Al-Zr-M (M=Fe,Ce 和 Nd) 合金在 NaCl 溶液中的 腐蚀行为研究

范常有¹ 张 雷¹ 赵茂密¹ 陈红梅¹ 文衍宣² 欧阳义芳¹ (1. 广西大学物理科学与工程技术学院 南宁 530004; 2. 广西大学化学与化工学院 南宁 530004)

摘要: 用电弧熔炼方法制备了 Al-Zr-*M* (*M*=Fe,Ce 和 Nd) 合金,合金的相结构用 XRD 进行了分析,通过 动电位线性极化法测试了上述合金在 3.5% NaCl 溶液中的电化学性能,对浸泡后合金的表面形貌用金相显微 镜进行了分析。结果表明:Al-Zr 合金中加入稀土元素后,在 NaCl 溶液中的钝化过程更明显,钝化电位更负, 合金更易钝化,因而改善了合金的耐腐蚀性能;相比较而言含 Nd 的合金耐腐蚀性能更好。而 Al-Fe-Zr 合金为 活性极化,腐蚀电流较大,较易腐蚀。

关键词: 铝合金 稀土 电化学 腐蚀行为 **中图分类号**: TG172 **文献标识码**: A **文章编号**: 1005-4537 (2010) 06-0437-05

1 前言

纯铝具有优异的耐腐蚀性能,但由于硬度较低, 在实际应用中采用的是铝合金。传统的铝合金具有 较小的密度、良好的延展性和优异的力学性能,作为 结构材料得到了广泛的应用,尤其是在航空航天领 域中大量采用铝合金部件。由于 Zr 具有很强的耐腐 蚀性能,且硬度较高^[1];同时稀土由于具有独特的 活性,通过添加上述元素能提高铝合金多方面的性 能^[2]。又由于过渡族金属中 Fe 对 Al 合金的耐腐 蚀性能有不利的影响, 微量的 Fe 就使合金的抗腐 蚀能力显著下降,但 Fe 的添加却能提高合金的强 度^[3],因此如何设计制备高强度且耐蚀性能良好的铝 合金是铝合金研究中的重要课题。目前,对Al-TM-RE 非晶态合金及耐腐蚀性能有了一定的研究^[4~6]。 本文拟通过在铝中添加过渡族元素 Fe、Zr 及稀土 元素,研究其对铝合金耐腐蚀性能的影响,并探讨 其腐蚀过程的机理,为铝合金的设计和应用提供参 考依据。

定稿日期: 2009-12-03

- **基金项目**: 国家自然科学基金项目 (50761002)、 广西青年基 金项目 (0832007) 和广西研究生教育创新计划项目 (105930903079) 资助
- 作者简介: 范常有, 男, 1983 年生, 硕士生, 研究方向为金属功能 材料
- 通讯作者: 陈红梅, E-mail: chenhm@gxu.edu.cn

2 实验方法

Al-Zr-M(M=Fe,Ce 和 Nd) 合金的制备过程为: 将纯度分别为 Al(99.5%)、Fe(99.99%)、Zr(99.5%) 和 Nd(99.9%) 或 Ce(99.5%),按如表 1 所示的名义成分 配比称量后,在 Ar 气保护的非自耗真空电弧炉中反 复熔炼 4 次,使其混合均匀。所得合金的结构用日 本理学 X 射线衍射仪 (Rigaku-1350) 进行分析,采 用 CuK α 辐射 (λ =0.1542 nm)。电化学测试样品是 将制备的合金采用环氧树脂密封,留下一个工作面, 用 1200 号金相砂纸打磨,再用 2.5 μ m 金刚石研磨 膏抛光。用 XJZ-6 型金相显微镜对不同浸泡时间的 样品的表面形貌进行分析。电化学性能测试在美国 Gamry 电化学工作站 (PCI4/750) 上进行,用线性扫 描法测试动电位极化曲线,扫描速度为 1.0 mV/s,扫 描电压从 -1.5 V 到 0.0 V,腐蚀液是浓度为 3.5% NaCl 溶液,所用试剂为分析纯,用蒸馏水配制,未经除氧。

