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The coalescence of two resting liquid droplets in a saturated vapor phase is investigated by Lattice
Boltzmann simulations in two and three dimensions. We find that, in the viscous regime, the bridge
radius obeys a t'/%-scaling law in time with the characteristic time scale given by the viscous time.
Our results differ significantly from the predictions of existing analytical theories of viscous coales-
cence as well as from experimental observations. While the underlying reason for these deviations
is presently unknown, a simple scaling argument is given that describes our results well.

I. INTRODUCTION

Coalescence of liquid droplets is important in many technological and natural phenomena, as, for example, coating
and sintering processes @], phase separation of emulsions @], or the formation of rain drops in clouds B] Coalescence
is initiated when two droplets come into contact and form a liquid bridge, which then starts to grow due to surface
tension. This growth is typically either opposed by viscous dissipation or inertial forces, until finally the two droplets
have merged to a single droplet.

Assuming that the initial growth of the liquid bridge just results from a competition between surface tension o
and fluid viscosity 7, the characteristic velocity scale is given by the capillary velocity, u. = o/n. Taking the relevant
length scale to be the size b of the liquid bridge connecting the two droplets (see Fig. [dl), a Reynolds number can be
defined as Re = pu.b/n = pob/n?. Due to the presence of b, this number will always be small in the beginning of
the process, regardless of the value of o and 7. The domain Re < 1 then defines the wviscous regime, which can be
described by the Stokes equations, in contrast to the inertial regime, Re 2 1, where the Euler equations hold. We
remark that, recently M], it has been suggested that the actual Reynolds number for the problem is in fact three
orders of magnitude smaller than the estimate given above, resulting in an underestimation of the crossover time from
the viscous to the inertial regime.

FIG. 1: Sketch of two coalescing droplets. Ry is the droplet radius, b the radius of the connecting bridge and r, the radius of
curvature of the meniscus. The right image is a magnification of the bridge region.
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Coalescence in the inertial regime is quite well understood nowadays M—Iﬁ] and it has been established theoretically
and experimentally that the evolution of the bridge radius follows a scaling law of the form b o« (Roa/p)'/*t'/?,
where Ry is the initial radius of each drop. However, for the viscous regime, there appear some discrepancies between
experiments and theory up to today. The first effort to describe viscous coalescence dates back to the work of Frenkel
ﬂﬂ] on viscous sintering of solid particles. By considering the balance between reduction of surface free energy and

viscous dissipation, he derived a simple scaling law for the growth of the bridge radius, b o (Roo/ 17)1/ 21/ 2, which
was confirmed in subsequent sintering experiments ﬂE . More sophisticated analysis of liquid droplet coalescence in
the Stokes regime by Hopper ﬂﬂ] and Eggers et al. Nﬁ], aiming to overcome some of the simplifications of Frenkel’s
model, arrived at a characteristic 986 or tlog t-growth law for the bridge radius at early times in the two- and three-
dimensional case, respectively. However, subsequent experiments M, 5, ,|E] neither reproduced Frenkel’s nor Eggers’
results, but instead reported a linear time dependence, b « ot/ in the viscous regime ﬂﬂ] The disagreement between
theory and experiments was usually attributed to the asymptotic nature of the analytical results, which are expected
to hold only in the limit of very small bridge radii. In a recent work, Paulsen et al. ﬂﬂ] resolve these discrepancies
by arguing that most experiments have in fact not operated in the actual Stokes regime, but instead in a different,
“inertially-limited” viscous regime where the drops are governed by a balance between surface tension, viscous forces
and the center-of-mass inertia. In this new regime, droplets appear to follow a linear time evolution governed by
the visco-capillary velocity ~ o /7. In the following, however, it will usually not be essential to distinguish explicitly
between the classical Stokes and the “inertially limited” viscous regime.

In this work, we study viscous coalescence of two droplets by Lattice Boltzmann computer simulations of a single-
component fluid in two and three dimensions. We consider two quiescent droplets in a surrounding vapor phase for
various values of surface tension, viscosity and vapor density. Interestingly, neither a growth of the bridge radius
that is linear in time, as reported in experiments M, 5, [, |E], nor a growth as predicted by theories of Stokesian
coalescence [14, [15] (i.e., b ~ t%86 in 2D or b ~ —tlogt in 3D) is observed by us. Instead we find that the bridge
radius is governed by an approximate t'/?-scaling law, with the characteristic scale factor set by the viscous time —
similar to Frenkel’s original result. The underlying physical mechanism for our findings is presently unclear. Thus,
despite the apparent simplicity of the problem, the present results suggest that the process of viscous coalescence is
still not fully understood.

