound

Theorem 4.1 Assume Conditions 21 and[Z2 to hold. Then liminf V" (X,(0)) > V(x).

Proof: Fix ¢ = (¢',¢?) € P. Let d(-,-) be a metric on D([0,T],R*) which induces the .J;
topology. Define, for r > 0,

Ar={¢ € D(0, T),R*) + d(¥,¢)) <r}.
Since 1) is continuous, for any r| € (0,1) there exists > 0 such that
Y e A, implies || —d|* <7 (34)

Define 6,, = (Mﬂl—,fg,,ﬁ) Then 6,, — 0 as n — oo. Now, given 0 < € < 1, choose a

sequence of policiesn{Bn} such that
VX, (0) +& > J(X,(0), B,) and B, € L, for all n.

Recall that ]
~ T v %
J(Xn(0), By) = 5 log E[ef o HXA (Do (T, (35)

where
X3 (8) = X7,(0) + ypt + Ay, (8) — S (TH (1)) + Z,, (1), (36)
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7(1) = _%th_m)) Ti (1) = /0 Bl (s)ds, (37)

For G > 0, define a random variable 7,, by
o = inf{t > 0: 0, - Zn(t) > G}/\Tzinf{tzo : i(t—ZT@ ) } AT

By (), 6, - Z, is nondecreasing and hence

On-Zp(t) < Gfiort<m,
On - Zp(t) > Gfort>T,.

Consider the event (fln, Sn) € A,. Under this event, for t > 7,,
O - Xn(t) > —|0nl (ko + 210)*) + G

where £y is a constant (not depending on n or G) and we used ([B4)) and the boundedness of
X, (0) and X, — p'fit,. Since also 6,, converges, we can choose a constant x; such that, on the

indicated event,
O, - X,(t) > —k1 + G, t > 7, (38)

Next, let ¢ : [0, 7] — R be the dynamics corresponding to (¢, ¢), where ¢ = ay[t)], namely
pilt) = 2" +y't+ () — PP (p't) + C(1). (39)
Then ¢(t) = f(wa[](t)) @0). For any s > 0 define a compact set Q(x) as
Q(r) ={geRL : 2¢-0 <k}
Now choose k large enough so that

h(z) > sup [h(p(t))[l and g(2) > g(¢(T))

for all z € Q°(k). To see that this is possible note that h(f(:)) is nondecreasing, and for
z € Q°(K)
h(z) =z min{h(q) : 0-q=0-z} =h(f(0-2)) = h(f(r/2)),

whereas ¢(t), t € [0, 7], is bounded. A similar argument applies for g. Since 6, := min; 6; > 0,
we can choose ng large enough to ensure that (6,); < 26; for all i € Z and n > ng. Now if we
choose G in (B8] large enough so that —k; +G > k with k as above we have for t > 7,,n > ny,

20 - Xn(t) 2 Hn : Xn(t) > R,
and hence by our choice of Kk we have on the indicated event, for all ¢t > 7,,

h(Xn(t)) > |h(e)|" and g(Xn(t)) > g(p(T)) for all sufficiently large n. (40)
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Now we fix G~ as above and consider ¢t < 7,, on the same event (fln,gn) € A,. The
nonnegativity of X! and (B6) imply a lower bound on each of the terms Z¢, namely

Z}(t) > =X, (0) — yit — AL (t) + SL(T(1)).

Therefore using (B4)) there exists a constant xs such that for all sufficiently large n, Z% (t) > —ka.
Combining this with the definition of 7,, in terms of GG, we have for ¢t < 7, and all large n,

1 Zn ()] < k3. (41)
Consider the stochastic processes Y, Yy, Z,, with values in R?,
Yiit) = Al(tAm,),
Vi) = ai— X1(0)+ (yi — yi)t + STt ATR)) — (1 — @l0)Z2 (t A7),
Zit) = weiZi).
Then by (36]), B N B
Xp(t) =mi+yt + V" (1) = V() + Z,(t),  te[0,m]. (42)
Note that Y;,,Y; have RCLL sample paths, and consider dy Yo, f/n] Denote by W,, the corre-
sponding dynamics, namely
Wa(t) = x4 yt + Yo (t) — Yu(t) + ag[Yo, Y] (2). (43)

Use @8) with o(t) = z + yt + Yy (t) — Y, (t), ¢ = Z,. Note that X,, = 1 + ¢ takes values in
%, by definition, and that 6 - Z,, is nonnegative and nondecreasing, by ([@I0). Moreover, by
deﬁmtlon of éy, Wy, = f(I'[0 - ¢]). Hence ([28]) gives

h(Xn(t) > h(Wyu(t)) and g(X,(t)) > (W, (1)), t € [0,7,]. (44)