3 结果与讨论

由 XRD 分析所制备的样品的相结构如表 1 所

 Table 1
 Compositions and phase structures of as-cast alloys

sample	alloys (at%)	phase structure
1	$\mathrm{Al}_{80}\mathrm{Zr}_{20}$	Al ₃ Zr, Al
2	$\mathrm{Al}_{80}\mathrm{Zr}_{10}\mathrm{Ce}_{10}$	Al ₃ Zr, Al ₄ Ce
3	$\mathrm{Al}_{80}\mathrm{Zr}_{10}\mathrm{Nd}_{10}$	Al_3Zr , $AlNd_3$
4	$\mathrm{Al}_{80}\mathrm{Fe}_{10}\mathrm{Zr}_{10}$	Al_3Zr , $Al_{13}Fe_4$, Al
5	$\mathrm{Al}_{85}\mathrm{Fe}_{10}\mathrm{Zr}_5$	Al ₃ Zr, Al, Al ₁₃ Fe ₄

Fig.1 XRD patterns of Al-Zr-(RE) as-cast alloy (a) $Al_{80}Zr_{20}$, (b) $Al_{80}Zr_{10}Ce_{10}$, (c) $Al_{80}Zr_{10}Nd_{10}$, (d) $Al_{80}Fe_{10}Zr_{10}$, (e) $Al_{85}Fe_{10}Zr_5$

示,图 1 给出了制备的合金样品的 XRD 图谱。 从图 1 和表 1 可以看出五种合金中主相都是 Al₃Zr,另有其他二元相和单质相,说明制备的合金 样品没有多元相存在的证据。Al₈₀Zr₁₀Ce₁₀ 中含有 Al₄Ce,Al₈₀Zr₁₀Nd₁₀则形成 AlNd₃ 相,说明不同 稀土元素对合金结构有一定的影响;Al₈₀Fe₁₀Zr₁₀ 与 Al₈₅Fe₁₀ Zr₅ 中都生成 Al₁₃Fe₄ 和 Al 相,但前者 Al₁₃Fe₄ 含量较多。Al 基合金中含有微量的 Fe 就能 形成 Al₁₃Fe₄ 相。

由 Al-Zr-(RE) 铸态合金腐蚀后的表面形貌 (图 2)可见,三种合金都有明显的腐蚀坑,前两种 都具有明显的晶粒,这是易腐蚀相反应之后,使剩 余相清晰呈现出来。Al₈₀Zr₂₀的晶粒排列较为规整, 而 Al₈₀Zr₁₀Ce₁₀ 是由于 Ce 的引入形成新相,使得 排列变得不规则。Al₈₀Zr₁₀Nd₁₀ 表面分布微小的腐 蚀坑,在此放大倍数下晶粒不明显,说明该合金在 3.5% NaCl 溶液中耐腐蚀能力较好,相同浸泡时间腐 蚀较轻,使得晶粒不明显。在 Al-Zr 二元合金中加入 稀土元素,不同的稀土元素作用不同,引入 Ce 使晶 粒形状和排列发生改变,对其耐腐蚀性能产生一定 的损害;引入 Nd 则使其晶粒发生细化,排列规整, 使其耐腐蚀能力得到提升。

图 3 为 Al-Zr-Fe 铸态合金浸泡腐蚀后的表面形 貌,与前面合金相比,这两个样品都为柱状晶粒,排 列较为无序,不同相在溶液中的溶解速度不同,随着 易溶相的溶解,难溶相的晶粒清晰的呈现出来。两者 相比, Al₈₀Zr₁₀Fe₁₀ 不同晶粒之间分布较为均匀,大 晶粒相的比例较大。 为了了解合金的腐蚀的电化学特征,对上述合 金进行了电化学分析,图4给出了合金在3.5% NaCl 溶液中线性扫描动电位极化曲线。图4a中所有的曲 线都出现了明显的钝化,阳极区没有明显的塔菲尔 直线段,而图4b则表现为活化极化。通过极化曲线 上阴极强极化区塔菲尔直线区拟合求出斜率 b_K,与 自腐蚀电位 E_{corr} 联立可求出腐蚀电流 I_{corr},并在线 形极化区用线形极化法计算出极化电阻 R_p。活性极 化采用强极化区塔菲尔直线斜率 b_A、b_K与 R_p通过 下面的公式^[7] 计算得到腐蚀电流 I_{corr}。所得腐蚀参 数见表 2。

$$I_{\rm corr} = \frac{b_{\rm K} b_{\rm A}}{2.3(b_{\rm K} + b_{\rm A})} \frac{1}{R} \tag{1}$$