II. SCALING THEORY

To aid the interpretation of our simulation results, we derive in this section a simple scaling law for coalescence that
is based on the dominance of the viscous term in the Navier-Stokes equations. Note that, in the following, we employ
a range of simplifications that occasionally deviate from assumptions made in the literature. However, our derivation
is not intended as a correction of previous works, but instead is essentially motivated by its success in describing our
simulation results. Fig. [[l shows the basic coalescence situation we consider in this work. Ry is the initial radius of
each of the two droplets, b the radius of the connecting bridge, and r, the radius of curvature of the meniscus. Due
to rotational symmetry, it suffices to consider the problem in a plane that contains the conjoining line of the centers
of the two droplets. By geometry, R3 = (b+ r,)? + (Ro — r»)?, and thus we obtain the radius of curvature as
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where the last approximation is justified since we focus on b < Ry. It should be remarked that our estimate eq. (I
differs from a number of previous works ﬂﬂ, ], which found 7, ~ b3. To obtain a relation for the time dependence
of the bridge radius, we apply scaling arguments similar in spirit to ﬂa, , ] to the incompressible Navier-Stokes
equations ﬂ%],

p(0; +u-V)u=—Vp+nViu, (2)

where p is the density, u the fluid velocity and p the local pressure. We shall neglect a possible rigid translation of
the coalescing droplets (although, in principle, this effect can be relevant ﬂﬂ, ﬁ) and also ignore the influence of
the vapor on the dynamics. Focusing now on the axis along the direction of the bridge radius, the flow velocity u
near the meniscus is, by continuity, determined by the motion of the bridge alone, u = b. Assuming that the pressure
varies between zero at the center of the bridge and the Laplace pressure py, ~ —o /7, at the curved meniscus, we can
approximate Vp ~ pr,/b. Finally, we shall assume that the velocity varies smoothly (e.g., parabolically) between the
center of the bridge (where u ~ 0) and the interface, allowing us to estimate VZu ~ —u/b%.



In the viscous regime, eq. Bl becomes nV?u = Vpr, and above simplifications lead to
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The solution of this differential equation is easily written down as

t—1p
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where t( is a suitably chosen initial time, by = b(tg) and the characteristic time scale 7 is given by the viscous time
7o =nRy /40 . (5)

For completeness, we state also the result for the inertial regime, where the advection term p(u-V)u dominates over
the viscous stress. Here, the same solution as in eq. (@) is obtained, but with 7 replaced by the inertial time

7 =/ pR3 /80 . (6)

It must be emphasized here that the above results hold independent of the spatial dimension.
Neglecting the integration constants to and b(tg) in (@), which is justified for the intermediate and late stages of
the evolution, the growth-law for the bridge radius can be expressed as

o () @

Of course, in the inertial regime, the above relation is already well known ﬂa] and has been confirmed by experiments
M, E, B, @, ] Remarkably, our simple scaling theory yields a power-law with the same exponent 1/2 also in the
viscous regime, albeit with a different characteristic time scale. In sec. [[V] we present results of Lattice Boltzmann
simulations that support eq. (@). Relation (@) agrees with Frenkel’s classic result on viscous sintering ﬂﬂ], where it
was obtained under the assumption that the two coalescing droplets reduce their surface free energy by moving closer
together as a whole, without considering explicitly the dynamics of the bridge.

Clearly, it must be mentioned that our scaling result (@) differs from predictions of existing analytical theories
of coalescence in the Stokesian regime in two and three dimensions, which predict a growth behavior like b ~ ¢0-86
ﬂﬂ, ] (see also sec. IIE% It also disagrees with most experiments on viscous coalescence that reported a linear time
dependence, b ~ t/T, @ , ] (Note that, according to a recent proposition ﬂﬂ], these experiments have not been
performed in the actual Stokes regime, but in the “inertially-limited” viscous regime, which apparently resolves the
discrepancies between experiments and previous theories.) Of course, the scaling arguments leading to eq. () are not
rigorous and therefore have to be taken with care. For instance, approximating the Laplacian of the velocity at the
bridge as V2u ~ u/b™ with an arbitrary power n allows one to write down a generalization of eq. ([B]) as
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Obviously, the choice n = 2 corresponds to eq. (), supported by our simulations, while n = 4 would lead to a linear
time dependence of b, in agreement with experiments. However, irrespective of the validity of the specific assumptions
of our scaling theory, the fact that our simulations support eq. (@) indicates that the present understanding ﬂﬂ] of
viscous coalescence is still incomplete and suggests that an unknown physical mechanism is possibly at work here.