Let kg = ||ib||*. By @), on the indicated event, (A,,S,) € D(2(1 + k4)) where D(k)
is defined in Section Bl Note that x 4 Y,(0) — Y, (O) = X (0 ) € RL and, from (@IJ), that
(Y,,,Y,) € D(2(2 + /14)) for all large n. Since 0 < Bi(s) <1, Ti(s) € [0,7,] for all s € [0,7,].
Hence from (34) we have for (4,,5,) € A,

sup [¢7 (pit) — Sy (T, (0)] < 71+ sup [§7 (pit) — D (T(1))].

[0,70] 0,7n
Again using the continuity of ©2, we can choose 75 > 0 small enough such that
08¢y, [?] < 71

Since 2 = — 0, we note from (I]) that for all large n, and all i, supyg -, |,o t—Ti(t)| < rq. Since

X, (0) = 2, yp —yand 6, — 0= (..., 1) it follows that,

ploe

sup Y,i(t) = 97 (pit)] < 3ru,
0,7n,
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for all large n. Now taking k = 2(2 + k4), we choose 7 sufficiently small (see ([82])) so that for
all n large we have B B
sup lwg[](2) = g [Yn, Yal ()] < e
0,7
Now choosing r < £/(3v/1) and using 39) and @3), for (A,, S,) € A, and all large n, we have
I = Walls, < 4e. (45)

Let k5 = (||¢]|* +4). Denote by wj, [wy] the modulus of continuity of h [resp., g] over {q :
llg|| < k5}. Then by (), on the indicated event, for all large n,

/OT# h(X,(s))ds > /OTJ h(Wy(s))ds > / h(p(s))ds — Ten(4e).

Combined with (40) this gives

T T
/ h( X, (s))ds > / h(p(s))ds — Twp(4e).
0 0
A similar argument gives

9(Xn(T) = g(e(T)X(r<ry + 9 P(T)X(T573 = 9((T)) — wg(4e).
Hence for all large n,

Ele bally h d8+g(Xn(T))}]

v

b2 Xn s))ds Xn
[ o h(Xn(s))ds+g( ()”an,gn)em.}]

> [ 2T h(p(s))ds+g((T))—a(e )]X{(An,én)eAr}}’
where a(e) = [Twy(4e) + wy(4e)] — 0 as € = 0. We now use condition 211 Since A, is open,
]P)((Anygn) €A > e bnlinfyea, I(v)+e]
holds for all sufficiently large n. Hence we have from (B3] that for all large n,
VH(Xa(0) +e = J(X,(0), By)
> [ hpleds + ole(T) -1 ~ a(e)

Therefore ~ ~
lim inf V"*(X,(0)) > ¢(v, ag[Y)]) — ale) — 2,

n— o0

and letting € — 0, we obtain

liminf V(X (0)) > c(¥, ag[d)]).

n—oo
Finally, since ¢ is arbitrary we have from (23)
lim inf V"(X,,(0)) > V().

n— o0
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4.2 Upper bound
Theorem 4.2 Assume Conditions 21, 22 and [Z3 to hold. Then limsup V™*(X,,(0)) < V().

Remark 4.1 If the functions h, g are bounded then Condition[2.3 is not required in the above
statement.

The proof is based on the construction and analysis of a particular policy, described below in
equations (BO)—(B4]). To see the main idea behind the structure of the policy, refer to equations
@) and (@), which describe the dependence of the scaled process X, on the stochastic primitives
Ay, Sy, and the control process B,, (recall from (@) that T}, is an integral form of B,,). Because
of the amplifying factor v/n/b, which appears in the expression (@) in front of

Jit— T (1) = /0 (v — Bi(s))ds,

it is seen that fluctuations at scale as small as b, /v/n of By, about its center p, cause order-one
displacements in X, Initially, the policy drives the process X, from from the initial position
X"™(0) ~ x to the corresponding point on the minimizing curve, f(# - ), in a short time. This
is reflected in the choice of the constant ¢ applied during the first time interval [0, v) (see first
line of (53])). Afterwards, the policy mimics the behavior of the optimal strategy for the game,
namely é&g. This is performed by applying F,, (see third line of (B3])), which consists of the
response of @y, in differential form, to the stochastic data P, (see (&l)).