三种合金都出现了明显的钝化过程,电位升到 钝化电位时,电流增长变缓或基本不变,当电位超过 过钝化电位以后,电流则急剧上升(图 4a)。这是由 于在发生阳极极化时,样品表面与溶液介质反应生 成一层钝化膜,阻止腐蚀的进一步进行,当电位继续 升高,达到过钝化电位时,钝化膜溶解速率大于形成 速率,稳定性遭到破坏,使得电流再次增大。三种合 金相比,在 Al-Zr 合金中加入稀土元素后,钝化过程 更明显,在较长的一段电压范围内(0.15~0.2 V)电 流基本没有变化,而且钝化电位更负,说明加入稀土 元素后,合金变得更易进入钝化状态,其钝化效果更 好,从而有利于合金的耐腐蚀效果。另外,稀土 Nd 与 Ce 相比,在钝化条件下含 Nd 合金电流密度更小, 说明相同条件下其腐蚀速率更小,但其稳定钝化区 却比含 Ce 合金的要小。从表 2 可以看出,稀土元素

Fig.2 Morphologies of Al-Zr-(RE) as-cast alloy in 3.5% NaCl solution after 160 h immersion
(a) Al₈₀Zr₂₀, (b) Al₈₀Zr₁₀Ce₁₀, (c) Al₈₀Zr₁₀Nd₁₀

的加入,使得合金的自腐蚀电位 (*E*_{corr})有所降低, 这可能与稀土元素的高活性,使合金更易发生阳极 溶解有关。Ce 加入后腐蚀电流 (*I*_{corr}) 基本不变,而 加入 Nd 则使 *I*_{corr} 显著降低,这说明 Ce 的加入只能 使合金更易出现钝化,而不能降低其腐蚀速率; Nd 的加入不但使得合金更易钝化,维钝电流密度更低, 而且能明显降低 *I*_{corr},所以 Nd 对合金耐腐蚀性能的 影响更优于 Ce 合金。

由于稀土元素反应活性高,在合金中易与其他 元素形成金属间化合物分布在合金主体相之间,在 合金的表面,稀土金属间化合物更易与溶液介质反 应生成氧化物,能敏锐的阻止 Cl-和 CO₃²⁻等有害 离子,阻止腐蚀的继续发生^[8,9]。而随着合金主体相

Fig.3 Morphologies of Al-Zr-Fe as-cast alloy in 3.5% NaCl solution after 160 h immersion.
(a) Al₈₀Fe₁₀Zr₁₀, (b) Al₈₅Fe₁₀Zr₅

Fig.4 Potentiodynamic polarization curve for as-cast alloy in 3.5% NaCl solution (a)Al-Zr-(RE), (b) Al-Fe-Zr

的不断溶解,表面稀土氧化物越积越多,最后形成一 层连续的钝化膜,从而发生钝化现象。电位继续增大, 钝化膜溶解速率大于形成速率,稳定性遭到破坏,发

 $I_{\rm corr} / \mu A \cdot cm^{-2}$ alloys $E_{\rm corr}(vs \ {\rm SCE}) / V$ $b_{\rm A}$ /V $b_{\rm K}$ /V $R_{\rm p} / \Omega \cdot \rm cm^2$ -1.01121.0 $Al_{80}Zr_{20}$ 0.1412086 $\mathrm{Al}_{80}\mathrm{Zr}_{10}\mathrm{Ce}_{10}$ -1.16221.40.1091597 $Al_{80}Zr_{10}Nd_{10}$ -1.111 7.570.1094336 791 $Al_{80}Fe_{10}Zr_{10}$ -0.955181.4(27.4)0.0740.153 $\mathrm{Al}_{85}\mathrm{Fe}_{10}\mathrm{Zr}_5$ -0.952 64.6(37.0)0.0810.155625

 Table 2
 Corrosion parameters of alloys in 3.5% NaCl solution

生过钝化现象^[10]。Nd的加入使合金的晶粒更细,排列更紧密,表面膜也更容易形成,从而降低合金的腐蚀速率,图2中合金腐蚀后的表面形貌与此相符。

两种合金发生活性极化, 阴极极化曲线基本相同, 自腐蚀电位也基本相同, Al₈₀Fe₁₀Zr₁₀ 阳极部分 出现短暂的钝化区, 而 Al₈₅Fe₁₀Zr₅ 则没有出现 (图 4b)。XRD 结果显示, 两种合金含有 Al₃Zr、Al₁₃Fe₄ 和 Al 等相, 由图 3b 可以看出, 两者都为柱状晶粒, 排列较为松散, Al₁₃Fe₄ 在 NaCl 溶液中电极电位与 其它相差别较大^[11], 容易形成原电池效应, 使腐蚀 加快。