IIT. SIMULATION SETUP

Numerically, we solve the Navier-Stokes equation () in both two and three dimensions with the Lattice Boltzmann
LB) method, which is a well-established tool for fluid dynamical simulations ranging from the micro- to the macroscale
iﬁ] Motivated by the growing interest in microfluidic applications, the LB method has been widely applied to the
study of problems encompassing fluids in complex geometries or with multiple phases, such as droplet spreading or
wetting ] For the study of coalescence, we employ an implementation of the LB model described in B , which
features faithful representation two-phase thermodynamics ﬂﬂ] as well as basic aspects of hydrodynamics Nﬁ] The
model is based on a Ginzburg-Landau description of a single-component fluid that allows for the coexistence of liquid



2D 3D
Label |nr /nv o To T Oh Re |nL/nv o To 7 Oh Re
(x107* Lu.) (x10* Lu.) 1 s (107" Lu.) (x10* Lu.)
o 10 4.3 11 14 033 1.2 0.13| 10 4.1 4.1 1.7 3.3 0.01
A 1000 6.6 7.5 11 0.27 0.97 0.22| 100 8.0 23 1.2 2.6 0.03
] 100 1.3 3.9 80 0.20 0.70 0.40| 1000 1.9 1.2 087 16 0.05
° 10 3.3 20 16 0.52 1.8 0.05| 10 3.3 5.6 2.0 4.0 0.006
A 100 13 6.5 80 033 1.2 0.16 4 13 1.3 0.97 2.0 0.03

TABLE I: Parameters for our simulations in three and two dimensions. The first column refers to the symbols used in the
plots, nr/nv the liquid-vapor viscosity ratio (which is equal to the liquid-vapor density ratio), o the surface tension (in l.u.),
Ty and 7; are the viscous and inertial times (in L.u.), Oh is the Ohnesorge number (see text) and Re is the average Reynolds
number (the average is computed over the full coalescence process). In the 2D case, the letters ‘1’ and ‘s’ below Oh refer to the
simulations performed using a large (Ro = 5000) or small (Ro = 400) droplet radius. The values for 7, and 7; are stated for
the smaller radius.

and vapor domains separated by a diffuse interface ﬂﬂ] In the 2D case, two resting cylindrical droplets of identical
radii of Ry = 5000 lattice units (l.u.), initially separated by 4 l.u., are placed into a periodic rectangular domain
of size 20100 x 10200 l.u. For comparison, we also performed simulations using droplet radii of Ry = 400 and box
sizes of 1800 x 1000 l.u. Due to computational limitations, the 3D simulations are performed with smaller system
sizes of 460 x 250 x 250, using two spherical droplets each of radius Ry = 100 l.u., initially separated by 4 lL.u. The
initial separation of the two droplets has been varied in a few cases, showing that this parameter has a negligible
influence on our results. Also, in a number of cases, simulations with larger system sizes have been performed to
ensure that hydrodynamic interactions between periodic images are negligible. The bridge radius b is determined from
the (interpolated) position along the horizontal symmetry axis of the simulation box that corresponds to a density
value of (pr, + py)/2. We follow the time evolution until the bridge radius has reached roughly half of the radius Ry
of the original droplets. We find that the volume of the liquid droplet stays constant during the whole coalescence
process to a precision of 1074, We have chosen comparable material parameters (i.e., viscosity, surface tension and
density contrast between inner and outer fluid) to the silicon oil used in ﬂﬂ], amounting to typical droplet radii of a few
mm and time units between 0.1 and 2 us per l.u.. The viscous and inertial time scales range between 20 and 100 ms.
Detailed simulation parameters can be found in Table[ll We cover a wide range of values for surface tension, viscosity
ratio (which is equal to the density ratio here), Ohnesorge and Reynolds number. The Ohnesorg number is defined as
Oh = n/+/pro Ry and has been recently argued to be an important quantity separating different coalescence regimes
ﬂﬂ] According to the phase-diagram proposed in ﬂﬂ], the present values of the Ohnesorg number indicate that our
simulations are located in the inertially-limited viscous regime. We will return to this point in sec. [Vl

