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AN OPTIMAL INEQUALITY FOR THE TANGENT FUNCTION

OMRAN KOUBA†

Abstract. In this note we deal with some inequalities for the tangent function that
are valid for x in (−π/2, π/2). These inequalities are optimal in the sense that the best
values of the exponents involved are obtained.

1. Introduction

The story started when I wanted to provide my students of “Basic Calculus” class,
with a way to prove that

lim
x→0

tan x− x

x3
=

1

3
(1)

without recourse to any advanced topics or to the L’Hôpital’s rule. So, I came up with
the following proposition :

Proposition. For every x ∈ (0, π/2) the following inequality holds:

x+
x3

3
< tanx < x+

tan3 x

3
(2)

Clearly, the limit in (1) follows easily from this Proposition. But this was not the
end of the story, it was just the beginning of my investigation. In fact, the inequality (2)
means that 3(tanx− x) is somewhere between x3 and tan3 x, but where exactly ?

In order to describe our results, an important role is played by the family of functions
(fγ)γ∈[0,3] defined on [0, π/2) by

fγ(x) = x3−γ tanγ x. (3)

Because of the well-known inequality tan x ≥ x for 0 ≤ x < π/2, we see that the
family (fγ)γ∈[0,3] is increasing in the sense that fα ≤ fβ for α < β. Using this family, we
can reformulate (2) by saying that

f0(x) < 3(tanx− x) < f3(x), for 0 < x < π
2
,

So, it is natural to be interested in identifying the best α and β such that fα(x) <
3(tanx − x) < fβ(x) for 0 < x < π/2. We were able to completely answer this question,
our results are summarized in the following two statements :
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Proposition. If for every x ∈ (0, π/2) we have fα(x) ≤ 3(tanx − x) ≤ fβ(x), where fγ
is defined in (3), then α ≤ 1 and β ≥ 6/5.

Main Theorem. The following two inequalities hold :

(a) For every x ∈ (0, π/2) we have f1(x) < 3(tan x− x),
(b) For every x ∈ (0, π/2) we have 3(tan x− x) < f6/5(x).

where fγ is defined in (3). Equivalently,

∀ x ∈
(

0,
π

2

)

, x+
1

3
x2 tanx < tanx < x+

1

3
x9/5 tan6/5 x. (4)

Before we embark in the proof of our results, it is worth mentioning that there is a
lot of similar inequalities involving trigonometric functions in the literature [1, 2, 3, 4].
For instance, the Becker-Stark’s inequality [1] states that

8x

π2 − 4x2
< tan x <

π2x

π2 − 4x2
, for 0 < x < π

2
.

Also, in [4] the authors prove, among other things, that for 0 < x < π
2
, one has

x+
x3

3
+

2

15
x4 tanx < tanx < x+

x3

3
+

(

2

π

)4

x4 tan x. (5)

Numerical evidence shows that the upper inequality in (4) is sharper than the upper
inequality in (5) for x ∈ (0, x0) where x0 ≈ 1.2332, and that the lower inequality in (4) is
sharper than the lower inequality in (5) for x ∈ (x1, π/2) where x1 ≈ 1.5255. So the two
results are complementary but not comparable.

2. Results and Proofs

Clearly, the next Proposition 1 follows from our main Theorem 4, but it can be
elementarily proved directly, our aim from presenting the proof is just to compare the
degree of difficulty.

Proposition 1. For every x ∈ (0, π/2) the following inequality holds:

x+
x3

3
< tanx < x+

tan3 x

3

Proof. Indeed, let g and h be the functions defined on [0, π/2) by

g(x) = tan x− x− x3

3
,

h(x) =
tan3 x

3
+ x− tanx.

Clearly, for x ∈ (0, π/2), we have g′(x) = tan2 x − x2 > 0 and h′(x) = tan4 x > 0.
Thus, both g and h are monotonous increasing on the interval (0, π/2), and the desired
inequality follows since g(0) = h(0) = 0. �
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Proposition 2. If for some 0 ≤ α, β ≤ 3, we have

(

tan x

x

)α

≤ 3(tanx− x)

x3
≤

(

tan x

x

)β

for every x ∈ (0, π/2), then α ≤ 1 and β ≥ 6/5.