从表 2 的腐蚀参数可以看出,如果采用与 Al-Zr-(RE) 合金系相同的数据处理方法,该系两种合金的 腐蚀电流 I_{corr} 明显大很多,且 Al₈₀Fe₁₀Zr₁₀ 合金比 Al₈₅Fe₁₀Zr₅ 大了三倍,但从图 4 来看两者相差不大, 这说明对于活性极化,采用上述处理方法会有很大 误差。由于阳极塔菲尔直线区明显,故拟合求出 b_A 与 b_K ,结合极化电阻 R_p 求出腐蚀电流 I_{corr} (表 2 括 号中数据),可以看出其值大于 Al-Zr-(RE) 合金系, 但明显小于只考虑 b_K 求出的数据,并且两种合金腐 蚀电流差别也不是很显著,与图 4b 的极化曲线符合 也较好。

从表 2 中的 $b_{\rm K}$ 值还可以看出, $Al_{80}Zr_{20}$ 与两种 Al-Fe-Zr 合金的 $b_{\rm K}$ 值相差不大, 说明它们的阴极过 程基本相同, 而在 Al-Zr 中掺入 Ce 或 Nd 后, 该值 降低了很多, 这是高活性的稀土元素加入后, 改变了 合金的阴极极化过程。对于极化电阻 $R_{\rm p}$ 值, Al-Fe-Zr 合金低了一个数量级, 其腐蚀速率也最大, 从该表可 以看出腐蚀速率与 $R_{\rm p}$ 基本成反比, 说明 $R_{\rm p}$ 是影响 腐蚀速率的一个重要参数^[10]。从该参数值可以看出 在 NaCl 溶液中 Al-Fe-Zr 合金耐蚀性能不够理想。

4 结论

(1) 在 Al-Zr 合金中加入稀土元素后, 在 NaCl 溶液中钝化过程更明显, 在较长的一段电压范围内 (0.15~0.2 V) 电流基本没有变化, 而且钝化电位更 负, 合金更易钝化, 因而提高了合金的耐腐蚀性能。 与含 Ce 的合金相比, 含 Nd 合金的腐蚀电流密度与 维钝电流密度都要小, 说明含 Nd 合金的耐腐蚀性能

更好。

(2) 与 Al-Zr-(RE) 合金相比, Al-Fe-Zr 合金在 NaCl 溶液中的 *R*_p 值要小很多, 相应的腐蚀电流也 要大一些, 出现短暂或没有钝化区, 这些都说明该合 金系在 NaCl 溶液中耐蚀性能较差。

参考文献

- Wang C, Zhang Q S, Jiang F, et al. Electrochemical behavior of amorphous alloy Zr₅₅Al₁₀Cu₃₀Ni₅ in 3.5% NaCl solution [J]. Acta Metall. Sin., 2002, 38(7): 765-769 (王成, 张庆生, 江峰等. 非晶合金 Zr₅₅Al₁₀Cu₃₀Ni₅ 在 3.5% NaCl 溶液中的电化学行为 [J]. 金属学报, 2002, 38(7): 765-769)
- [2] Sun W C, Zhang S R, Hou A Q. Behavior of Rare Earth in Aluminum Alloy [M]. Beijing: Weapon Industry Press, 1992: 228-240
 (孙伟成, 张淑荣, 侯爰芹. 稀土在铝合金中的行为 [M]. 北京: 兵 器工业出版社, 1992: 228-240)
- [3] Yin Z X, Chen Y C, Zhou H J. The study of corrosion-resisting mechanisms of the RE-elements and some common-elements in aluminium alloy [J]. J. Guizhou. Univ. Technol. (Nat. Sci. Ed.), 2007, 36(5): 18-22 (尹卓湘, 陈延超, 周红娟. 稀土与铝合金中常见元素的耐腐蚀 机理研究 [J]. 贵州工业大学学报 (自然科学版), 2007, 36(5): 18-22)
- [4] Wu X Q, Ma M, Tan C G, et al. Comparative study on thermodynamical and electrochemical behavior of Al₈₈Ni₆La₆ and Al₈₆Ni₆La₆Cu₂ amorphous alloys [J]. J. Rare Earths, 2007, 25: 381-384
- [5] Aburada T, Unlu N, Fitz-Gerald J M, et al. Effect of Ni as a minority alloying element on the corrosion behavior in Al-Cu-Mg-(Ni) metallic glasses [J]. Scr. Mater., 2008, 58: 623-626
- [6] Wu X Q, Ma M, Tan C G, et al. Corrosion behavior of amorphous and crystalline ribbons of Al₈₈Ni₆La₆ [J]. Rare Met. Mater. Eng., 2007, 36(9): 1668-1671
 (吴学庆, 马蓦, 檀朝桂等. Al₈₈Ni₆La₆ 非晶及其晶化薄带的 腐蚀行为研究 [J]. 稀有金属材料与工程, 2007, 36(9): 1668-1671)
- [7] Song S Z. Corrosion Electrochemical Research Methods
 [M]. Beijing: Chemical Industry Press, 1988; 16-18
 (宋诗哲. 腐蚀电化学研究方法 [M]. 北京: 化学工业出版社, 1988: 16-18)
- [8] Liu L, Qiu C L, Chen Q, et al. Corrosion behavior of Zr-based bulk metallic glasses in different artificial body fluids [J]. J. Alloys Compd., 2006, 425: 268-273
- [9] Yao H B, Li Y, Wee A T S, et al. Correlation between the corrosion behavior and corrosion films formed on the