Proof: Given a constant A, define

Q= {¢ € D([0,T],R*) : I(v) < A}. (46)

By the definition of I (from Section 2]), Q is a compact set containing absolutely continuous
paths starting from zero (particularly, @ C P), with derivative having L?-norm uniformly
bounded. Consequently, for a constant M = M and all ¥ € Q, one has [|[¢!|* + |[?||* < M.
Consider the set D(M + 1) [28), let € € (0,1) be given, and choose ¢1,d,n7 > 0 as in ([32) and
B3), corresponding to € and k = M + 1. Assume, without loss of generality, that §; V § < e.
It follows from the L? bound alluded to above, that for each fixed A, the members of Q are
equicontinuous. Hence one can choose vg € (0,7) (depending on A), such that

05Cy (Ph) < ‘}—\/2_?, for all = (', 9?) € Q, 1=1,2,i e L. (47)
Recall B B
Ar() = {¢ € D([0, T}, R*") = d(¢,4) <r}.

Noting that, for any f € T (see Notations),

() =@l < () = D+ D) = D@,
F) =ty < TV 1),

it follows, by the equicontinuity of the members of Q, that it is possible to choose v1 > 0 such
that, for any ¢ € Q,

- ~ o
€ An(9) implies [l — || < 7. (48)
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Let vy = min{vg,v1,5}. Since Q is compact and I is lower semicontinuous, one can find a
finite number of members ¥, 1%, ..., ¥ of Q, and positive constants v', ..., vV with v* < vy,
satisfying Q C U, A*, and

inf{I(y) : ¢ € AR} >TI(*) - =,  k=1,2,...,N, (49)

N ™

where, throughout, A* := A, (¢F).
We next define a policy for which we shall prove that the lower bound is asymptotically
attained. Denote

O(a,b) = ax(o,1] (Q)X[Ql}(b)a a,beR.
Fix n € N. Recall @), @) and (Gl by which

D;, =8, 0T,

7~ [ Bis)as (50)
0

X\ = Xi(0)+ Al — Di.

Recall the scaled processes () and let also

Di — &i o
3 S?o I (51)
P, = (A, D).
Let £ = f(z-0) —x and v = 2 A L. For i € 7, assume that B, is given by
B:L(t) = C;(t)X{le(t)>0}7 t e [O,T], (52)
where, for t € [0,T],
I
9(,0 w\/ﬁv’;<p m nv) ) if tel0,v),
o, if tev,2v),
Cult) = ! |Pallry < M +2
O(p — Filt—v), Yo"~ Fie—v)T), it "0 1
— teju,(j+1v),j=2,3,...,
P if o :
te[ju,(j+1)v), j=2,3,...,
(53)
and
i _ by, @Q[Pn](jv) - dé[Pn]((] —1)v) . . .
F(u) = N . , w€ v, (j+ o), =12 (54)
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Let us argue that these equations uniquely define a policy. To this end, consider equations (B0),
GBI, B2), G3), (B4), along with the obvious relations between scaled and unscaled processes,
as a set of equations for X,,, Dy, T),, P, By, Cy, F,, (and the scaled versions X, [)n), driven by
the data (A, S,) (equivalently, (A,,Sy,)), and satisfying the initial condition X,,(0). Arguing
by induction on the jump times of the processes A,, and S,,, and using the causality of the map
Qg, it is easy to see that this set of equations has a unique solution. Moreover, this solution
is consistent with the model equations [B)—(E). The processes alluded to above are therefore
well-defined.

We now show that B, € U,. To see that B,, has RCLL sample paths, note first that,
by construction, F),, X, are piecewise constant with finitely many jumps, locally, hence so is
B,,. Therefore the existence of left limits follows. Right continuity follows from the fact that
X,, F, and consequently C, have this property. The other elements in the definition of an
admissible control hold by construction. Thus B,, € il,, for n € N. As a result,

V' X,(0)) < J(X,(0), By). (55)

Our convention in this proof will be that ¢i,cs,... denote positive constants that do not
depend on n,e,v, A.

Define ©*(t) = f(pg[¢*](t)). Note that ¥ is the dynamics corresponding to ¥* and ag[¢¥].
Let A, = Ap(A,,S,) and denote by 2F the event {(4,,S,) € A*}. We prove the result in
number of steps. In Steps 1-4 we shall show that for a constant ¢y, for all n > ng(e,v),

HXn|’§“ < Cl(l + /In)a (56)

and

sup || Xn — ©"|| < cue, on 2F k=1,2,...,N. (57)
[v,T]

The final step will then use these estimates to conclude the result.