Proof. Suppose that for x ∈ (0, π/2) we have

(

tan x

x

)α

≤ 3(tanx− x)

x3
≤

(

tanx

x

)β

,

that is α ≤ ϕ(x) ≤ β where ϕ is defined on (0, π/2) by

ϕ(x) = log

(

3(tanx− x)

x3

)/

log

(

tan x

x

)

.

Now, since

ϕ(x) =
log(tan x) + log(1− x/ tanx) + log 3− 3 log(x)

log(tanx)− log x

we conclude that

lim
x→(π

2 )
−

ϕ(x) = 1. (6)

On the other hand, since in the neighborhood of 0 we have

tanx

x
= 1 +

x2

3
+

2

15
x4 +O(x6),

we deduce that

log

(

tanx

x

)

=
x2

3
+O(x4)

log

(

3(tanx− x)

x3

)

= log

(

1 +
2

5
x2 +O(x4)

)

=
2

5
x2 +O(x4).

Thus, ϕ(x) = 6
5
+O(x2), and consequently

lim
x→0+

ϕ(x) =
6

5
. (7)

Therefore, (6) and (7), together with the fact that α ≤ ϕ(x) ≤ β for every x ∈ (0, π/2),
imply that α ≤ 1 and β ≥ 6

5
as desired. �
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Before we come to the proof of our main theorem, we will need the following technical
lemma.

Lemma 3. Let ϕ be the function defined on R by

ϕ(x) = (9− 24x2) cos(x)− 9 cos(3x)− 4x sin(3x). (8)

Then ϕ(x) > 0 for 0 < x ≤ π/2.

Proof. In order to determine the sign of ϕ(x) for x ∈ (0, π/2], we will use power series
expansion. Clearly, for every real x we have

ϕ(x) = (9− 24x2)
∞
∑

n=0

(−1)nx2n

(2n)!
− 9

∞
∑

n=0

(−1)n32nx2n

(2n)!
− 4x

∞
∑

n=1

(−1)n−132n−1x2n−1

(2n− 1)!

=
∞
∑

n=0

(

9 + 24(2n)(2n− 1)− 9 · 32n + 4(2n) · 32n−1
)(−1)nx2n

(2n)!

= 3
∞
∑

n=0

(

32n2 − 16n+ 3) + (8n− 27) · 32n−2
)(−1)nx2n

(2n)!

Thus, for a real x we have

ϕ(x) = 3

∞
∑

n=0

(−1)n
Tn

(2n)!
x2n, (9)

where,

Tn = 2(4n− 1)2 + 1 + (8n− 27)9n−1. (10)

Noting that T0 = T1 = T2 = T3 = 0 we conclude that (9) can be written as follows

ϕ(x) = 3

∞
∑

n=4

(−1)n
Tn

(2n)!
x2n. (11)

We recognize an alternating series since it is clear from (10) that Tn > 0 for n ≥ 4.

Now, if we show that the sequence
(

Tn

(2n)!
x2n

)

n≥4
is decreasing for any x ∈ (0, π/2] then

this would imply that ϕ(x) > 0 for x ∈ (0, π/2], because the first term in the series (11)
is positive.

Let Un be defined by,

Un = (2n+ 2)(2n+ 1)Tn − 3Tn+1. (12)

a simple calculation shows that

Un = (4n2 + 6n+ 2)
(

32n2 − 16n+ 3 + (8n− 27)9n−1
)

− 3(32n2 + 48n+ 19 + (8n− 19)9n)

= 128n4 + 128n3 − 116n2 − 158n− 51 + (32n3 − 60n2 − 362n+ 459)9n−1

= Bn + An · 9n−1 (13)
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where

Bn = 128n4 + 128n3 − 116n2 − 158n− 51

An = 32n3 − 60n2 − 362n+ 459

Now, it is straightforward to check that

Bn+1 = 128n4 + 640n3 + 1036n2 + 437n+ 69(n− 1),

An+4 = 32n3 + 324n2 + 694n+ 99.

