Vol.31 No.2 Apr. 2011

电化学阻抗谱法对 304 不锈钢孔蚀生长和 再钝化阶段的原位研究

张胜寒 檀 玉 梁可心

(华北电力大学环境科学与工程学院 保定 071003)

摘要: 利用动电位电化学阻抗谱 (DEIS) 法研究了 304 不锈钢在 0.1 mol/L NaCl 溶液中的孔蚀行为,比较 了孔蚀前后钝化膜的电化学阻抗谱的变化。提出了一种改进的双层膜结构,用以评价不锈钢在孔蚀的初始阶段 和再钝化阶段各个参数的不同,指出孔蚀对钝化膜外层破坏较内层严重。使用活化控制的膜破裂模式评价孔蚀 的初始阶段和再钝化阶段各个参数变化。

关键词: 不锈钢 动电位电化学阻抗谱 孔蚀 钝化膜 中图分类号: TG174.36 **文献标识码**: A **文章编号**: 1005-4537 (2011) 02-0130-05

1 前言

自 19 世纪发现钝化现象以来,腐蚀界提出各种 方法研究钢铁和合金的钝化现象,其中,电化学阻抗 谱法 (EIS) 是重要的一种,其在伴有孔蚀过程的钝 化膜破坏现象中的研究是独特的。Buchler 等^[1] 用 EIS 的方法研究了铁基钝化膜的半导体性质。Oltra 和 Keddam^[2,3] 以及 Mansteld 等^[4~6] 研究了钢和铝 的孔蚀过程,并提出了相应的理论模型来解释研究 结果。Park 和 Pyum^[7] 指出孔蚀的形成和生长取决 于粗糙电极表面长相角元件的不同值。

孔蚀腐蚀的过程通常包括初始、发展/生长和再 钝化阶段。作为孔蚀的控制步骤,金属的亚稳态孔蚀 得到广泛研究^[8~12],通过对亚稳态孔蚀的电化学分 析,得出了不同的孔蚀模型。Skrakowiak 等^[13]研 究 304 不锈钢的交流阻抗,指出对不锈钢的孔蚀初 始阶段,钝化膜的击破模型能较好的解释现象说明 问题。Darowicki等^[14]指出根据 DEIS 试验数据,在 孔蚀的初始阶段和发展阶段,活化控制 (activation control),也即金属离子进入溶液的速度能很好的解 释现象。一些小组也发展了铝^[15~18]和钢^[19~23]在 有侵蚀性离子溶液中的孔蚀研究。

本文通过原位上测量 304 不锈钢整个孔蚀生长 和再钝化过程中电化学阻抗谱数据,分析比较孔蚀

通讯作者: 檀玉, E-mail: lucifertan@163.com

过程中钝化膜性质的改变,研究了活化控制下不锈 钢孔蚀的机理。

2 实验方法

实验所用材料为冷轧 304 不锈钢板, 厚度 3 mm, 其化学成分 (mass%) 为: Cr 19.7, Ni 9.4, C 0.036, S 0.003, Mn 1.70, Si 0.28, P 0.022, Mo 0.319, Fe 余量。 材料经线切割加工后退火, 经碳化硅砂纸逐级打磨 至 800 号, 酒精和蒸馏水分别在超声波环境中清洗 后,置于干燥容器中备用。

测试溶液采用由 0.1 mol/L NaCl 和 0.15 mol/L H₃BO₃ 及 0.0375 mol/L Na₂B₄O₇·7H₂O 配置的缓冲 溶液, pH=8.4。

测量在标准的三电极体系中进行。经前处理后的 304 不锈钢,用带有直径 6 mm 孔的铁氟龙胶带密封 后留有 0.28 cm² 面积作为工作电极,饱和甘汞电极 (SCE)作为参比电极,铂片作为辅助电极。DEIS 扫 描作为一个交流信号和直流信号的叠加,其交流测 试部分由普林斯顿 2273 电化学工作站完成,直流部 分由信号发生器 (RIGOL DG3061A)产生并经恒电 位仪的外输入端输入。考虑到孔蚀过程中不稳定的 动电位扫描 (直流信号)可能对交流阻抗测试 (交流 信号)的干扰,EIS 的频率仅在较高范围内实施,其 值为 100 kHz 至 1.08 Hz,扰动信号的幅值为 5 mV。