surfaces of $Mg_{82-x}Ni_{18}Nd_x$ (x=0,5,15) amorphous alloys [J]. Appl. Surf. Sci., 2001, 173: 54-61

- [10] Cao C N. Corrosion Electrochemistry [M]. Beijing: Chemical Industry Press, 1994: 31-34
 (曹楚南. 腐蚀电化学 [M]. 北京: 化学工业出版社, 1994: 31-34)
- [11] Wang Z T, Zhang Z L, Zheng X, et al. Structures and Properties of Aluminum Alloy [M]. Beijing: Metallurgy Industry Press, 1988: 243-250 (王祝堂, 张振录, 郑璇等. 铝合金的组织与性能 [M]. 北京: 冶金 工业出版社, 1988: 243-250)

CORROSION BEHAVIORS OF Al-Zr-M (M=Fe,Ce and Nd) In NaCl SOLUTION

FAN Changyou¹, ZHANG Lei¹, ZHAO Maomi¹, CHEN Hongmei¹, WEN Yanxuan², OUYANG Yifang¹

(1. College of Physics Science and Technology, Guangxi University, Nanning 530004;

2. College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004)

Abstract: Al-Zr-M (M=Fe, Ce and Nd) alloys were prepared by arc melting. The structures of alloys were identified by X-ray diffraction (XRD). The electrochemical behavior of these alloys was studied by potentiody-namic polarization in 3.5% NaCl solution. The surface morphology of samples after corrosion was analyzed by optical microscope. The results show that the passivation in 3.5% NaCl solution for Al-Zr alloys with rare earth addition was easier than that without addition. The ability of corrosion resistance of alloy with Nd is superior to that with Ce. Because of active polarization, the current density of cathodic polarization for Al-Fe-Zr alloy was large, and low corrosion resistance was low.

Key words: aluminum alloy, rare earth, electrochemistry, corrosion behavior

欢迎订阅 2011 年《金属学报》

《金属学报》(www.ams.org.cn)创刊于 1956 年,是由中国金属学会主办、中国科学院金属研究所承 办的材料冶金领域的学术性期刊,是我国材料冶金方面创刊最早的期刊之一.刊登冶金科技和材料科学与工 程方面具有创新性、高水平和有重要意义的原始学术论文以及反映学科发展状况的综述和信息性文章.《金 属学报》被 SCI, EI, CA, SA, JICST 和 AJ 等国际六大检索系统全部收录.

《金属学报》2009 年荣"获新中国 60 年有影响力的期刊"称号;2008 年荣获首届出版政府奖(出版 单位奖),是唯一获奖的科技期刊编辑部;历年来囊括了历届国家最高级的期刊奖励.

欢迎广大从事金属及相关材料的基础研究和应用研究的科研人员、从事材料工程设计与制造的工程技术人员、高等院校和科研院所的师生和领导订阅.

《金属学报》为月刊,国内定价: 48 元/本,全年 576 元. 邮发代号: 2-361. 请您在邮局《全国报刊目录》查找,在邮局未订到者,可与编辑部联系补订,订单函索即寄. 电汇或网银汇款给编辑部即可.