Step 1: The goal of this step is to show (G3)) below. By (1),
lao[Pa]lly < ca(l + [[Pally)- (58)

Therefore b
* n C3 *
Fl; < —=—(1 Poly)-
IEalf < =2+ 1) (59)
Since p* € (0,1) for all i € Z, we note from (59) that for all sufficiently large n, for any
t € [2v,T],

1Palliy < M +2 implies Y (o' = Fi(t —v))" =) (o' = Fi(t —v)) < 1,

% %

as > ; F(u) > 0 for all u € [v, T]. Define

o =inf{t >0 : ||By(t)]| = M +2).
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It is easy to check by definition of C?, and using the fact p; € (0,1) and the convergence
bn/v/n — 0, that for all large n, on the event {7, < v},

t
p't —/ Cﬁl(s)ds‘ < ¢y.
tefo,1] bn 0

Next consider the event {7,, > v}. Using (£9), the one has for all sufficiently large n

p—ubﬁ% it te0,v),

city=2 r's if te [v,2v), (60)
pt— Fl(t—w), if te2v,7, +v)
o, it telm+ov,T).

Thus, on {7, > v},

t

. . b,

sup |pit — / C’;L(s)ds‘ < c5—=,

t[0,20] 0 Vn

while . .
. by .

sup / Cﬁlsds‘SCE,——i- sup / F} (s —v)ds|. 61
te[20,T] 0 (s) VU teum) 2w ( ) (61

Consider j > 2 and jv <t < (j + 1)v. Then by the definition of F,,

t jvo L
/ F!'(s —v)ds = / Fi(s—wv)ds+ [ F.(s—wv)ds
2 2

v v j’l)
bn (i ‘ ;
:—(Sélpn j—2'U—(542PnO

Mx/ﬁ[ o[ Pnl((G = 2)v) — ap[F0](0)]

T LGP = Do) — &P — ) (62)
p/n o '

Combining this identity with (B8] shows that the last term on (&Il is bounded by
by, .

des(1+ |1Palliy) <

sup dea(1 4 Ay),

by,
te[2v,7n +v) NZ\/E H \/_

where in the last inequality we also used the fact that T}.(t) < ¢, by which |Di | = |SLoTE|F <
ISt |y. We conclude that, for all sufficiently large n,

sup

/C” d8‘<66 1+ A,). (63)
t€[0,T] b

Step 2: We prove (B8). To this end, rewrite (&) as X/ = Y, + Z!, where
R = K0+ A0 S0 +%$(plt— | cis).
n 0
71 lu’TL \/_ z
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Since for each 1, XﬁL is nonnegative and 2}1 is nonnegative, nondecreasing, and increases only
when )N(,’L is equal to zero, it follows that (X'Z", ZA;) is the solution to the Skorohod problem for
data Y, (see [7] for this well-known characterization of the Skorohod map (IB)). As a result,
for all large n, X X

|Znlr + | Xl < 4Y;lr < er(1+ Ay, (64)

where we used (B3)) and the convergence of yf /n, X’ (0) and y’. This shows (58]).

Step 3: Here we analyze the events Q’rf First, using

¢ ¢
p't—T.(t) = p't —/0 Cr,(s)ds +/0 Cr(8)X (6 (5)=0y 5

we obtain from (63) and (©4)), for all large n,

i
sup &@\p’t —T(t)| < cs(1+Ay).
tefo,r] ™ bn
In particular, for all large n,

sup |p't — T, (t)| <
te[0,T

(65)

| e

holds on the event UkQ’g. ) )
Next, we estimate S, (T}, (t)) — R[¢"2](t — v) on the set 2F. If we define ¢"2(T, (")) =
(WVHTE), ... P2 (TL())) then, for all large n,

n

sup [|Sn(To(t)) — RIS (t — v)|

te[v,T]
< Hgn ol — J’ka o Tu|I* + sup ”szz(Tn(t)) - R[T/;k’z](t — )|
tev,T)
0 0 N
< a_a
— 4 4 2’ (66)

where for the first estimate we have used (48]) and for second we have used (7)) and (G3]).
Finally, we show the two estimates (G7) and (G3) below. Note that on £2F one has 7, > T

for all large n (as follows by || P[5 = | Au |5+ Dulls < | An]|+]1Ss]| < M 42 by the discussion

in the beginning of the proof [{@J)). As a result, (60) is applicable. In particular, for all large

n, Z@(

t
i Y (it — / Ci(s)ds) — =0, te ) (67)
b 0 v

Now for k =1,2,..., N, consider

n

Wik (t) = u“{—f(ﬂit —/0 Ci(s)ds) = aglt](t —v),  t€v,T],

on the event £2°. We note from @20) that ay[)*](0) = ¢. Hence for t € [v,2v) and all large n,
we have from (1) and (B3] that