As our LB simulations are based on a diffuse interface model B, ], some care is needed in order to avoid spurious
influences of the finite interface width on the determination of the bridge radius. Denoting by £ the characteristic
length scale over which the liquid-vapor interface is diffuse in our simulations, we have to make sure that we only
consider the regime where all our physically interesting quantities are significantly larger than £, thereby approximating
the sharp interface limit. This leads to the restrictions b/ > 1 for the bridge radius and r, /¢ 2 1 for the radius
of curvature. While the first condition is easily fulfilled in our simulations, the latter one imposes a lower limit on
the physically meaningful bridge radius. Using eq. () for the radius of curvature, 7, = b*>/2Ry, one arrives at the
condition

b/Ro 2 2§/ Ro . (8)
With a typical value of £ = 4, we obtain /Ry 2 0.04 for Ry = 5000, b/Ry = 0.15 for Ry = 400 and b/Ry = 0.3 for
Ry = 100.

IV. RESULTS

A. Two dimensions

In Fig.[2h, a typical coalescence event as obtained from our simulations is visualized (the behavior is similar in 3D).
The upper inset of Fig. 2h shows the evolution of the center-of-mass position Aycms = Yems(t) — Yems(0) of one of
the droplets in dependence of the bridge radius b/ Rg. For all our simulations, we find that the data is well described
(including the proportionality constant) by a power-law Ayems/Ro =~ 0.3(b/Ro)3*, represented by the solid line in the
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FIG. 2: (a) Coalescence of two droplets initially at rest (in 2D). Contours represent the interface liquid-vapor interface and
correspond to times 0, 0.04, 0.1, 0.2, 0.3, 0.6, 1.0, 1.5, 2.0 (in units of 7,, from inner to outer). The bottom inset is a
magnification of the bridge region. The upper inset shows the center-of-mass position, AYems = Yems(t) — Yems(0) of one of the
droplets (measured along the symmetry axis) in a double-logarithmic representation. The solid line represents the prediction
of Hopper ﬂﬂ] (b) Velocity field at ¢t ~ 0.3, close to the bridge. The color-field shows the pressure distribution (a darker
color represents a larger pressure).

inset of Fig. 2h. Note that if one chooses to plot the data vs. ¢/7, rather than vs. b/ Ry, a general power-law exponent
of 1.7 is found, effectively in agreement with the predictions of the Stokesian theory coalescence by Hopper ﬂﬁ] In
this representation, the prefactor, however, turns out to be strongly dependent on the droplet size. The exponent 3.4
that describes the dependence of Ayems on b/ Ry can be obtained from Hopper’s theory by substituting the proper
time-dependence of the bridge radius as observed in the present simulations (b ~ t°-5, see below).

Fig. Bb shows the velocity field close to the bridge, together with the pressure distribution inside the droplet. As
expected, the pressure is largest at the meniscus. Since we are simulating coexisting liquid and vapor phases separated
by a diffuse interface, there occur no flow discontinuities. Note that in typical experiments, droplets are composed of
a different material than the surrounding fluid phase (as characteristic for emulsions) M—B, @]

Fig. Bh presents the raw data of the time evolution of the bridge radius obtained from five simulations with different
sets of simulation parameters (see Table [l). From the values of the Reynolds number (see inset) it can already be
inferred that the coalescence process is dominated by viscosity. This is also corroborated by the (approximate) data
collapse obtained when rescaling the time axis with the viscous time 7, [eq. (H)], as seen in Fig. Bb. In contrast,
when expressing the time in units of the inertial time 7, no collapse is obtained. As Fig. Bk shows, the bridge radius
follows an approximate t'/2-law over almost two decades in time, well agreeing with the predictions of our scaling
analysis [eq. ([[)]. The actual exponent is found to differ slightly between the individual curves, being in the range
of 0.50 — 0.58. These minor discrepancies should not be surprising given the strong simplifications used to arrive at
eq. (). Note that there are no fitting parameters involved in obtaining the plots.

For comparison, Fig. Ml shows data for bridge radius obtained for droplets of radius Ry = 400, using the same set
of simulation parameters as in Fig. Bl Due to the smaller droplet radii, the evolution spans only about one decade in
time. Nevertheless, from the time rescaling (Fig. @h) and logarithmic representation (Fig.[db) we again conclude that
the droplets coalesce in the viscosity-dominated regime, following a t'/2-law in time.