Thus, An and Bn are positive for n ≥ 4, and according to (13) we have Un > 0 for n ≥ 4.
Using (12) we conclude that for n ≥ 4 and x ∈ (0,

√
3] we have

(2n+ 2)(2n+ 1)Tn > x2Tn+1

or, equivalently,

∀n ≥ 4, ∀ x ∈
(

0,
√
3
]

,
Tn

(2n)!
x2n >

Tn+1

(2n+ 2)!
x2n+2.

It follows that the sequence
(

Tn

(2n)!
x2n

)

n≥4
is decreasing for any x ∈ (0,

√
3], and, as we

have already explained, this implies using (11) that ϕ(x) > 0 for x ∈
(

0,
√
3
]

, and the

Lemma follows since π
2
<

√
3. �

With this technical lemma at hand, we can prove our Main Theorem.

Theorem 4. The following two inequalities hold :

(a) For every x ∈ (0, π/2) we have x2 tanx < 3(tanx− x),
(b) For every x ∈ (0, π/2) we have 3(tan x− x) < x9/5(tanx)6/5.

Proof. (a) Consider the function g defined on the interval (0, π/2) by

g(x) = 3− x2 − 3x cot x (14)

Clearly we have

g′(x) = x− 3 cotx+ 3x cot2 x = (1 + 3 cot2 x)h(x) (15)

where h(x) = x− 3 tanx

3 + tan2 x
. Similarly h has a derivative on [0, π/2) that is given by

h′(x) = 1− 3
(3− tan2 x)(1 + tan2 x)

(3 + tan2 x)2

=
4 tan2 x

(3 + tan2 x)2

So, h is monotonous increasing, with h(0) = 0. This implies that h is positive on the
interval (0, π/2). Going back to (15) we conclude that g is also monotonous increasing on
(0, π/2). Finally, since limx→0+ g(x) = 0, we conclude that g is positive on (0, π/2), but it
is straightforward to check that this is equivalent to the fact that 3(tanx− x) > x2 tanx
for x ∈ (0, π/2) which is the desired inequality.
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(b) This inequality is more delicate to prove. Again, we will consider an auxiliary function.
Let g be the function defined on (0, π/2) by

g(x) = 6 log

(

tan x

x

)

− 5 log

(

3(tanx− x)

x3

)

. (16)

Clearly we have

g′(x) =
6

cosx sin x
+

9

x
− 5 sin2 x

cosx(sin x− x cosx)

=
(9− 6x2) cosx+ x(4 sin3 x− 3 sin x)− 9 cos3 x

x cosx sin x (sin x− x cos x)

So, recalling the expression of cos(3x) and sin(3x) in terms of cos x and sin x we see that

g′(x) =
(9− 24x2) cos(x)− 9 cos(3x)− 4x sin(3x)

4x cos2 x sin x (tan x− x)
,

=
ϕ(x)

4x cos2 x sin x (tanx− x)
, (17)

where ϕ is the function considered in Lemma 3. Using the conclusion of that Lemma we
see that g is monotonous increasing on (0, π/2). But limx→0+ g(x) = 0, so g is positive
on (0, π/2), and this is equivalent to 3(tanx − x) < x9/5 tan6/5 x which is the desired
inequality. �

Corollary 5. The necessary and sufficient condition, on the real numbers α and β, for
the following inequality

1 +
x2

3

(

tanx

x

)α

<
tan x

x
< 1 +

x2

3

(

tan x

x

)β

to hold for every nonzero real x from (−π/2, π/2), is that α ≤ 1 and β ≥ 6/5.

Proof. This follows from Proposition 2, Theorem 4, and from the fact that the considered
functions are even. �
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