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Forcing in Strategic Belief Models

Fernando Tohmé Gianluca Caterina Rocco Gangle

Abstract

Forcing is a methodology for building models of Set Theory satisfying

certain properties. Since its inception by Paul Cohen, in the early 1960s,

it has been applied to several areas in Mathematical Logic, becoming a

powerful tool in the analysis of axiomatic systems. In this paper we extend

the applicability of forcing to game-theoretic strategic belief models. In

particular, we propose a very general notion of solutions for such games by

enlarging Brandenburger’s RmAR condition via extension through generic

types.

1 Introduction

The methodology of forcing was introduced into Mathematics by Paul Cohen in
order to show that Georg Cantor’s famous Continuum Hypothesis is independent
of the axioms of Zermelo-Frenkel Set Theory [10] [14]. This success prompted
other set theorists to investigate other topics in the field with the aid of this
powerful tool. Connections with other parts of Mathematical Logics were readily
found and versions of forcing for Model Theory were developed at the end of
the 1960s [3].

Forcing has remained in the realm of the foundations of Mathematics, with-
out being adopted in applied fields. The reason can be found in Shoenfield’s
Theorem, from which it can be deduced that forcing yields results only in the
non-absolute fragment of Mathematics, while most of applied science seems to
be confined in the absolute realm [12]. Only two recent pieces of research dared
to go beyond this limit, in Design Theory ([11]) and Abduction Theory ([9]).
In the latter, forcing is seen as providing the formal basis for diagrammatic
reasoning, embodied in Peirce’s γ-graphs. The intuition behind them seems to
extend to any belief formation process without defined boundaries.

A field in which the ideas of [9] might be applied is the characterization
of types of players in games. While the conditions for the existence of com-
plete types spaces are fairly well known, we are interested in providing definite
features to the types that ensure the epistemic conditions for very general no-
tions of solution in games. This can be accomplished, we claim, by means of a
straightforward application of forcing.

In section 2 we present a conceptual discussion of Cohen’s variety of forcing
and how it allows to reason, from the point of view of a conceptual framework,
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about generic objects in it and to provide a characterization of them, even if
they are indiscernable from inside the framework. In section 3 we make these
ideas concrete by introducing the problem of defining generic types in games
and apply forcing to define them.

2 Reasoning and Forcing

We make use of a mathematical technique called forcing. The method of forc-
ing has become a standard tool in several branches of mathematics, notably
model theory. Its primary purpose is to enact a specific form of mathemat-
ical reasoning, one that lends itself remarkably well, in particular, to proofs
of independence results. It does this by providing a way to generate and at
least partially control arbitrary models of set theory or other axiomatic systems
with chosen properties, even when these models are non-constructible by normal
means such as recursion or transfinite induction on ordinals.

Given a model M , we can define an extension of such a model by adjoining a
set G to M , and denoting the new model by M [G]. The nature of set G, which
we will call a generic set is such that, even being definable from within M , it is
indiscernable from M . By this we mean that the language within M allows us
only to name the elements of G, but not explicitly to describe its construction.
In this way, we do not have access to the inner structure of G, which remains
unknowable from the point of view of M and hence the use of the word generic
(as referring to the expression of something so “mixed up” or “common” that it
cannot be discerned). Once the generic G has been defined, the extension via G
of the ground model M gives way to new and possibly surprising ways to satisfy
the ground axioms, with profound epistemic consequences. Indeed, although
truths in M [G] are not directly accessible, we can define what we call a forcing
relation between objects and relations at the level of the ground model. If one
object forces a certain relation on M , then, if that relation belongs to G (and
we might never be able to know that except as a modal claim across possible
models), then we obtain “truth” in M [G].

Cohen’s original result with respect to the independence of the Generalized
Continuum Hypothesis from the Zermelo-Fraenkel axioms of set theory is well
known, and details may be found in [10] and [16]. In the wake of Cohen, a
variety of other interesting results have been obtained. We apply the method
to game-theoretic strategic belief models in the following section.

Smullyan and Fitting [16] elaborate an approach to forcing based in modal
logic (specifically the standard system S4) and the Kripkean semantics of frames.
A related approach, but one expressed in the diagrammatic logic of Peirce’s EG-
γ, may be found in [9]. These modal-logic based approaches to forcing emphasize
the non-classical character of the reasoning forcing enacts, which is closely linked
to the concept of the generic central to forcing. In what follows, this modal
character of the rationality of forcing is introduced into game-theoretic strategic
beliefs models by defining a generic set over the ordinal hierarchy of rational
ascription beliefs of players’ type-profiles. Models of games may then be forced
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which suggest new, non-classical rationalities. These motivating intuitions are
formalized in the subsequent section.