3 结果与讨论

典型的 304 不锈钢孔蚀的动电位扫描曲线如

定稿日期: 2010-10-29

基金项目: 国家自然科学基金项目 (50971059) 资助

作者简介: 张胜寒, 男, 1962 年生, 教授, 博士, 研究方向为金属 腐蚀与防护

图 1 所示, 其扫描速度为 0.05 V/120 s。

在正向扫描 (forward scan) 中,电压从 -0.3 V 到 0.05 V 时 304 不锈钢处于稳定阶段, 0.1 V 至 0.35 V 为孔蚀亚稳定阶段。在电压高于 0.4 V 时,电流有明显的升高,稳定的蚀孔产生。当电流达到一个极大点时 (击破电压,此实验中为约 1000 倍的钝化区平均电流密度),电压向负向折回至低电压区。在这一负向扫描 (reverse scan) 过程中,当电压小于 -0.05 V 时,不锈钢处于再钝化态。

对于电化学阻抗谱 (EIS) 的测量,在每个 0.05 V 的阶段分别实施。在直流电压升高后的 40 s 电压维持不变以利于孔蚀的生长或消亡,其后 60 s 进行电化学阻抗谱的测试,然后另外的 20 s 作为电极的稳定直到下一个台阶电压的升高或者降低 (图 2)。304 不锈钢孔蚀阶段的阻抗谱图如图 3 所示。

阻抗的数据随电压有规律的变化。在正向扫描 阶段,在 0.25 V 以下也即电极的亚稳定阶段,阻抗

Fig.1 Potential dynamic curve for stainless steel 304 electrode in 0.1 mol/L NaCl buffered solution. The electrode surface area $A=0.28\times10^{-2}\mathrm{cm}^2$, potential scan rate 50 mV per 120 s

Fig.2 Indication of DEIS test process

Fig.3 Potential impedance diagram Z''(f,E)/Z'(f,E) of 304 stainless steel in 0.1 mol/L NaCl buffered solution. Potential scan rate 50 mV per 120 s, amplitude of elementary sinusoid voltage measurement signal 5 mV

谱成近似直线。当孔蚀发生后,阻抗谱由直线逐步的转化为半圆。当电压回扫至再钝化阶段时,阻抗谱转化为直线,此过程中虚部收缩现象^[13]明显,考虑到在孔蚀发展阶段,传质过程引起的较大电流主要影响电化学阻抗谱低频测试的稳定性,本实验主要采取1.08 Hz 以上频率作为测试扰动,其结果是可以接受的。

图 4 表示了在正向/负向扫描中 0.2 V 时电化学 阻抗谱的细节。正向扫描时,不锈钢处于孔蚀即将产 生的亚稳态阶段,或者说孔蚀处于发生和消亡共存 的阶段,消亡占优。这时的电化学阻抗谱数据呈现直 线在低频段略有弯曲。在负向扫描中,电化学阻抗谱 数据呈半圆。

文献 [24~26] 关于不锈钢钝化膜的结构的研究 中指出,不锈钢的钝化膜具有双层结构:内层主要由 铬氧化物形成,外层主要由铁镍氧化物形成。根据这 一结构,提出了多种多样的包含有双层结构的拟合电 路 ^[14,27,28]。本实验中,提出了一个改进的双层结构 电路来评价动电位电化学阻抗谱的实验数据,如图 5 示。 $R_{\Omega,sol}$ 是接触和溶液电阻, C_O 是钝化膜的外层 电容, R_O 是钝化膜的外层电阻, R_i 是钝化膜的内 层电阻,Q是钝化膜的内层常相角 (constant phaseangle elements CPE, Freq 弥散系数) 元件,其阻抗 为: $Z=CPE^{-1}(j\omega)^{-Freq}$ 。

采用了 ZSimpWinTM3.21 对于实验结果和电路

Fig.4 A. Impedance spectrum of passive stainless steel 304 at $E_{\rm SCE}{=}200$ mV on forward and reverse scan. B. part of A.