Wik (@) = € — agld"](t — )| <e.
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Next consider t € [2v,T] and integer j for which ju <t < (j + 1)v. From the calculation (62)),
for large n,

t t
,uig <pit - / Cﬁ(s)ds) = {;+ ,u“/ﬁ Fi(s —wv)ds
n 0

E 2v
— &P - 2))

TGP — 1) — GG — 2]

v

Wik @) < 1651P)((F = 2)v) — agld™](t = v)| +a5[P)(( — 1)v) — a[Pa]((G — 2)0).
For large n,
|G5[Pa)((G — 2)v) — ag[$*](t = v))|
< |6[Pn]((F = 2)v) = Go[™!, 72 0 T]((5 — 2)v)
+ @l P o T] (G — 2)v) — g™, RG*Z((F - 2)v)]
+ |ag[*]((j = 2)v) — agld"](t - v)|
< 3e,

where the first quantity is estimated using [@8]) and ([32]), the second using (63 and ([B2]), and
the third using ({7) and (B3). A similar estimate gives, for all large n,

|65 [Pa) (5 — 1)v) — ap[Pa)((j — 2)v)| < 3e.
Hence for all large n, for each k,

sup [W2H(1)] < 6e, (68)
tev,T)

on 2F. Using 68) and (B3], for all large n, for each F,

sup Mo VT (pit — /Ot Cﬁ(s)ds) — ap[*)(t —v)| < T, (69)

tefo, 1] T bn
on 02F.
Step 4: Recall ©*(t) = f(pg[Y*](t)). The goal of this step is to estimate the difference between
X, and ©* on 2F. To this end, let first
ki 1k
f(pol"](t —v)) for t € [v,T].

Recall from Step 2 that X’ solves the Skorohod problem for Y;\. Note also that @F > 0. Thus
using the Lipschitz property of the Skorohod map we have on 2%

Nk(t):{ x+£€ for t € [0,v)

| X% — @y < 2V — gF| (70)
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Now for ¢ € [0,v] and for all n large we have, using the definition of Y, and (7)), for all large
n?

Vo (t) — 2F ()]

< 1X0(0) — @il + vlyp| + [AL(8) = S, (TR ()] + M"

<,0 t— /t Cﬁ(s)ds) ‘

< cge (71)

on 2F, where we use @T), @) and (B3). Moreover, for t € [v,T], by the definition of ¥;, and
&,
~ . . ~ . ~ . . . t .
i0) — B = XA(0) + vt + A1) — STiD) + L2 Y2 (1 - | cits)
n 0
— ag[PFh(t —v) =2 — il — v) = 9 (t —v) + Ri(t — ).

Hence, usmg E@17), @8),([66) and ([69), the estimate (1)) is valid for ¢ € [v,T] as well. Namely,
Y — & K% < cge on 02F for large n. Thus using (@), || X, — #*|* < ci0e on 2F for large n.
Comparing the definition of 3* and ©* we obtain that, for all sufficiently large n, (B7) holds.

Step 5: Since ¥ is bounded, and so is X,, on 2%, it follows from (7)) by continuity of h and
g that, for all large n, on £2F,

| / ()ds + g(" (7)) — Hy| < w(e), (72)
where
H, - / h(Kn(s))ds + g(X(T)),

and w = wa satisfies w(a) — 0 as a — 0 (for any A). .
By (B6) and the growth condition on h and g, H,, < ¢11(1+ A,,). Hence given any Ay > 0,

H, > A; implies A, > 1 A —1= :G(Ay).

Therefore

IN

2 2 g
E[eb"H”] E[ebn[HnAAﬂ] + E[eb”H"X{Hn>A1}]

2 2C ~7L
< E[eb”[H"AAl]] —I—E[eb" 11(1+A )X{/IH>G(A1)}]' (73)

Now we estimate both terms on the right hand side of (73). Denote B = (UN_ A¥)¢. Using
[@2), for all large n,

E[e n[HTL/\Al}]

IN

E[P A1y i s ) BN o ]

M= 11

Ele B2 fy P (s))ds+g(o* (T))+w(e)]

IN

2 A
X{Ginnyeary] T B 4, 50em)-

b
Il
—
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Now by Condition [Z1] for all large n,

Ihz
CI)z

1 - — € 1
— kY < — 4 — — < — 1 .
0 log P((Ay, S,) € AF) < wlen%ﬂw) T log P((Ay, Sn) € B) iggw +e

Hence for large n,

Ll (e (oD ds (e (D) +o(@)=infyex JWIH5) | 12 (A —intyes 100)+e]

Mz

E[eb%[HnAAll] <

B
Il
—

BALfy ek (9))ds+g(p" (T))—L(F)+w(e)+e] + ebi[ﬂl—A%]’

Mz

=
Il

1

where for the first term on the r.h.s. we used (49) and for the second term we used the fact
B C Q°¢ and the definition of Q.
The last term on (73] is bounded by

E[eb%(611/in+611+/in—G(41))] .