3 Generic Types

Game Theory is the field that studies the strategic interaction among self-
interested parties. That is, situations in which the outcome depends on the
decisions made by several agents, who intend to maximize their respective pay-
offs [15]. These situations are defined as follows:

Definition 3.1 Let G = 〈I, {Si}i∈I , {Ui}i∈I〉 be a game, where I = {1, . . . , n}
is a set of players and Si, i ∈ I is a finite set of strategies for each player. A
profile of strategies, s = (s1, . . . , sn) is an element of S =

∏
i∈I Si. In turn,

Ui : S → R is player i’s payoff.

The goal is to assess the solutions of the game, i.e. the family of profiles
S ⊆ S that might be expected to be chosen by the players. These profiles
capture the rationality of players, seeking to maximize their payoffs. Given any
i ∈ I, we denote by (si, s−i), where s−i ∈

∏
j 6=i Sj , a joint profile of actions.

All the aspects that contribute to the coordination among agents, which must
remain implicit since no communication is allowed between players, have an
epistemic nature. That is, they ensue solely from the beliefs and knowledge of
the individuals.

A Strategic Beliefs Model captures the epistemic aspects involved in the
choice of strategies [6]:

M = ({Si}i∈I , {Ti}i∈I , {Pi}i∈I)

where for each i ∈ I, Si and Ti are i’s sets of strategies and types, respectively.
The structure intends to model a game G and each strategy-type pair is a state
for a player, and each type of a player has beliefs about the states of the other
players. These beliefs are captured by the relations Pi that satisfy:

1. Pi : Ti → S−i × T−i is a correspondence.

2. For all ti ∈ Ti, Pi[ti] 6= ∅.

That is, Pi[ti] captures the strategies and types of the other players that i
thinks are possible, and each ti involves a non-empty set of beliefs.

The analysis on the rationality of players and the epistemic conditions of
solutions to the game can be fully disclosed up from the states of the game, i.e.
profiles of states of the players. The following example shows the expressive
power of M [4]:

Example 3.1 Let G be a two-player game, with S1 = {A,B} and S2 = {I,D}:



4

I D

A 2, 2 0, 0

B 0, 0 1, 1

To analyze this game we add:

• A class of types Ti for each i, T1 = {ta, ua} and T2 = {tb, ub}.

• A correspondence Pi[·] : Ti → S−i × T−i, for each i.

Suppose that P1[·] and P2[·] are as follows (the Xs indicate which pairs
(s−i, t−i) belong to the range of Pi[·]):

P1[t
a]:

T2/S2 I D

ub 0 X

tb 0 X

P1[u
a]:

T2/S2 I D

ub X 0

tb 0 X

P2[t
b]:

T1/S1 A B

ua 0 X

ta 0 X

P2[u
b]:

T1/S1 A B

ua X 0

ta 0 X
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A state of the game is (si, ti; s−i, t−i). Let us consider state (B, ta;D, tb):

• The response of 1 is “correct”, since she considers D is the choice of 2.
That is, the best she can do is choose B.

• The response of 2 is also right, since he considers that B is the choice of
1 and then his best response is D.

But:

• 1 considers possible that 2 may be mistaken about her choice: 1 thinks
that 2 might be of type ub while ub considers possible that 1 may choose A
instead of B.

• 2 thinks that 1 can be mistaken about his choice. Since 1 considers possible
ua, which implies that 2 thinks that 1 may play I instead of D.

This means that 1 and 2 are rational, since they maximize their payoffs given
their beliefs. But 1 thinks that 2 could be irrational since she considers possible
(D, ub), while if 2 were rational and had type ub, he would get a higher payoff
with I than with D. Analogously, 2 thinks that 1 might be irrational since he
considers possible (B, ua), and at ua, 1 fares better with A than with B.

This example shows interesting features of M. The first one is that each ti
can be “unfolded” in terms of the types of the other players, which in turn lead
to beliefs about the type of i, etc.

To make this notion more precise, let us define for any ti of i, the unfolding
of ti:

• tj ∈ P 1
i [ti] if there exists sj ∈ Sj with1 〈(s−ij , t−ij), (sj , tj)〉 ∈ Pi[ti].

• tj ∈ Pm
i [ti], for any natural number m, if there exists tk ∈ P

(m−1)
i [ti] such

that tj ∈ P 1
k [tk].