Fig.5 Electrical equivalent circuit of passive electrode, $R_{\Omega,\text{sol}}$ is the resistance of connection and solution. C_{O} is the capacity of outer sublayer, R_{O} the resistance of outer sublayer, Q is the CPE of inner sublayer, R_{i} is the resistance of inner sublayer

31卷

	Potential	R_{Ω}/Ω	$C_{\rm o}/{ m F}$	$R_{ m o}/\Omega$	$CPE/\Omega^{-1} \cdot cm^{-2} \cdot s^{-1}$	Freq(0 < n < 1)	$R_{ m i}/\Omega$	χ^2
	0 V	74.28	$2.548{ imes}10^{-6}$	53.82	6.024×10^{-6}	0.8568	$3.143{\times}10^6$	0.000234
Forward scan	$+0.2 \mathrm{~V}$	74.03	2.162×10^{-6}	49.97	4.282×10^{-6}	0.8709	$5.464{\times}10^5$	0.000318
	$+0.4 \mathrm{V}$	74.03	1.862×10^{-6}	35.12	5.255×10^{-6}	0.8466	$2.704{\times}10^5$	0.003683
	$+0.6 \mathrm{V}$	75.8	1.503×10^{-6}	15.45	1.716×10^{-5}	0.7023	1045	0.018800
	$+0.4 \mathrm{V}$	78.47	5.978×10^{-7}	10	1.846×10^{-5}	0.7083	718.6	0.002875
Reverse scan	$+0.2 \mathrm{~V}$	66.74	5.064×10^{-8}	17.1	1.391×10^{-5}	0.7685	1034	0.002307
	0 V	85.63	$1.376{ imes}10^{-6}$	141.5	1.044×10^{-5}	0.8022	$9.398{\times}10^5$	0.001651

 Table 1 Fitting results to the electrical equivalent circuit

图进行拟合, 典型的拟合值列于表 1。

理论电路和实际实验结果之间的拟合相似度由 均方差 χ^2 来衡量。表 1 中一般的,其值小于 0.005; 电压最高值 0.6 V 时,其值达 0.0188;同样的,在孔 蚀的生长阶段其值较孔蚀的最初发生阶段和再钝化 阶段大,原于生长阶段直流电流的波动对电化学阻 抗测量的交流信号的影响。

在不锈钢孔蚀的正向扫描中,以往的论文^[29,30] 均不关注 $R_{\Omega,sol}$ 的变化,因其值在正向扫描中变 化很小,如图 6 所示。由于溶液中很高的离子浓 度, $R_{\Omega,sol}$ 主要受双电层 – 溶液和电极之间的反应 情况影响。 $R_{\Omega,sol}$ 的变化与孔蚀的发展是不同步的, 这说明侵蚀性离子 (主要是 Cl⁻)的浓度变化与动电 位扫描中电流的变化不同步。孔蚀表面的双电层遵 循扩散过程控制的"盐膜"^[31,32] 理论:当孔蚀刚发 生时,蚀孔破坏了金属表面的二维形貌,增大了电阻 率;随着孔蚀的发展,孔内生成的 Fe³⁺ 显著增多, 因孔的封闭特性,溶液中的扩散作用不足以抵消生 成的 Fe³⁺,当 Fe³⁺ 量达到极大值,根据盐膜中电导 率与浓度的关系,这一过程电导率先增大后减小;随 着孔蚀向钝化态发展,Fe³⁺ 的生成减少,扩散过程 占优,孔蚀后不平整的电极表面增大了 $R_{\Omega,sol}$ 值。