From Condition 23] there exists a constant ¢io such that for all large n,

2 (c11+1)An

E log E[ebn "] < c9.
Therefore from (73]) we obtain
limsup — 2 logE[ o niin)
< T)) — I(¢*
s [ [ MO + o) 1) +(6) 4

[ — A + 6] [611 “+ c19 — G(Al)]
< i‘él}g[c(?ﬂ,ae [V]) +w(e) +e] V[AL — A+e] Ve + ez — G(A1)]

Now let ¢ — 0 first, then A — oo, recalling that ¢11, ¢12 and G do not depend on A. Finally
let Ay — 00, so G(A1) — o0, to obtain

tin sup Vi (X,(0)) < limsup o log B[e/# 7] < sup et aglu) =V (2),
n S

where for the first inequality we used (B5) and for the equality we used (23]). This completes
the proof. O
5 The linear case and asymptotic optimality

Section describes a policy for the queueing control problem, that is asymptotically optimal.
While the construction of this policy and its analysis facilitate the proof of the main result,
they fail to provide a simple, closed-form asymptotically optimal policy. In this section we
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focus on cost with either h linear and g = 0 or g linear and h = 0, aiming at a simple control
policy.
More precisely, the assumption on the functions A and g is that

I 1
= dai, gla) =) da,
i=1 i=1

where ¢! and d’ are nonnegative constants, and, in addition,
dpt > ==t and d'pt >t > > d'

We consider the so-called cpu rule, namely the policy that prioritizes according to the order-
ing of the class labels, with highest priority to class 1. Let us construct this policy rigorously.
Consider the set of equations

1 2 I
By () = x(xim>01: Balt) = Xixam=0.x20>01 -+ Bn(t) = Xxa.9=0,... X1~ (5)=0,x2 (>0}
(74)
Arguing as in Section 2, considering (74) along with the model equations @)-), it is
easy to see that there exists a unique solution, this solution is used to define the processes
Xn, Dy, Ty, B, and moreover B,, is an admissible policy.
The result below states that the policy is asymptotically optimal.

Theorem 5.1 Assume Conditions [2]], hold. Then, under the priority policy {B,} of

@. :
Jim J(%0(0). B,) = V (z).

Proof: By Example 211 Condition holds. As a result, the lower bound, namely Theorem
A1 is valid. It therefore suffices to prove that limsup,, ., J"(X,(0), B,) < V(). The general
strategy of the proof of Theorem [£.2]is repeated here; the details of proving the main estimates
are, of course, different.

Thus, given constants A and e we consider Q ({Ql), M, the constants d1, 9,7, v, ve, the
members % of Q, the sets A*¥ = A (¥*) and the events 2% precisely as in the proof of
Theorem We also set ©* = f(pg[tp*]) as in that proof.

In what follows, c¢1, co,... denote constants independent of A, e, 41, §, 1, vy, v2 and n.
Analogously to (B8) and (57), we aim at proving that there exists a constant c¢;, such that for
all sufficiently large n,

HXn”’? <c(l+ /In)a (75)
(where, as before, A, = Ap(A,,S,)), and
sup || X, — ¢F|| < e, on 28 k=1,2,...,N. (76)
[v27T]

Once these estimates are established, the proof can be completed exactly as in Step 5 of the
proof of Theorem .2l We therefore turn to proving (75l) and (7).
Recall that 6,, = ( e ;2 e ﬁ) Therefore by ([B7),

o i) - V[
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where we used (74)), by which 3. B}, =0 <= foralli, X, =0 <= 6, X, = 0. Hence from

@), with
YEE) = X0 (0) + yht + AL (t) — SL(TL(L), (77)

we have

Or - Xn(t) =0nY, \/_ / X{0-Xn(s }ds (78)

Since ~9n - X, is nonnegative, and 0, - Z,, increases only when 6,, - X, vanishes, it follows that
(0, - Xn,0p - Zy) solve the Skorohod problem for 6, - Y.’ Asa result,

|0n ’ XnP} + |0n ’ Zn|§“ < 4|9n ’ Yn#ﬁ"
Also, using (8]), the non-negativity of Xﬁl implies
Z,(t) = =Y, (t).