This means that, if tj ∈ Pm
i [ti], ti can be unfolded in m steps to tj , i.e. tj

is believed by ti by considering m steps of belief.
Another important feature of M is that it provides a powerful framework

for describing the epistemic aspects involved in a game [1]. The fundamental
concept here is that of assumption as defined over events of M, i.e. on sets of
states of the game. For any E ⊆

∏
i(Si × Ti), the types of i that assume E are

denoted as ASi[E] with:2

ASi[E] = {ti ∈ Ti : Pi[ti] = E|
∏

j 6=i(Sj×Tj)}

1Here s−ij (t−ij ) denotes an element in
∏

k 6=i,k 6=j Sk (
∏

k 6=i,k 6=j Tk).
2The notation E|

∏
j 6=i(Sj×Tj )

} indicates the projection of E, defined over
∏

i(Si×Ti) over
∏

j 6=i(Sj × Tj).
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In particular, we say that at ti, i assumes that j 6= i is rational if ti ∈
ASi[j is rational], where the event “j is rational” is

{〈(sj , tj), (s−j , t−j)〉 ∈
∏

i

(Si × Ti) : Uj(sj , s−j) ≥ Uj(s, s−j) for any s ∈ Sj}

We may then define inductively the condition denoted RmAR (for Rational-
ity and m-Assumption of Rationality):3

• R0
i = [i is rational]|Si×Ti

.

• Rm
i = Rm−1

i ∩ (Si ×ASi[
⋂

j 6=i R
m−1
j ]).

With all these elements at hand, it is known that there are certain properties
that a particularMmight fail to satisfy, in particular completeness [6]. Whether
such properties hold is related to whether enough types exist to ensure the
existence of solutions to a game. The question is if these properties can be
imposed on M in a general way, without finiteness or countability restrictions
on m. Here is where the technique of forcing can be applied.

Let us start with a given M0 intended as a family of events of the game plus
their underlying states of the game. It will constitute our ground model, on the
basis of which a new model M with the desired properties will be built. We
then define a family of forcing conditions P with a partial order � defined as
follows:

• P= {π = 〈(s1, t1), . . . , (sn, tn)〉 : every i is rational and there exists a

natural number m(π) such that for any i, j, tj ∈ P
m(π)
i [ti]}.

• For any π, π
′

∈ P , each one defined by a natural number (m(π) and
m(π

′

)), π
′

� π iff m(π) ≥ m(π
′

).

We say that if π
′

� π, then π dominates π
′

.
Let us define now a correct set δ of forcing conditions. A set δ is said to be

correct if and only if it satisfies the properties of a filter in (P ,�):

• If π
′

∈ δ and π
′

� π then π ∈ δ.

• If π
′

, π
′′

∈ δ there exists π ∈ δ such that π
′

� π and π
′′

� π.

Our candidate is δ = {φ = 〈(s1, t1), . . . , (sn, tn)〉 : there exists a natural

number m(φ) such that for any i, (si, ti) ∈ R
m(φ)
i }. We have that:

Proposition 3.1 δ is a correct set in P .

3If Ei ⊆ Si × Ti, ASi[E
i] is a shorthand for ASi[

⋂
E:E|Si×Ti

=Ei E].
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Proof:Let us see first that δ ⊆ P. That is, that for every φ ∈ δ there exists
π ∈ P such that φ = π. We know that φ=〈(s1, t1), . . . , (sn, tn)〉 where for some
m ≥ 0 every i is such that, (si, ti) ∈ Rm

i . From this condition follows that each
i is rational. We have to see now that for every i, j, tj ∈ Pm

i [ti]. Suppose not.

Then, there exists a tk such that tk /∈ Pm
′

i [ti], with m
′

≤ m. This means that

there exists tl ∈ P
(m

′
−1)

i [ti] such that (sk, tk) /∈ Pl[tl]. But, on the other hand,
(sl, tl) ∈ Rm

l . We have by definition that (sl, tl) ∈ Sl × ASl[R
0
k] which means

that tl is such that (sk, tk) ∈ Pl[tl]. Contradiction.
The converse is also true: given a state 〈(s1, t1), . . . , (sn, tn)〉∈ P, it follows

that there exists m such that each (si, ti) ∈ Rm
i . Suppose not. Then, for a pair

i, j, tj /∈ ASj [R
m

′

i ] for some m
′

≤ m. Then Pj [tj ]|Si×Ti
6= Rm

′

i . In particular,

we have that ti /∈ Pm
′

j [tj ]. Contradiction.

From this last implication it follows that if π
′

∈ δ and π
′

� π then π ∈ δ.
This is because m(π

′

) ≤ m(π) and π is such that every i is rational and for

every pair i, j, tj ∈ P
m(π)
i , which in turn implies that every (si, ti) ∈ R

m(π)
i and

therefore, π ∈ δ.
Finally, given π

′

, π
′′

∈ δ, just take m as the maximum of m(π
′

) and m(π
′′

).
Without loss of generality let us assume that m = m(π

′

). Then, we take π = π
′

and it is easy to see that π
′

� π and π
′′

� π.