在正向扫描中,外层电容 Co 的值显示一个缓慢 减小的过程,这与 Darowicki 等^[14]的研究是一致的。 在负向扫描中,从 0.3 V 到 0.1 V 其值表现一个极小 值 1.0×10⁻⁸,几乎失去了其电容性质。随后其在再 钝化过程中恢复到初始值的一半左右。这显示了 304 不锈钢在含有 Cl⁻ 的溶液中,孔蚀后钝化膜外层结 构变得疏松而多孔,再钝化过程无法使钝化膜的外 层电容性质恢复至原状 (图 7)。

钝化膜外层的电阻变化如图 8 所示。在正向扫描至 0.35 V 之前, Ro 值变化不大。随着电压从 0.35 V 到 0.6 V, 孔蚀发生和发展, Ro 值明显下降。在负向扫描过程中, Ro 在再钝化电位 0.1 V 之前显示了一个近乎水平的极小值,随后其快速的升高至初始值约 2.5 倍。结合钝化膜外层电容值的变化,这一过程说明随着不锈钢孔蚀的发生、发展至再钝化阶段,表面变得疏松,其钝化膜结构发生了根本性

Fig.6 $R_{\Omega,sol}$ vs potential of stainless steel 304 electrode in 0.1 mol/L NaCl buffered solution

Fig.7 $C_{\rm O}~vs$ potential of stainless steel 304 electrode in 0.1 mol/L NaCl buffered solution

Fig.8 $R_{\rm O}~vs$ potential of stainless steel 304 electrode in 0.1 mol/L NaCl buffered solution

变化。

图 9 示出孔蚀过程中,内层常相角元件 Q 的 CPE 和 Freq 值的变化情况。Freq 值从孔蚀生长阶 段起开始明显下降,至负向扫描 0.55 V 时达到最低

Fig.9 Freq and CPE vs potential of stainless steel 304 electrode in 0.1 mol/L NaCl buffered solution

Fig.10 $R_i vs$ potential of stainless steel 304 electrode in 0.1 mol/L NaCl buffered solution

值,其后回复到 0.8056,与初始值 0.8436 略小。在 整个测试中,Freq 值处于 0.55~0.88 之间,不同于 Warburg 阻抗的 n=0.5。说明我们在图 5 提出的不 锈钢表面钝化膜的双层结构比 Ladder 模型^[15]更适 用。同样的,CPE 值的变化趋势也在图中加以说明, 其在孔蚀前后的差值小于 3.0×10^{-6} 。

钝化膜内层电阻 R_i 值变化最显著,在孔蚀的发展过程中经历三个数量级的改变,如图 10 示。在正向扫描至 0.45 V 后急速下降至很小值,其后保持这一值至孔蚀的再钝化,反应结束前其值回复至原值。结合图 9,10 可知,由 Cr 氧化物组成的不锈钢内层钝化膜,在含有侵蚀性离子(主要是 Cl⁻)的溶液中,孔蚀前后钝化膜内层虽然遭到破坏,但因 Cr 的参与可以基本恢复至初始态。

4 结论

首次使用动电位电化学阻抗谱法完整获得了不 锈钢钝化膜孔蚀过程中膜性质的变化,同时,提出了 一个改进的双层膜结构电路来评价实验获得的电化 学阻抗谱的数据。这一方法将电化学阻抗谱法宏观 技术,应用到解释不锈钢双层结构钝化膜的孔蚀过 程中。结果表明,含有侵蚀性离子(Cl⁻)的溶液中, 孔蚀的发生、发展和再钝化前后,钝化膜内层可以恢 复到初始形态,而钝化膜外层的破坏是不可逆的。