The presence of a t!/2-scaling law in the viscous regime is unexpected on the basis of previous experiments on
coalescence of two-dimensional liquid lenses ﬂﬂ], which reported a linear time evolution for the bridge radius (similar
to the 3D case). An analytical theory for Stokesian coalescence by Hopper [14] predicts that b o< (t/7,)%#7 in the
range 0.003 < b/Ry < 0.15 (at later times, the evolution b gradually slows down until the coalescence process comes
to an end). Note, however, that, according to the recent study of Paulsen et al ﬂﬂ] our simulations reside in the
inertially-limited viscous regime, where the predictions of Stokesian theories are not valid. Coming back our simulation
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FIG. 3: Viscous coalescence in 2D for two droplets of initial radius Ry = 5000 Lu. (a) Raw data for the time evolution of
the bridge radius b (in units of the droplet radius Ro) as obtained from our simulations. The inset shows the evolution of
the Reynolds number for one case. In (b), the data is shown when the time is expressed in terms of the viscous time 7,. For
comparison, in the inset, time is rescaled by the inertial time 7;. In (c), the data is plotted in a double-logarithmic representation
using the same rescaling of the axes as in (b). The dashed, dot-dashed and dotted lines represent power laws ~ :‘,1/27 ~ 0857
and ~ t, respectively. See Table[ll for a legend to the different symbols.

results, it is clearly visible from Fig. Bb and c that there appears no sufficiently extended region where either a linear
or t%857_law can describe the data well.

B. Three dimensions

Turning to the three-dimensional problem, we proceed in an analogous manner as for the 2D case. In Fig. Bh
we show the bridge radius evolution obtained from five representative simulation runs (see Tab. [l for simulation
parameters). Although simulation parameters are comparable to 2D, the Reynolds number remains roughly one order
of magnitude smaller than in two dimensions. As seen in Fig. bb, expressing the time in units of the viscous time, 7,
produces a reasonable scaling collapse of all data points onto a master curve. In contrast, no collapse is found when
rescaling the time with the inertial time 7; (inset to Fig. Bb). This confirms, independently from the value of the
Reynolds number, the dominance of viscosity in the coalescence process. As the double-logarithmic representation
of Fig. Bk shows, the data follows our predicted t'/2-scaling law [eq. ()] with reasonable accuracy. The power-law
exponent is found to be only approximately equal to 1/2, but instead varying in the range 0.45 — 0.6 between the
individual curves. It is remarked that, due to computational limitations, the initial radii of the two droplets had to
be chosen significantly smaller than in 2D and, consequently, the time axis in Fig. [l spans only roughly one decade.
This range is nevertheless comparable to experiments ,]. Note also that no fitting parameters are involved in our
representation of the data.

Similarly as in the two-dimensional case, even when acknowledging the slight variation in the power-law exponent,
our results stand in remarkable contrast to experiments M, 5, |E], where typically a linear time-dependence is ob-
served (see, however, ]) It is also interesting to compare our results to the analytical theory of three-dimensional
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FIG. 4: Viscous coalescence in two dimensions for two droplets of initial radius Ry = 400 L.u. Time is expressed in terms of
the viscous time 7, while the bridge radius b is expressed in units of Ry. For comparison, in the inset, the time is rescaled by
the inertial time 7;. In (a), the data is shown in a linear and in (b) in a double-logarithmic representation. The dashed and
dotted lines represent power laws ~ /2 and ~ t, respectively. See Table [[l for a legend to the different symbols.

coalescence of Eggers et al. ﬂﬁ], which predicts the bridge radius (in the region r, < b < Rp) to evolve according to

the differential equation
b(t/7,) 1 b(t)7,)]% "
SASTALTAN I NANALYA 9

Ry 27 o8 <CO |: Ry ’ ( )

where ¢y and a are constants that, in the original work ﬂﬂ], are predicted as ¢ = 1 and « = 3 for an inviscid outer
fluid while o = 3/2 for finite viscosity ratios (both valid for b/ Ry < 1). For b < 0.03 Ry, the solution of eq. (@) follows
an approximate scaling law of the form ]

) L (1), (10)

RO To To

In Fig. [Bh, the typical behavior of the numerical solution of eq. (@) as well as the approximate law (I0) is shown.
Several interesting observations can be made: First of all, at any time the bridge radius as predicted by the analytical
theory evolves significantly slower than it would be for a linear time-dependence. In fact, over many decades, the
early-time behavior of eqs. (@) and ([{0) can be fitted by an effective power-law ~ t986 whose exponent is practically
identical to the value obtained by Hopper in the two-dimensional case ﬂﬂ] At longer times, the evolution of the
bridge slows down and a time window appears where b approximately evolves as t°°.