We can define now a class of conditions called dominations. D is a domina-
tion if and only if D ⊆ P is dense in P :

∀π
′

∈ P ∃π ∈ D such that π
′

� π

Then, a correct set G is said to be generic if G ⊆ δ and G ∩D 6= ∅ for any
domination D. We have that:

Theorem 3.1 G = {φ ∈ δ : φ = 〈(s1, t1), . . . , (sn, tn)〉 with for every m
and every i, (si, ti) ∈ Rm

i } is a generic set.

Proof:By Proposition 3.1, δ is a correct set and so is G ⊂ δ. To see that it is
generic, just consider any π ∈ P, which is identified by a finite natural number
m(π). Then, by definition, φ ∈ G is such that for every i, (si, ti) ∈ Rm

i for
every m, in particular with m ≥ m(π). Then, π � φ.

We can say that G defines a set of types {t∗i }i∈I such that each one, joint
with the corresponding s∗i , satisfies that (s∗i , t

∗
i ) ∈ Rm

i for every m ≥ 0. That
is, each i is, with her type and the correponding strategy, rational and assumes
rationality at all levels. In other words, it satisfies the condition called R∞AR.
These generic types cannot be defined in the language of M0. That is, there is
no property λ expressible in M0 such that:4

∀ti ∈ Ti λ(ti) ⇔ ∃π ∈ G such that ∃si ∈ Si (si, ti) ∈ R
m(π)
i

4The generic types are indiscernable in M0 [9].
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This realization is quite important since, as shown in [6], M0 is not definable
complete, i.e. there exists some event E ∈ M0, definable by a property λE (i.e.
〈(s1, t1), . . . , (sn, tn)〉 ∈ E ⇔ λE(〈(s1, t1), . . . , (sn, tn)〉)) such that there exists
an i for whom no ti ∈ Ti satisfies Pi[ti] = E|

∏
j 6=i

(Sj×Tj).
5

However forcing shows that M0 can be extended to M0[G], in which the
class of generic types defined by G is included. To define M0[G] consider the
names of objects in G. The G-names are recursively defined sets of the form
{(µ, π) : µ is a G − name and π ∈ G}. They can be ordered in terms of their
rank. A name µ of rank 0 is the set of pairs (∅, π) with m(π) = 0. Recursively,
we say that µ is of rank m, if it includes all the pairs (µ

′

, π) such that m(π) = m
and the rank of µ

′

, m
′

, verifies m
′

< m.
The referential value of a name µ, rG(µ) is also defined recursively:

• If the rank of µ is 0, rG(µ) = {〈(s1, t1), . . . , (sn, tn)〉 ∈
∏

i(Si × Ti) :
(si, ti) ∈ R0

i } iff there exists (∅, π) ∈ µ. It is rG(µ) = M0[G], otherwise.

• If the rank of µ is m, rG(µ) = {rG(µ
′

) : ∃(µ
′

, π) ∈ µ}.

It is easy to see that names of rank 0 yield all the states in which all players
are rational, while for any m > 0 the names have as referential values all the
states in which the players are rational and assume up to level m the rationality
of all the others.

Then, M0[G] = {rG(µ) : µ is a name in M0}. We have:

Proposition 3.2 M0 ⊂ M0[G].

Proof: Trivial. Just take any name µ such that for every π ∈ G, (∅, π) /∈ µ. It
is easy to find an event in M0 satisfying this condition: take anyone in which
the states are such that there exist i and j, with (si, ti) ∈ Rmi

i and (sj , tj) ∈ R
mj

j

and mi 6= mj.

Instead, the object defined by G, namely the class of states in which each
(si, ti) ∈ R∞AR, exists inM0[G]. If we consider a statement Γ(〈(s1, t1), . . . , (sn, tn)〉)
which is true iff each (si, ti) ∈ R∞AR, we know that:

M0[G] |= Γ(〈(s1, t1), . . . , (sn, tn)〉).

Using a well-known result proven in [2], [13] and [8] among others, we also know
that if µ is a name in M0 such that 〈(s1, t1), . . . , (sn, tn)〉 ∈ rG(µ) we have that
π ∈ G is such that:

π 
 Γ(µ)

i.e. the generic types force R∞AR.
In this sense, we have defined a broad class of types involved in a very general

notion of solution for games. This class of types yields, when Si is finite, those

5See also [17].
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profiles of strategies that obtain by iterated elimination of weakly dominated
strategies. This is because R∞AR has been shown to be the epistemic pre-
condition for a SAS (self-admissible set) [7], [5].
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