Since 6, — 0,y — yi,Xn(O) — x, it follows that there exists a constant ¢ such that for all
n, ([[5) holds, as well as .
1Znl7 < c1(1+ An). (79)

Toward proving (Z6)), let us compute the paths ¢*. By Example 1] the corresponding
minimizing curve is given by f(w) = (0,...,0,wu’), w > 0. Recall the notation R (I8), and
let PF = R[*], that is,

() =+ yt+ (1) — R[P*2)(1).

Then ¥ = f(pp[¢¥]) = f(I'[0 - ¢*]). Thus

0, ifi=1,2,...,01-1,
o = (80)
Irie.-¢%), ifi=1I.
Define 7/ = {1,2 — 1} and o = 721 p. Then by ) and (@),
LX) = i Vn i i
i€’ i€’ i€’

\/ﬁ t
= Un(t“a/ox{kus):mds’

where
. . n
0= S0y + Y0 - 1),
, bn,
i€z’
and we used (74]) by which ;- BY =0 <= X! =0 for all i € Z’. Hence, invoking again the
Skorohod map,

X;L(t) = Un(t) + S[uf]){_Un \% 0}' (81)
0,
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We will argue that, on £2,, := Up82¥, for all sufficiently large n,

sup [ X[ < eae. (82)
[U27T]

To this end, let us fisrt show that, for all sufficiently large n, the following holds: On 2,,
U,(te) < Uy(t1) whenever tq,ty € [0,T] are such that to — ¢; > v9. Suppose this claim is
false. Then there are infinitely many n for which there exist (n-dependent) ¢1,t2 € [0,T] with
tog — t1 > vy but Un(tg) > Un(tl) on §2,,. Thus

ST OLTEO) + it + A1) — S (T (02)]
1€’
= ST GIRIO) + yita + A (12) — 8 (T3 (1))
1€’
Vi NG

<3Nt —t) < 5

) (F = 1va

However, this is a contradiction because the r.h.s. tends to —oo as n — oo whereas the Lh.s.
remains bounded. This proves the claim.

Next, note that, for a similar reason, for all sufficiently large n, U, (t) < 0 on §2,,, for t > vs.
Hence for t > vy and n large, we have on 2,,,

sup{—U, V 0} =sup{-U,} = sup {-U,}.
[0,¢] [0,t] [t—v2,t]

Thus using ([87I)), on (2, we have for all n large and ¢ > vy,

X'(t) = Un(t)+ sup {-U,}

[t—vz,t]
< Yy +£(p —1)t+ sup [—Zogyn#%s)—\/ﬁ(p —1)]
. bn
= [t—vait] = ep
< Z 0L, () + sup [ - Z GfLYn#’i(s)]
€T’ [t—v,t] = e
< 36 + e3[0sCy, (Ay) + 08¢y, (S,)], (83)

where we used (7)) and the fact that T are Lipschitz with constant 1. On 2%,
08Cuy (An) < 2[| A — PPH|" + 05, (V) < 3e, (84)

where we used @) and @T7). Similarly, osc,,(S,) < 3¢. Using this in (83) gives (82).
Next, recall that 6, - X, = I'[0,, - Y;i']. Note by (®0) that 8- * = I'[§-¢*]. Therefore using
the Lipschitz property of I we have, for all sufficiently large n,
(O - X = 0 "7 < 2005 - Y, = 0 - 8| + 21160 — 0][1F]15
< | VF —F|5 +e
< cay (1A, =5V 18] o T — RGN} + 2e. (85)
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Now, on 2% ||A, —*1| < e and ||S,, — R[¢*?]|| < e. Moreover, from (79),

sup |(p't — To(t))] < va,
(0,77

on (2, for all sufficiently large n. It follows that, on £2¥, for all sufficiently large n,
10 - X — 0 - OF|5 < s + 0scy (V?) < cge, (86)

where the last inequality follows from (7).