参考文献

- Büchler M, Schmuki P, Böhni H, et al. Comparison of the semiconductive properties of sputter-deposited iron oxides with the passive film on iron [J]. J. Electrochem. Soc, 1998, 145: 378-385
- [2] Oltra R, Keddam M. Application of EIS to localized corrosion [J]. Electrochim. Acta, 1990, 35: 1619-1629
- [3] Oltra R, Keddam M. Application of impedance technique to localized corrosion [J]. Corros. Sci., 1988, 28: 1-5; 7-18
- [4] Mansfeld F, Lin S, Kim S, et al. Pitting and passivation of Al alloys and Al-based metal matrix composites [J]. J. Electrochem. Soc., 1990, 137: 78-82
- [5] Mansfeld F, Kendig M W. Evaluation of anodized aluminum surfaces with electrochemical impedance spectroscopy [J]. J. Electrochem. Soc., 1988, 135: 828-833
- [6] Mansfeld F, Shih H. Detection of pitting with electrochemical impedance spectroscopy [J]. J. Electrochem. Soc., 1988, 135: 1171-1172
- Park J J, Pyun S. Pit formation and growth of alloy 600 in Cl⁻ ion-containing thiosulphate solution at temperatures 298–573 K using fractal geometry [J]. Corros. Sci., 2003, 45: 995-1010
- [8] Pistorius P C, Burstein G T. Growth of corrosion pits on stainless steel in chloride solution containing dilute sulphate [J]. Corros. Sci., 1992, 33: 1885-1887
- [9] Williams D E, Stewart J, Balkwill P H. The nucleation, growth and stability of micropits in stainless steel [J]. Corros. Sci., 1994. 36: l2l3-1235
- [10] Pride S T, Scully J R, Hudson J L. Metastable pitting of aluminum and criteria for the transition to stable pit growth [J]. J. Electrochem. Soc., 1994, 41: 3028
- [11] Laycock N J, Newman R C. Localised dissolution kinetics, salt films and pitting potentials [J]. Corros. Sci., 1997. 39: 1771-1790
- [12] Liu Z J, Cheng X Q, Liu X H, et al. Calculation and analysis of diffusivity of point defects in passive film formed on 2205 duplex stainless steel and 316L austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2010, 30(4): 273-277

(刘佐嘉,程学群,刘小辉等,2205 双相不锈钢与 316L 奥氏体 不锈钢钝化膜内点缺陷扩散系数的计算分析 [J]. 中国腐蚀与防 护学报,2010,30(4):273-277)

- [13] Krakowiak S, Darowicki K, Śepski P. Impedance investigation of passive 304 stainless steel in the pit pre-initiation state [J]. Electrochim. Acta, 2005, 50: 2699-2704
- [14] Darowicki K, Krakowiak S, Śepski P. Evaluation of pitting corrosion by means of dynamic electrochemical impedance spectroscopy [J]. Eletrochim. Acta, 2004, 49: 2909-2918
- [15] Hitzig J, Juttner K, Lorenz W J, et al. AC-impedance measurements on porous aluminium oxide films [J]. Corros. Sci., 1984, 24: 945-952
- [16] Cabot P L, Garrido J A, Perez E, et al. EIS study of heat-treated Al-Zn-Mg alloys in the passive and transpassive potential regions [J]. Electrochim. Acta, 1995, 40: 447-454
- [17] Chen L, Myung N, Sumodjo P T A, et al. A comparative electrodissolution and localized corrosion study of 2024Al in halide media [J]. Electrochim. Acta, 1999, 44: 2751-2764