Given this observation, it is tempting to fit the numerical solution of eq. (@) to our data for the bridge radii (Fig.[Gb).
We find that reasonable agreement can only be obtained if a and ¢y are treated as fit parameters. In the inset to
Fig. [6b it is seen that the obtained best-fit values for the scaling exponent « decrease with the liquid-vapor viscosity
ratio 7y /ny, settling around a value of 2 for large viscosity ratios — a trend which is opposite to the theoretical
predictions of [15]. The parameter ¢y is found to be of the order of unity for all except the smallest viscosity ratios
— a result which roughly agrees with the theoretical expectation, cg = 1. Due to the limited range in time, it can
presently not be decided whether our observation of a ¢t'/2-law in the data for three-dimensional coalescence (Fig. Bk)
is a manifestation of a finite-size effect associated with the slowing-down of the coalescence process or whether it
actually represents a true deviation from the Stokesian theory of coalescence ], similar to the two-dimensional case.
Here, additional simulations over a much larger range of time will be necessary to clarify this issue. This is reserved
for future work.

V. SUMMARY

In this work, we have investigated the coalescence of two identical resting droplets in the viscous regime in two and
three dimensions. ;From Lattice Boltzmann simulations of the full isothermal Navier-Stokes equations for a non-ideal
fluid, we find that the time evolution of the bridge radius can be well described by a t'/2-scaling law — in striking
similarity to what is well-known to hold in the inertial regime, albeit with a different characteristic time constant. We
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FIG. 5: Viscous coalescence in 3D. (a) Raw data for the time evolution of the bridge radius b (in units of the droplet radius
Ro) as obtained from our simulations. The inset shows the evolution of the Reynolds number for one case. In (b), the data is
shown when the time is expressed in terms of the viscous time 7,. For comparison, in the inset, time is rescaled by the inertial
time 7;. In (c), the data is plotted in a double-logarithmic representation using the same scaling of the axes as in (b). The
dashed and dotted lines represent power laws ~ tY/? and ~ t, respectively. See Table[ll for a legend to the different symbols.

have shown that our simulation results can be rationalized through simple scaling arguments applied to the Stokes
equations [see eq. . Although similar material parameters are used (leading, for instance, to similar values of the
Ohnesorg-number %]), our results differ significantly from recent experiments @, 5, @, @, ], which report a linear
time-evolution of the bridge radius in the viscous regime both in two and three dimensions. In two dimensions, our
findings for the evolution of the bridge radius are also clearly different from analytical theories M], which predict a
power-law b ~ %86, The center-of-mass motion of each droplet is found to be described by a power-law ~ t'7, with
an exponent that, surprisingly, agrees well with the theoretical prediction ﬂﬂ] Due to the limited range in time, no
definite conclusions concerning possible agreement with the theory for three-dimensional Stokesian coalescence ﬂﬁ]
can be drawn presently. It is useful to remark that, in the language of the phase-diagram of ﬂﬂ], our simulations
are located in the inertially-limited viscous regime — the region where in fact also most experiments M, 5, [, [, |E]
reside. In the light of this, it is not surprising that our simulations disagree with the theoretical predictions obtained
in the Stokes regime, which applies to droplets of much larger viscosity than presently used. It should be noted that
the time-evolution of the bridge radius in the inertially-limited viscous regime is only empirically characterized by a
linear law. A theoretical derivation of this scaling law appears to be lacking so far.

Presently, an explanation for the discrepancies between our work and existing theories or experiments remains
elusive. We remark, however, that, in contrast to experiments, we study here the dynamics of a liquid droplet
surrounded by its own vapor. Although we find that the total volume of the droplet is conserved to O(107%),
significant local evaporation and condensation processes can be present in regions of large curvature. These, in turn,
might change the dynamics of the bridge and be ultimately responsible for the observed t'/? scaling law. Also, in
contrast to predictions of ﬂﬂ], we have never observed the presence of a vapor bubble around the neck. These issues
should be considered in future investigations.
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FIG. 6: (a) Theoretical time evolution of the bridge radius according to the numerical solution of eq. (@) (e) and its asymptotic
approximation [eq. (I0), dashed], for a typical set of droplet parameters. At early times, the analytical predictions can be well
approximated by an effective power-law b ~ t°%. For comparison, also a linear power-law (b ~ t) is indicated. (b) Numerical
solution of eq. (@) (solid curves) fitted to the data for the bridge radius b obtained from simulations in 3D (symbols). The inset
shows the dependence of the fit parameter « on the liquid-vapor viscosity ratio. Error bars are of the order of the symbol size.
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