Now, by ([82) and the fact that ¢¥ = 0 for i < I (80), we have SUP[y, 71 | XE — oF| < ere for
i < I, on 2F for large n. Combining this with (88]), the convergence 6,, — # and the fact that
the I vectors 6 and e;, i < I are linearly independent, gives supy,, 7| [ Xn — || < cge, on 02F,
for all sufficiently large n. This proves ({@Q) and completes the proof of the result. O

A Appendix

Proof of Proposition 2.1k We borrow some ideas from the proof of Lemma A.1 in [21].
Clearly, the statements regarding fln.and S, are identical, hence it suffices to consider only
the former. Define MY (u) = E[e*4)] for u € R. Tt suffices to prove that for any positive
K>0and:€eZ,

1 At |*
limsupb—QlogE[eb’%(K'An‘ ] < .

Assume i = 1. Since M} (u) = E[e*/4"] is finite around 0, it is C? there, and so is HY(u) ==
log M}‘(u) Therefore by Taylor expansion there exist v,d > 0 such that

|HY (u) — u| < ~yu?, for all u with |u| < 6. (87)
Here we have used the fact that %(0) = E[IA'] = 1. Note that
E[ebi(K\A}LI*)]
— 14+ 02K /OOO R KIP( AL > t)dt < 1+ 2 KeK% + 2K /100 K| AL[* > )t
For t > 1,

P(|AL[* >t) = P(3v e [0,T] such that |AL(v)| > t)
< P(3v € [0,T] such that Al(v) < —t) +P(3v € [0,T] such that Al(v) > t).

Now

Al(w) >t <o Al(w) > byv/nt + Ao,
Al(v) < =t & Al(v) < —byv/nt + Ao
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Let |2] denote the largest integer less than or equal to z. Also assume —b,\/nt + AT > 0.
Then

P(3v € [0, 7] such that AL (v) < —t)
= P(Jv € [0,T] such that Al (v) < —b,v/nt + \lv)
| —bnv/nt+ALv+1]

< P(3v € [0,T] such that > TAY (1) > ALv)
=1
[—bnv/nt+ALv+1]
< P(3v € [0,T] such that Z (TAY (1) —1) > Mo — [=byv/nt + Ao + 1))
=1
| —bnv/nt+ALv+1]
< P(3v € [0,T] such that > (TAY(1) = 1) > by/nt — 1).

=1

We define Vi, = Zle(l AY(l) — 1). Then {V}} is a martingale w.r.t. the filtration generated
by {IA'(l)}. For all large n, b,y/nt —1 > 0 for all t+ > 1. Denote L,, = |—by/nt + AT +1].
Hence

P(3v € [0,T] such that Al (v) < —t) < P( sup |Vi| > boy/nt —1)
1<k<Ln

S e_ﬁn(bn\/ﬁt_l)E[ Sup eﬁn"/k']’
1<k<Ln

where 3, > 0 is a constant. We note that {e’*IVkl}, is a sub-martingale. Hence by Doob’s
martingale inequality

E[ sup e®V¥] <E[ sup ew"‘v’“']% < ZE[ew"WLn‘]%.
1<k<Ln 1<k<L,

Thus
P(3v € [0, 7] such that Aj,(v) < —t)
S 2€_Bn(bn\/ﬁt—l)E[e2Bn‘VLnI]%
< ZG—Bn(bn\/ﬁt_l)[E[e2B”VL"] + E[e—2BnVLnH%

< e~ Bnlbavnt=1) [ Ln(H}(28n)=2Bn) | oLn(HA(=2n)+280))3

If 26,, < 6 and n is large enough so that b”T\/ﬁt — 1 > 0 holds then using (87) we have

P(Jv € [0,T] such that AL(v) < —t) < 2v2e Pn Y 2L

24/2¢Pn b”‘z/m 62(—bn\/ﬁt+A%T+1)’Yﬁ72L )

IN

Now we choose (3,, = b—\/’%(ZK + 2) and we choose nj such that for n > nq, 26, <. Hence

AL T4

P(Jv € [0,T] such that AL(v) < —t) < 2287 YK+ o= br (K+1)t, (88)
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In a similar way we obtain ns such that for all n > no

. :
P(3v € [0, 7] such that AL(v) > ¢) < 2v/2ebh8™ 5 1K+2)? —bL(K+1)E, (89)

Thus from (8Y)) and (89) we have constants ng, 1, v2 such that for all n > ng

P(|AL* > t) < y1ePn12 e Vn(EH1)E

Hence for n > ng,

R Ktpy i1+ e [0 b2 Lo b2 (1)
/ et P(JAL T > t)dt < ype”n? / e ntdt = e EE
n

1 1
and
2 A1)+ 2 2 2 2
E[eb'rl(K‘An' )] S 1 + b%KeKb” + Krylebn(’m_l) é 3maX(1, biKeKb"L,K’}/leb"(ﬁm_l)).
This gives the required estimate and completes the proof. O
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