- [18] Gu B S, Liu J H, A research on pH during the procession of the Cerium(III) film formation of aluminum alloys by EIS [J]. J. Chin. Soc. Corros. Prot., 2010, 30(2): 124-128 (顾宝珊, 刘建华, 电化学阻抗谱研究 pH 值对铝合金表面铈盐 转化膜形成过程的影响 [J]. 中国腐蚀与防护学报, 2010, 30(2): 124-128)
- [19] Hong T, Walter G W, Nagumo M. The observation of the early stages of pitting on passivated type 304 stainless steel in a 0.5 M NaCl solution at low potentials in the passive region by using the AC impedance method [J]. Corros. Sci., 1996, 38: 1525-1533
- [20] Hong T, Nagumo M. The effect of chloride concentration on early stages of pitting for type 304 stainless steel revealed by the AC impedance method [J]. Corros. Sci., 1997, 39: 285-293
- [21] Bastidas J M, Polo J L, Torres C L, et al. A study on the stability of AISI 316L stainless steel pitting corrosion through its transfer function [J]. Corros. Sci., 2001, 43: 269-281
- [22] Wenger F, Cheriet S, Talhi B, et al. Electrochemical impedance of pits influence of the pit morphology [J]. Corros. Sci., 1997, 39: 1239-1252
- [23] Li N, Li Y, Wang S G, et al, Corrosion behavior of nanocrystallized bulk 304 stainless steel-the research on anti-chloride ion attack of the passive film [J]. J. Chin. Soc. Corros. Prot., 2007, 27(2): 80-83
 (李楠, 李瑛, 王胜刚等, 轧制纳米块体 304 不锈钢腐蚀行为的研究 钝化膜耐氯离子侵蚀能力 [J], 中国腐蚀与防护学报, 2007, 27(2): 80-83)
- [24] Bastidas J M, López M F, Gutiérrez A, et al. Chemical

analysis of passive films on type AISI 304 stainless steel using soft X-ray absorption spectroscopy [J]. Corros. Sci., 1998, 40: 43-438

- [25] CarmezimaM J, Simõesb A M, Montemorb M F, et al. Capacitance behavior of passive films on ferritic and austenitic stainless steel [J]. Corros. Sci. 2005, 47: 581-591
- [26] Pérez F J, Gutierrezb A A, Lópezc M F, et al. Surface modification of ion-implanted AISI 304 stainless steel after oxidation process: X-ray absorption spectroscopy analysis [J]. Thin Solid Films., 2002, 415: 258-265
- [27] Hitzig J, Jüttner K, Lorenz W J, et al. AC-impedance measurements on corroded porous aluminum oxide films[J]. J. Electrochem. Soc., 1986, 133: 887-892
- [28] Jüttner K, Lorenz W J, Paatsh W, et al. The role of surface inhomogeneities in corrosion processes- electrochemical impedance spectroscopy (EIS) on different aluminum oxide films [J]. Corros. Sci., 1989, 29: 279-288
- [29] Chao C Y, Lin L F, MacDonald D D, et al. A point defect model for anodic passive films [J]. J. Electrochem. Soc., 1981, 128: 1187-1194
- [30] Park J R, MacDonald D D. Impedance studies of the growth of porous magnetite films on carbon steel in high temperature aqueous systems [J]. Corros. Sci., 1983, 23: 295-315
- [31] Isaacs H S. The behavior of resistive layers in the localized corrosion of stainless steel [J]. J. Electrochem. Soc., 1977, 120: 1456-1462
- [32] Mankowski J, Szklarska-Smialowska Z. The effect of specimen position on the shape of corrosion pits in an austenitic stainless steel [J]. Corros. Sci., 1977, 17: 725-735

IN-SITU IMPEDANCE INVESTIGATION OF 304 STAINLESS STEEL BETWEEN PIT GROWTH AND REPASSIVATION STATE

ZHANG Shenghan, TAN Yu, LIANG Kexin

School of Environmental Science and Engineering, North China Electric Power University, Baoding 071003

Abstract: Pitting corrosion investigations of 304 stainless steel in 0.1 mol/L sodium chloride borate buffer solution have been investigated by dynamic electrochemical impedance spectroscopy (DEIS). The electric equivalent circuit of the classic double-layer structure has been proposed to evaluate the changes of EIS data. According to the fitting results, the outer-layer of passive film of 304 stainless steel is highly destroyed during pitting process and can not return to the original condition. However, during repassivation process the inner-layer can be repassivated entirely. An active controlled model of film breakdown was proposed to analysis the film between the pit initiation and repassivation states.

Key words: stainless steel, DEIS, pitting corrosion, passive films

134